teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,734 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.14
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class FPGrowth:
31
-
32
- def __init__(self,
33
- data = None,
34
- tran_item_columns = None,
35
- tran_id_columns = None,
36
- patterns_or_rules = "both",
37
- group_by_columns = None,
38
- pattern_distribution_key_column = None,
39
- rule_distribution_key_column = None,
40
- compress = "nocompress",
41
- group_size = 4,
42
- min_support = 0.05,
43
- min_confidence = 0.8,
44
- max_pattern_length = "2",
45
- antecedent_count_range = "1-INFINITE",
46
- consequence_count_range = "1-1",
47
- delimiter = ",",
48
- data_sequence_column = None):
49
- """
50
- DESCRIPTION:
51
- The FPGrowth (frequent pattern growth) function uses an FP-growth
52
- algorithm to create association rules from patterns in a data set,
53
- and then determines their interestingness.
54
-
55
-
56
- PARAMETERS:
57
- data:
58
- Required Argument.
59
- Specifies the name of the teradataml DataFrame that contains the data
60
- set.
61
-
62
- tran_item_columns:
63
- Required Argument.
64
- Specifies the names of the columns that contain transaction items to
65
- analyze.
66
- Types: str OR list of Strings (str)
67
-
68
- tran_id_columns:
69
- Required Argument.
70
- Specifies the names of the columns that contain identifiers for the
71
- transaction items.
72
- Types: str OR list of Strings (str)
73
-
74
- patterns_or_rules:
75
- Optional Argument.
76
- Specifies whether the function outputs patterns, rules, or both. An
77
- example of a pattern is {onions, potatoes, hamburger}.
78
- Default Value: "both"
79
- Permitted Values: both, patterns, rules
80
- Types: str
81
-
82
- group_by_columns:
83
- Optional Argument.
84
- Specifies the names of columns that define the partitions into which
85
- the function groups the input data and calculates output for it. At
86
- least one column must be usable as a distribution key. If you omit
87
- this argument, then the function considers all input data to be in a
88
- single partition.
89
- Note: Do not specify the same column in both this
90
- argument and the tran_id_columns argument, because this causes
91
- incorrect counting in the partitions.
92
- Types: str OR list of Strings (str)
93
-
94
- pattern_distribution_key_column:
95
- Optional Argument.
96
- Specifies the name of the column to use as the distribution key for
97
- output_pattern_table.
98
- The default value is the first column name - "pattern_<tran_item_columns>"
99
- as generated in the "output_pattern_table" table.
100
- Note: only one column name can be specified.
101
- Types: str
102
-
103
- rule_distribution_key_column:
104
- Optional Argument.
105
- Specifies the name of the column to use as the distribution key for
106
- output_rule_table.
107
- The default value is the first column name - "antecedent_<tran_item_columns>"
108
- as generated in the "output_rule_table" table.
109
- Note: only one column name can be specified.
110
- Types: str
111
-
112
- compress:
113
- Optional Argument.
114
- Specifies the compression level the output tables. Realized
115
- compression ratios depend on both this value and the data
116
- characteristics. These ratios typically range from 3x to 12x.
117
- Default Value: "nocompress"
118
- Permitted Values: low, medium, high, nocompress
119
- Types: str
120
-
121
- group_size:
122
- Optional Argument.
123
- Specifies the number of transaction items to be assigned to each
124
- worker. This value must be an int in the range from 1 to the number
125
- of distinct transaction items, inclusive. For a machine with limited
126
- RAM, use a relatively small value.
127
- Default Value: 4
128
- Types: int
129
-
130
- min_support:
131
- Optional Argument.
132
- Specifies the minimum support value of returned patterns (including
133
- the specified support value). This value must be a DECIMAL in the
134
- range [0, 1].
135
- Default Value: 0.05
136
- Types: float
137
-
138
- min_confidence:
139
- Optional Argument.
140
- Specifies the minimum confidence value of returned patterns
141
- (including the specified confidence value). This value must be a
142
- DECIMAL in the range [0, 1].
