teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,734 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.14
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class FPGrowth:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
tran_item_columns = None,
|
|
35
|
-
tran_id_columns = None,
|
|
36
|
-
patterns_or_rules = "both",
|
|
37
|
-
group_by_columns = None,
|
|
38
|
-
pattern_distribution_key_column = None,
|
|
39
|
-
rule_distribution_key_column = None,
|
|
40
|
-
compress = "nocompress",
|
|
41
|
-
group_size = 4,
|
|
42
|
-
min_support = 0.05,
|
|
43
|
-
min_confidence = 0.8,
|
|
44
|
-
max_pattern_length = "2",
|
|
45
|
-
antecedent_count_range = "1-INFINITE",
|
|
46
|
-
consequence_count_range = "1-1",
|
|
47
|
-
delimiter = ",",
|
|
48
|
-
data_sequence_column = None):
|
|
49
|
-
"""
|
|
50
|
-
DESCRIPTION:
|
|
51
|
-
The FPGrowth (frequent pattern growth) function uses an FP-growth
|
|
52
|
-
algorithm to create association rules from patterns in a data set,
|
|
53
|
-
and then determines their interestingness.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
data:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies the name of the teradataml DataFrame that contains the data
|
|
60
|
-
set.
|
|
61
|
-
|
|
62
|
-
tran_item_columns:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies the names of the columns that contain transaction items to
|
|
65
|
-
analyze.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
tran_id_columns:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the names of the columns that contain identifiers for the
|
|
71
|
-
transaction items.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
patterns_or_rules:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies whether the function outputs patterns, rules, or both. An
|
|
77
|
-
example of a pattern is {onions, potatoes, hamburger}.
|
|
78
|
-
Default Value: "both"
|
|
79
|
-
Permitted Values: both, patterns, rules
|
|
80
|
-
Types: str
|
|
81
|
-
|
|
82
|
-
group_by_columns:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies the names of columns that define the partitions into which
|
|
85
|
-
the function groups the input data and calculates output for it. At
|
|
86
|
-
least one column must be usable as a distribution key. If you omit
|
|
87
|
-
this argument, then the function considers all input data to be in a
|
|
88
|
-
single partition.
|
|
89
|
-
Note: Do not specify the same column in both this
|
|
90
|
-
argument and the tran_id_columns argument, because this causes
|
|
91
|
-
incorrect counting in the partitions.
|
|
92
|
-
Types: str OR list of Strings (str)
|
|
93
|
-
|
|
94
|
-
pattern_distribution_key_column:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
Specifies the name of the column to use as the distribution key for
|
|
97
|
-
output_pattern_table.
|
|
98
|
-
The default value is the first column name - "pattern_<tran_item_columns>"
|
|
99
|
-
as generated in the "output_pattern_table" table.
|
|
100
|
-
Note: only one column name can be specified.
|
|
101
|
-
Types: str
|
|
102
|
-
|
|
103
|
-
rule_distribution_key_column:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
Specifies the name of the column to use as the distribution key for
|
|
106
|
-
output_rule_table.
|
|
107
|
-
The default value is the first column name - "antecedent_<tran_item_columns>"
|
|
108
|
-
as generated in the "output_rule_table" table.
|
|
109
|
-
Note: only one column name can be specified.
|
|
110
|
-
Types: str
|
|
111
|
-
|
|
112
|
-
compress:
|
|
113
|
-
Optional Argument.
|
|
114
|
-
Specifies the compression level the output tables. Realized
|
|
115
|
-
compression ratios depend on both this value and the data
|
|
116
|
-
characteristics. These ratios typically range from 3x to 12x.
|
|
117
|
-
Default Value: "nocompress"
|
|
118
|
-
Permitted Values: low, medium, high, nocompress
|
|
119
|
-
Types: str
|
|
120
|
-
|
|
121
|
-
group_size:
|
|
122
|
-
Optional Argument.
|
|
123
|
-
Specifies the number of transaction items to be assigned to each
|
|
124
|
-
worker. This value must be an int in the range from 1 to the number
|
|
125
|
-
of distinct transaction items, inclusive. For a machine with limited
|
|
126
|
-
RAM, use a relatively small value.
|
|
127
|
-
Default Value: 4
|
|
128
|
-
Types: int
|
|
129
|
-
|
|
130
|
-
min_support:
|
|
131
|
-
Optional Argument.
|
|
132
|
-
Specifies the minimum support value of returned patterns (including
|
|
133
|
-
the specified support value). This value must be a DECIMAL in the
|
|
134
|
-
range [0, 1].