143
- Default Value: 0.8
144
- Types: float
145
-
146
- max_pattern_length:
147
- Optional Argument.
148
- Specifies the maximum length of returned patterns. The length of a
149
- pattern is the sum of the item numbers in the antecedent and
150
- consequence columns. This value must be an int greater than 2.
151
- max_pattern_length also limits the length of
152
- returned rules to this value.
153
- Default Value: "2"
154
- Types: str
155
-
156
- antecedent_count_range:
157
- Optional Argument.
158
- Specifies the range for na, the number of items in the antecedent.
159
- The function returns only patterns for which na is in the range
160
- [lower_bound, upper_bound]. The lower_bound must be greater an
161
- integer greater than 0. The lower_bound and upper_bound can be equal.
162
- Default Value: "1-INFINITE"
163
- Types: str
164
-
165
- consequence_count_range:
166
- Optional Argument.
167
- Specifies the range for nc, the number of items in the consequence.
168
- The function returns only patterns for which nc is in the range
169
- [lower_bound, upper_bound]. The lower_bound must be greater an
170
- integer greater than 0. The lower_bound and upper_bound can be equal.
171
- Default Value: "1-1"
172
- Types: str
173
-
174
- delimiter:
175
- Optional Argument.
176
- Specifies the delimiter that separates items in the output.
177
- Default Value: ","
178
- Types: str
179
-
180
- data_sequence_column:
181
- Optional Argument.
182
- Specifies the list of column(s) that uniquely identifies each row of
183
- the input argument "data". The argument is used to ensure
184
- deterministic results for functions which produce results that vary
185
- from run to run.
186
- Types: str OR list of Strings (str)
187
-
188
- RETURNS:
189
- Instance of FPGrowth.
190
- Output teradataml DataFrames can be accessed using attribute
191
- references, such as FPGrowthObj.<attribute_name>.
192
- Output teradataml DataFrame attribute names are:
193
- 1. output_pattern_table
194
- 2. output_rule_table
195
- 3. output
196
-
197
- Note:
198
- Based on the value passed to 'patterns_or_rules', output teradataml
199
- DataFrames are created.
200
- - When value is 'BOTH', all three output teradataml dataframes are
201
- created.
202
- - When it is 'PATTERNS', 'output_rule_table' output teradataml
203
- dataframe is not created.
204
- - When it is 'RULES', 'output_pattern_table' output teradataml
205
- dataframe is not created.
206
-
207
-
208
- RAISES:
209
- TeradataMlException
210
-
211
-
212
- EXAMPLES:
213
- # Load example data.
214
- load_example_data("fpgrowth", "sales_transaction")
215
-
216
- # Create teradataml DataFrame objects.
217
- # Sales transaction data of an office supply chain store.
218
- # The column "product" specifies the items that are purchased by a
219
- # customer in a given transaction (column "orderid")
220
- sales_transaction = DataFrame.from_table("sales_transaction")
221
-
222
- # Example - Compute association rules based on the pattern in the "product" column
223
- FPGrowth_out = FPGrowth(data = sales_transaction,
224
- tran_item_columns = ["product"],
225
- tran_id_columns = ["orderid"],
226
- patterns_or_rules = "both",
227
- group_by_columns = ["region"],
228
- min_support = 0.01,
229
- min_confidence = 0.0,
230
- max_pattern_length = "4"
231
- )
232
-
233
- # Print the results.
234
- print(FPGrowth_out)
235
-
236
- """
237
-
238
- # Start the timer to get the build time
239
- _start_time = time.time()
240
-
241
- self.data = data
242
- self.tran_item_columns = tran_item_columns
243
- self.tran_id_columns = tran_id_columns
244
- self.patterns_or_rules = patterns_or_rules
245
- self.group_by_columns = group_by_columns
246
- self.pattern_distribution_key_column = pattern_distribution_key_column
247
- self.rule_distribution_key_column = rule_distribution_key_column
248
- self.compress = compress
249
- self.group_size = group_size
250
- self.min_support = min_support
251
- self.min_confidence = min_confidence
252
- self.max_pattern_length = max_pattern_length
253
- self.antecedent_count_range = antecedent_count_range
254
- self.consequence_count_range = consequence_count_range
255
- self.delimiter = delimiter
256
- self.data_sequence_column = data_sequence_column
257
-
258
- # Create TeradataPyWrapperUtils instance which contains validation functions.
259
- self.__awu = AnalyticsWrapperUtils()
260
- self.__aed_utils = AedUtils()
261
-
262
- # Create argument information matrix to do parameter checking
263
- self.__arg_info_matrix = []
264
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
265
- self.__arg_info_matrix.append(["tran_item_columns", self.tran_item_columns, False, (str,list)])
266
- self.__arg_info_matrix.append(["tran_id_columns", self.tran_id_columns, False, (str,list)])
267
- self.__arg_info_matrix.append(["patterns_or_rules", self.patterns_or_rules, True, (str)])
268
- self.__arg_info_matrix.append(["group_by_columns", self.group_by_columns, True, (str,list)])
269
- self.__arg_info_matrix.append(["pattern_distribution_key_column", self.pattern_distribution_key_column, True, (str)])
270
- self.__arg_info_matrix.append(["rule_distribution_key_column", self.rule_distribution_key_column, True, (str)])
271
- self.__arg_info_matrix.append(["compress", self.compress, True, (str)])
272
- self.__arg_info_matrix.append(["group_size", self.group_size, True, (int)])
273
- self.__arg_info_matrix.append(["min_support", self.min_support, True, (float)])
274
- self.__arg_info_matrix.append(["min_confidence", self.min_confidence, True, (float)])
275
- self.__arg_info_matrix.append(["max_pattern_length", self.max_pattern_length, True, (str)])
276
- self.__arg_info_matrix.append(["antecedent_count_range", self.antecedent_count_range, True, (str)])
277
- self.__arg_info_matrix.append(["consequence_count_range", self.consequence_count_range, True, (str)])
278
- self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
279
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
280
-
281
- if inspect.stack()[1][3] != '_from_model_catalog':
282
- # Perform the function validations
283
- self.__validate()
284
- # Generate the ML query
285
- self.__form_tdml_query()
286
- # Process output table schema
287
- self.__process_output_column_info()
288
- # Execute ML query
289
- self.__execute()
290
- # Get the prediction type
291
- self._prediction_type = self.__awu._get_function_prediction_type(self)
292
-
293
- # End the timer to get the build time
294
- _end_time = time.time()
295
-
296
- # Calculate the build time
297
- self._build_time = (int)(_end_time - _start_time)
298
-
299
- def __validate(self):
300
- """
301
- Function to validate sqlmr function arguments, which verifies missing
302
- arguments, input argument and table types. Also processes the
303
- argument values.
304
- """
305
-
306
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
307
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
308
-
309
- # Make sure that a non-NULL value has been supplied correct type of argument
310
- self.__awu._validate_argument_types(self.__arg_info_matrix)
311
-
312
- # Check to make sure input table types are strings or data frame objects or of valid type.
313
- self.__awu._validate_input_table_datatype(self.data, "data", None)
314
-
315
- # Check for permitted values
316
- patterns_or_rules_permitted_values = ["BOTH", "PATTERNS", "RULES"]
317
- self.__awu._validate_permitted_values(self.patterns_or_rules, patterns_or_rules_permitted_values, "patterns_or_rules", False)
318
-
319
- compress_permitted_values = ["LOW", "MEDIUM", "HIGH", "NOCOMPRESS"]
320
- self.__awu._validate_permitted_values(self.compress, compress_permitted_values, "compress")
321
-
322
- # Check whether the input columns passed to the argument are not empty.
323
- # Also check whether the input columns passed to the argument valid or not.