|
|
135
|
-
Default Value: 0.05
|
|
136
|
-
Types: float
|
|
137
|
-
|
|
138
|
-
min_confidence:
|
|
139
|
-
Optional Argument.
|
|
140
|
-
Specifies the minimum confidence value of returned patterns
|
|
141
|
-
(including the specified confidence value). This value must be a
|
|
142
|
-
DECIMAL in the range [0, 1].
|
|
143
|
-
Default Value: 0.8
|
|
144
|
-
Types: float
|
|
145
|
-
|
|
146
|
-
max_pattern_length:
|
|
147
|
-
Optional Argument.
|
|
148
|
-
Specifies the maximum length of returned patterns. The length of a
|
|
149
|
-
pattern is the sum of the item numbers in the antecedent and
|
|
150
|
-
consequence columns. This value must be an int greater than 2.
|
|
151
|
-
max_pattern_length also limits the length of
|
|
152
|
-
returned rules to this value.
|
|
153
|
-
Default Value: "2"
|
|
154
|
-
Types: str
|
|
155
|
-
|
|
156
|
-
antecedent_count_range:
|
|
157
|
-
Optional Argument.
|
|
158
|
-
Specifies the range for na, the number of items in the antecedent.
|
|
159
|
-
The function returns only patterns for which na is in the range
|
|
160
|
-
[lower_bound, upper_bound]. The lower_bound must be greater an
|
|
161
|
-
integer greater than 0. The lower_bound and upper_bound can be equal.
|
|
162
|
-
Default Value: "1-INFINITE"
|
|
163
|
-
Types: str
|
|
164
|
-
|
|
165
|
-
consequence_count_range:
|
|
166
|
-
Optional Argument.
|
|
167
|
-
Specifies the range for nc, the number of items in the consequence.
|
|
168
|
-
The function returns only patterns for which nc is in the range
|
|
169
|
-
[lower_bound, upper_bound]. The lower_bound must be greater an
|
|
170
|
-
integer greater than 0. The lower_bound and upper_bound can be equal.
|
|
171
|
-
Default Value: "1-1"
|
|
172
|
-
Types: str
|
|
173
|
-
|
|
174
|
-
delimiter:
|
|
175
|
-
Optional Argument.
|
|
176
|
-
Specifies the delimiter that separates items in the output.
|
|
177
|
-
Default Value: ","
|
|
178
|
-
Types: str
|
|
179
|
-
|
|
180
|
-
data_sequence_column:
|
|
181
|
-
Optional Argument.
|
|
182
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
183
|
-
the input argument "data". The argument is used to ensure
|
|
184
|
-
deterministic results for functions which produce results that vary
|
|
185
|
-
from run to run.
|
|
186
|
-
Types: str OR list of Strings (str)
|
|
187
|
-
|
|
188
|
-
RETURNS:
|
|
189
|
-
Instance of FPGrowth.
|
|
190
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
191
|
-
references, such as FPGrowthObj.<attribute_name>.
|
|
192
|
-
Output teradataml DataFrame attribute names are:
|
|
193
|
-
1. output_pattern_table
|
|
194
|
-
2. output_rule_table
|
|
195
|
-
3. output
|
|
196
|
-
|
|
197
|
-
Note:
|
|
198
|
-
Based on the value passed to 'patterns_or_rules', output teradataml
|
|
199
|
-
DataFrames are created.
|
|
200
|
-
- When value is 'BOTH', all three output teradataml dataframes are
|
|
201
|
-
created.
|
|
202
|
-
- When it is 'PATTERNS', 'output_rule_table' output teradataml
|
|
203
|
-
dataframe is not created.
|
|
204
|
-
- When it is 'RULES', 'output_pattern_table' output teradataml
|
|
205
|
-
dataframe is not created.
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
RAISES:
|
|
209
|
-
TeradataMlException
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
EXAMPLES:
|
|
213
|
-
# Load example data.
|
|
214
|
-
load_example_data("fpgrowth", "sales_transaction")
|
|
215
|
-
|
|
216
|
-
# Create teradataml DataFrame objects.
|
|
217
|
-
# Sales transaction data of an office supply chain store.
|
|
218
|
-
# The column "product" specifies the items that are purchased by a
|
|
219
|
-
# customer in a given transaction (column "orderid")
|
|
220
|
-
sales_transaction = DataFrame.from_table("sales_transaction")
|
|
221
|
-
|
|
222
|
-
# Example - Compute association rules based on the pattern in the "product" column
|
|
223
|
-
FPGrowth_out = FPGrowth(data = sales_transaction,
|
|
224
|
-
tran_item_columns = ["product"],
|
|
225
|
-
tran_id_columns = ["orderid"],
|
|
226
|
-
patterns_or_rules = "both",
|
|
227
|
-
group_by_columns = ["region"],
|
|
228
|
-
min_support = 0.01,
|
|
229
|
-
min_confidence = 0.0,
|
|
230
|
-
max_pattern_length = "4"