324
- self.__awu._validate_input_columns_not_empty(self.tran_item_columns, "tran_item_columns")
325
- self.__awu._validate_dataframe_has_argument_columns(self.tran_item_columns, "tran_item_columns", self.data, "data", False)
326
-
327
- self.__awu._validate_input_columns_not_empty(self.tran_id_columns, "tran_id_columns")
328
- self.__awu._validate_dataframe_has_argument_columns(self.tran_id_columns, "tran_id_columns", self.data, "data", False)
329
-
330
- self.__awu._validate_input_columns_not_empty(self.group_by_columns, "group_by_columns")
331
- self.__awu._validate_dataframe_has_argument_columns(self.group_by_columns, "group_by_columns", self.data, "data", False)
332
-
333
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
334
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
335
-
336
- # Validate that value passed to the output column argument is not empty.
337
- self.__awu._validate_input_columns_not_empty(self.pattern_distribution_key_column, "pattern_distribution_key_column")
338
- self.__awu._validate_input_columns_not_empty(self.rule_distribution_key_column, "rule_distribution_key_column")
339
-
340
- def __form_tdml_query(self):
341
- """
342
- Function to generate the analytical function queries. The function defines
343
- variables and list of arguments required to form the query.
344
- """
345
- # Generate temp table names for output table parameters if any.
346
- self.__func_output_args_sql_names = []
347
- self.__func_output_args = []
348
- if self.patterns_or_rules.lower() in ["both", "patterns"]:
349
- self.__output_pattern_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_fpgrowth0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
350
- self.__func_output_args_sql_names.append("OutputPatternTable")
351
- self.__func_output_args.append(self.__output_pattern_table_temp_tablename)
352
-
353
- if self.patterns_or_rules.lower() in ["both", "rules"]:
354
- self.__output_rule_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_fpgrowth1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
355
- self.__func_output_args_sql_names.append("OutputRuleTable")
356
- self.__func_output_args.append(self.__output_rule_table_temp_tablename)
357
-
358
- # Model Cataloging related attributes.
359
- self._sql_specific_attributes = {}
360
- self._sql_formula_attribute_mapper = {}
361
- self._target_column = None
362
- self._algorithm_name = None
363
-
364
- # Generate lists for rest of the function arguments
365
- self.__func_other_arg_sql_names = []
366
- self.__func_other_args = []
367
- self.__func_other_arg_json_datatypes = []
368
-
369
- self.__func_other_arg_sql_names.append("TargetColumns")
370
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.tran_item_columns, "\""), "'"))
371
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
372
-
373
- self.__func_other_arg_sql_names.append("TransactionIDColumns")
374
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.tran_id_columns, "\""), "'"))
375
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
376
-
377
- if self.group_by_columns is not None:
378
- self.__func_other_arg_sql_names.append("PartitionColumns")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.group_by_columns, "\""), "'"))
380
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
381
-
382
- if self.patterns_or_rules != "both":
383
- self.__func_other_arg_sql_names.append("PatternsOrRules")
384
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.patterns_or_rules, "'"))
385
- self.__func_other_arg_json_datatypes.append("STRING")
386
-
387
- if self.compress is not None and self.compress != "nocompress":
388
- self.__func_other_arg_sql_names.append("CompressionLevel")
389
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.compress, "'"))
390
- self.__func_other_arg_json_datatypes.append("STRING")
391
-
392
- if self.group_size is not None and self.group_size != 4:
393
- self.__func_other_arg_sql_names.append("GroupSize")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.group_size, "'"))
395
- self.__func_other_arg_json_datatypes.append("INTEGER")
396
-
397
- if self.min_support is not None and self.min_support != 0.05:
398
- self.__func_other_arg_sql_names.append("MinSupport")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_support, "'"))
400
- self.__func_other_arg_json_datatypes.append("DOUBLE")
401
-
402
- if self.min_confidence is not None and self.min_confidence != 0.8:
403
- self.__func_other_arg_sql_names.append("MinConfidence")
404
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_confidence, "'"))
405
- self.__func_other_arg_json_datatypes.append("DOUBLE")
406
-
407
- if self.max_pattern_length is not None:
408
- self.__func_other_arg_sql_names.append("MaxPatternLength")
409
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_pattern_length, "'"))
410
- self.__func_other_arg_json_datatypes.append("STRING")
411
-
412
- if self.antecedent_count_range is not None and self.antecedent_count_range != "1-INFINITE":
413
- self.__func_other_arg_sql_names.append("AntecedentCountRange")
414
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.antecedent_count_range, "'"))
415
- self.__func_other_arg_json_datatypes.append("STRING")
416
-
417
- if self.consequence_count_range is not None and self.consequence_count_range != "1-1":
418
- self.__func_other_arg_sql_names.append("ConsequenceCountRange")
419
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.consequence_count_range, "'"))
420
- self.__func_other_arg_json_datatypes.append("STRING")
421
-
422
- if self.delimiter is not None and self.delimiter != ",":
423
- self.__func_other_arg_sql_names.append("Delimiter")
424
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
425
- self.__func_other_arg_json_datatypes.append("STRING")
426
-
427
- if self.pattern_distribution_key_column is not None:
428
- self.__func_other_arg_sql_names.append("PatternDistributionKeyColumn")
429
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pattern_distribution_key_column, "'"))
430
- self.__func_other_arg_json_datatypes.append("STRING")
431
-
432
- if self.rule_distribution_key_column is not None:
433
- self.__func_other_arg_sql_names.append("RuleDistributionKeyColumn")
434
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.rule_distribution_key_column, "'"))
435
- self.__func_other_arg_json_datatypes.append("STRING")
436
-
437
- # Generate lists for rest of the function arguments
438
- sequence_input_by_list = []
439
- if self.data_sequence_column is not None:
440
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
441
-
442
- if len(sequence_input_by_list) > 0:
443
- self.__func_other_arg_sql_names.append("SequenceInputBy")
444
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
445
- self.__func_other_args.append(sequence_input_by_arg_value)
446
- self.__func_other_arg_json_datatypes.append("STRING")
447
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
448
-
449
-
450
- # Declare empty lists to hold input table information.
451
- self.__func_input_arg_sql_names = []
452
- self.__func_input_table_view_query = []
453
- self.__func_input_dataframe_type = []
454
- self.__func_input_distribution = []
455
- self.__func_input_partition_by_cols = []
456
- self.__func_input_order_by_cols = []
457
-
458
- # Process data
459
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
460
- self.__func_input_distribution.append("NONE")
461
- self.__func_input_arg_sql_names.append("InputTable")
462
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
463
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
464
- self.__func_input_partition_by_cols.append("NA_character_")
465
- self.__func_input_order_by_cols.append("NA_character_")
466
-
467
- function_name = "FPGrowth"
468
- # Create instance to generate SQLMR.
469
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
470
- self.__func_input_arg_sql_names,
471
- self.__func_input_table_view_query,
472
- self.__func_input_dataframe_type,
473
- self.__func_input_distribution,
474
- self.__func_input_partition_by_cols,
475
- self.__func_input_order_by_cols,
476
- self.__func_other_arg_sql_names,
477
- self.__func_other_args,
478
- self.__func_other_arg_json_datatypes,
479
- self.__func_output_args_sql_names,
480
- self.__func_output_args,
481
- engine="ENGINE_ML")
482
- # Invoke call to SQL-MR generation.
483
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
484
-
485
- # Print SQL-MR query if requested to do so.
486
- if display.print_sqlmr_query:
487
- print(self.sqlmr_query)
488
-
489
- # Set the algorithm name for Model Cataloging.
490
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
491
-
492
- def __execute(self):
493
- """
494
- Function to generate AED nodes for output tables.
495
- This makes a call aed_ml_query() and then output table dataframes are created.
496
- """
497
- # Create a list of input node ids contributing to a query.
498
- self.__input_nodeids = []
499
- self.__input_nodeids.append(self.data._nodeid)
500
-
501
- # Generate STDOUT table name and add it to the output table list.
502
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
503
- self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
504
- try:
505
- # Call aed_ml_query and generate AED nodes.
506
- node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "FPGrowth", self.__aqg_obj._multi_query_input_nodes)
507
- except Exception as emsg:
508
- raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
509
-
510
- # Update output table data frames.
511
- self._mlresults = []
512
- self.output_rule_table = "INFO: 'output_rule_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'PATTERNS'."