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
# Print the results.
|
|
234
|
-
print(FPGrowth_out)
|
|
235
|
-
|
|
236
|
-
"""
|
|
237
|
-
|
|
238
|
-
# Start the timer to get the build time
|
|
239
|
-
_start_time = time.time()
|
|
240
|
-
|
|
241
|
-
self.data = data
|
|
242
|
-
self.tran_item_columns = tran_item_columns
|
|
243
|
-
self.tran_id_columns = tran_id_columns
|
|
244
|
-
self.patterns_or_rules = patterns_or_rules
|
|
245
|
-
self.group_by_columns = group_by_columns
|
|
246
|
-
self.pattern_distribution_key_column = pattern_distribution_key_column
|
|
247
|
-
self.rule_distribution_key_column = rule_distribution_key_column
|
|
248
|
-
self.compress = compress
|
|
249
|
-
self.group_size = group_size
|
|
250
|
-
self.min_support = min_support
|
|
251
|
-
self.min_confidence = min_confidence
|
|
252
|
-
self.max_pattern_length = max_pattern_length
|
|
253
|
-
self.antecedent_count_range = antecedent_count_range
|
|
254
|
-
self.consequence_count_range = consequence_count_range
|
|
255
|
-
self.delimiter = delimiter
|
|
256
|
-
self.data_sequence_column = data_sequence_column
|
|
257
|
-
|
|
258
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
259
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
260
|
-
self.__aed_utils = AedUtils()
|
|
261
|
-
|
|
262
|
-
# Create argument information matrix to do parameter checking
|
|
263
|
-
self.__arg_info_matrix = []
|
|
264
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
265
|
-
self.__arg_info_matrix.append(["tran_item_columns", self.tran_item_columns, False, (str,list)])
|
|
266
|
-
self.__arg_info_matrix.append(["tran_id_columns", self.tran_id_columns, False, (str,list)])
|
|
267
|
-
self.__arg_info_matrix.append(["patterns_or_rules", self.patterns_or_rules, True, (str)])
|
|
268
|
-
self.__arg_info_matrix.append(["group_by_columns", self.group_by_columns, True, (str,list)])
|
|
269
|
-
self.__arg_info_matrix.append(["pattern_distribution_key_column", self.pattern_distribution_key_column, True, (str)])
|
|
270
|
-
self.__arg_info_matrix.append(["rule_distribution_key_column", self.rule_distribution_key_column, True, (str)])
|
|
271
|
-
self.__arg_info_matrix.append(["compress", self.compress, True, (str)])
|
|
272
|
-
self.__arg_info_matrix.append(["group_size", self.group_size, True, (int)])
|
|
273
|
-
self.__arg_info_matrix.append(["min_support", self.min_support, True, (float)])
|
|
274
|
-
self.__arg_info_matrix.append(["min_confidence", self.min_confidence, True, (float)])
|
|
275
|
-
self.__arg_info_matrix.append(["max_pattern_length", self.max_pattern_length, True, (str)])
|
|
276
|
-
self.__arg_info_matrix.append(["antecedent_count_range", self.antecedent_count_range, True, (str)])
|
|
277
|
-
self.__arg_info_matrix.append(["consequence_count_range", self.consequence_count_range, True, (str)])
|
|
278
|
-
self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
|
|
279
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
280
|
-
|
|
281
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
282
|
-
# Perform the function validations
|
|
283
|
-
self.__validate()
|
|
284
|
-
# Generate the ML query
|
|
285
|
-
self.__form_tdml_query()
|
|
286
|
-
# Process output table schema
|
|
287
|
-
self.__process_output_column_info()
|
|
288
|
-
# Execute ML query
|
|
289
|
-
self.__execute()
|
|
290
|
-
# Get the prediction type
|
|
291
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
292
|
-
|
|
293
|
-
# End the timer to get the build time
|
|
294
|
-
_end_time = time.time()
|
|
295
|
-
|
|
296
|
-
# Calculate the build time
|
|
297
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
298
|
-
|
|
299
|
-
def __validate(self):
|
|
300
|
-
"""
|
|
301
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
302
|
-
arguments, input argument and table types. Also processes the
|
|
303
|
-
argument values.