513
- self.output_pattern_table = "INFO: 'output_pattern_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'RULES'."
514
- if self.patterns_or_rules.lower() in ["both", "patterns"]:
515
- self.output_pattern_table = self.__awu._create_data_set_object(df_input=node_id_list[1], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[1], self.__output_pattern_table_column_info))
516
- self._mlresults.append(self.output_pattern_table)
517
-
518
- if self.patterns_or_rules.lower() in ["both", "rules"]:
519
- if self.patterns_or_rules.lower() == "both":
520
- node_index = 2
521
- else:
522
- node_index = 1
523
- self.output_rule_table = self.__awu._create_data_set_object(df_input=node_id_list[node_index], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[node_index], self.__output_rule_table_column_info))
524
- self._mlresults.append(self.output_rule_table)
525
-
526
- self.output = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
527
- self._mlresults.append(self.output)
528
-
529
- def __process_output_column_info(self):
530
- """
531
- Function to process the output schema for all the ouptut tables.
532
- This function generates list of column names and column types
533
- for each generated output tables, which can be used to create metaexpr.
534
- """
535
- # Collecting STDOUT output column information.
536
- stdout_column_info_name = []
537
- stdout_column_info_type = []
538
- stdout_column_info_name.append("output_information")
539
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
540
-
541
- self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
542
-
543
- # Collecting output_pattern_table output column information.
544
- if self.patterns_or_rules.lower() in ["both", "patterns"]:
545
- output_pattern_table_column_info_name = []
546
- output_pattern_table_column_info_type = []
547
- if self.group_by_columns is not None:
548
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.group_by_columns, columns=None):
549
- output_pattern_table_column_info_name.append(column_name)
550
- output_pattern_table_column_info_type.append(column_type)
551
-
552
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.tran_item_columns, columns=None):
553
- output_pattern_table_column_info_name.append("pattern_" + column_name)
554
- output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
555
-
556
- output_pattern_table_column_info_name.append("length_of_pattern")
557
- output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
558
-
559
- output_pattern_table_column_info_name.append("count")
560
- output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
561
-
562
- output_pattern_table_column_info_name.append("support")
563
- output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
564
-
565
- self.__output_pattern_table_column_info = zip(output_pattern_table_column_info_name, output_pattern_table_column_info_type)
566
-
567
- # Collecting output_rule_table output column information.
568
- if self.patterns_or_rules.lower() in ["both", "rules"]:
569
- output_rule_table_column_info_name = []
570
- output_rule_table_column_info_type = []
571
- if self.group_by_columns is not None:
572
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.group_by_columns, columns=None):
573
- output_rule_table_column_info_name.append(column_name)
574
- output_rule_table_column_info_type.append(column_type)
575
-
576
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.tran_item_columns, columns=None):
577
- output_rule_table_column_info_name.append("antecedent_" + column_name)
578
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
579
-
580
- output_rule_table_column_info_name.append("consequence_" + column_name)
581
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
582
-
583
- output_rule_table_column_info_name.append("count_of_antecedent")
584
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
585
-
586
- output_rule_table_column_info_name.append("count_of_consequence")
587
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
588
-
589
- output_rule_table_column_info_name.append("cntb")
590
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
591
-
592
- output_rule_table_column_info_name.append("cnt_antecedent")
593
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
594
-
595
- output_rule_table_column_info_name.append("cnt_consequence")
596
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
597
-
598
- output_rule_table_column_info_name.append("score")
599
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
600
-
601
- output_rule_table_column_info_name.append("support")
602
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
603
-
604
- output_rule_table_column_info_name.append("confidence")
605
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
606
-
607
- output_rule_table_column_info_name.append("lift")
608
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
609
-
610
- output_rule_table_column_info_name.append("conviction")
611
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
612
-
613
- output_rule_table_column_info_name.append("leverage")
614
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
615
-
616
- output_rule_table_column_info_name.append("coverage")
617
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
618
-
619
- output_rule_table_column_info_name.append("chi_square")
620
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
621
-
622
- output_rule_table_column_info_name.append("z_score")
623
- output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
624
-
625
- self.__output_rule_table_column_info = zip(output_rule_table_column_info_name, output_rule_table_column_info_type)
626
-
627
- def show_query(self):
628
- """
629
- Function to return the underlying SQL query.
630
- When model object is created using retrieve_model(), then None is returned.
631
- """
632
- return self.sqlmr_query
633
-
634
- def get_prediction_type(self):
635
- """
636
- Function to return the Prediction type of the algorithm.
637
- When model object is created using retrieve_model(), then the value returned is
638
- as saved in the Model Catalog.
639
- """
640
- return self._prediction_type
641
-
642
- def get_target_column(self):
643
- """
644
- Function to return the Target Column of the algorithm.
645
- When model object is created using retrieve_model(), then the value returned is
646
- as saved in the Model Catalog.
647
- """
648
- return self._target_column
649
-
650
- def get_build_time(self):
651
- """
652
- Function to return the build time of the algorithm in seconds.
653
- When model object is created using retrieve_model(), then the value returned is
654
- as saved in the Model Catalog.
655
- """
656
- return self._build_time
657
-
658
- def _get_algorithm_name(self):
659
- """
660
- Function to return the name of the algorithm.
661
- """
662
- return self._algorithm_name
663
-
664
- def _get_sql_specific_attributes(self):
665
- """
666
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
667
- """
668
- return self._sql_specific_attributes
669
-
670
- @classmethod
671
- def _from_model_catalog(cls,
672
- output_pattern_table = None,
673
- output_rule_table = None,
674
- output = None,
675
- **kwargs):
676
- """
677
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
678
- """
679
- kwargs.pop("output_pattern_table", None)
680
- kwargs.pop("output_rule_table", None)
681
- kwargs.pop("output", None)
682
-
683
- # Model Cataloging related attributes.
684
- target_column = kwargs.pop("__target_column", None)
685
- prediction_type = kwargs.pop("__prediction_type", None)
686
- algorithm_name = kwargs.pop("__algorithm_name", None)
687
- build_time = kwargs.pop("__build_time", None)
688
-
689
- # Let's create an object of this class.
690
- obj = cls(**kwargs)
691
- obj.output_pattern_table = output_pattern_table
692
- obj.output_rule_table = output_rule_table
693
- obj.output = output
694
-
695
- # Initialize the sqlmr_query class attribute.
696
- obj.sqlmr_query = None
697
-
698
- # Initialize the SQL specific Model Cataloging attributes.
699
- obj._sql_specific_attributes = None
700
- obj._target_column = target_column
701
- obj._prediction_type = prediction_type
702
- obj._algorithm_name = algorithm_name
703
- obj._build_time = build_time
704
-
705
- # Update output table data frames.
706
- obj._mlresults = []
707
- if obj.output_pattern_table is None:
708
- obj.output_pattern_table = "INFO: 'output_pattern_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'RULES'."
709
- else:
710
- obj.output_pattern_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_pattern_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_pattern_table))
711
- obj._mlresults.append(obj.output_pattern_table)
712
-
713
- if obj.output_rule_table is None:
714
- obj.output_rule_table = "INFO: 'output_rule_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'PATTERNS'."
715
- else:
716
- obj.output_rule_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_rule_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_rule_table))
717
- obj._mlresults.append(obj.output_rule_table)
718
-
719
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
720
- obj._mlresults.append(obj.output)
721
- return obj
722
-
723
- def __repr__(self):
724
- """
725
- Returns the string representation for a FPGrowth class instance.
726
- """
727
- repr_string="############ STDOUT Output ############"
728
- repr_string = "{}\n\n{}".format(repr_string,self.output)
729
- repr_string="{}\n\n\n############ output_pattern_table Output ############".format(repr_string)
730
- repr_string = "{}\n\n{}".format(repr_string,self.output_pattern_table)
731
- repr_string="{}\n\n\n############ output_rule_table Output ############".format(repr_string)
732
- repr_string = "{}\n\n{}".format(repr_string,self.output_rule_table)
733
- return repr_string
734
-