|
|
304
|
-
"""
|
|
305
|
-
|
|
306
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
307
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
308
|
-
|
|
309
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
310
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
311
|
-
|
|
312
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
313
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
314
|
-
|
|
315
|
-
# Check for permitted values
|
|
316
|
-
patterns_or_rules_permitted_values = ["BOTH", "PATTERNS", "RULES"]
|
|
317
|
-
self.__awu._validate_permitted_values(self.patterns_or_rules, patterns_or_rules_permitted_values, "patterns_or_rules", False)
|
|
318
|
-
|
|
319
|
-
compress_permitted_values = ["LOW", "MEDIUM", "HIGH", "NOCOMPRESS"]
|
|
320
|
-
self.__awu._validate_permitted_values(self.compress, compress_permitted_values, "compress")
|
|
321
|
-
|
|
322
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
323
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
324
|
-
self.__awu._validate_input_columns_not_empty(self.tran_item_columns, "tran_item_columns")
|
|
325
|
-
self.__awu._validate_dataframe_has_argument_columns(self.tran_item_columns, "tran_item_columns", self.data, "data", False)
|
|
326
|
-
|
|
327
|
-
self.__awu._validate_input_columns_not_empty(self.tran_id_columns, "tran_id_columns")
|
|
328
|
-
self.__awu._validate_dataframe_has_argument_columns(self.tran_id_columns, "tran_id_columns", self.data, "data", False)
|
|
329
|
-
|
|
330
|
-
self.__awu._validate_input_columns_not_empty(self.group_by_columns, "group_by_columns")
|
|
331
|
-
self.__awu._validate_dataframe_has_argument_columns(self.group_by_columns, "group_by_columns", self.data, "data", False)
|
|
332
|
-
|
|
333
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
334
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
335
|
-
|
|
336
|
-
# Validate that value passed to the output column argument is not empty.
|
|
337
|
-
self.__awu._validate_input_columns_not_empty(self.pattern_distribution_key_column, "pattern_distribution_key_column")
|
|
338
|
-
self.__awu._validate_input_columns_not_empty(self.rule_distribution_key_column, "rule_distribution_key_column")
|
|
339
|
-
|
|
340
|
-
def __form_tdml_query(self):
|
|
341
|
-
"""
|
|
342
|
-
Function to generate the analytical function queries. The function defines
|
|
343
|
-
variables and list of arguments required to form the query.
|
|
344
|
-
"""
|
|
345
|
-
# Generate temp table names for output table parameters if any.
|
|
346
|
-
self.__func_output_args_sql_names = []
|
|
347
|
-
self.__func_output_args = []
|
|
348
|
-
if self.patterns_or_rules.lower() in ["both", "patterns"]:
|
|
349
|
-
self.__output_pattern_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_fpgrowth0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
350
|
-
self.__func_output_args_sql_names.append("OutputPatternTable")
|
|
351
|
-
self.__func_output_args.append(self.__output_pattern_table_temp_tablename)
|
|
352
|
-
|
|
353
|
-
if self.patterns_or_rules.lower() in ["both", "rules"]:
|
|
354
|
-
self.__output_rule_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_fpgrowth1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
355
|
-
self.__func_output_args_sql_names.append("OutputRuleTable")
|
|
356
|
-
self.__func_output_args.append(self.__output_rule_table_temp_tablename)
|
|
357
|
-
|
|
358
|
-
# Model Cataloging related attributes.
|
|
359
|
-
self._sql_specific_attributes = {}
|
|
360
|
-
self._sql_formula_attribute_mapper = {}
|
|
361
|
-
self._target_column = None
|
|
362
|
-
self._algorithm_name = None
|
|
363
|
-
|
|
364
|
-
# Generate lists for rest of the function arguments
|
|
365
|
-
self.__func_other_arg_sql_names = []
|
|
366
|
-
self.__func_other_args = []
|
|
367
|
-
self.__func_other_arg_json_datatypes = []
|
|
368
|
-
|
|
369
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
370
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.tran_item_columns, "\""), "'"))
|
|
371
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
372
|
-
|
|
373
|
-
self.__func_other_arg_sql_names.append("TransactionIDColumns")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.tran_id_columns, "\""), "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
376
|
-
|
|
377
|
-
if self.group_by_columns is not None:
|
|
378
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.group_by_columns, "\""), "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
381
|
-
|
|
382
|
-
if self.patterns_or_rules != "both":
|
|
383
|
-
self.__func_other_arg_sql_names.append("PatternsOrRules")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.patterns_or_rules, "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
386
|
-
|
|
387
|
-
if self.compress is not None and self.compress != "nocompress":
|
|
388
|
-
self.__func_other_arg_sql_names.append("CompressionLevel")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.compress, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
if self.group_size is not None and self.group_size != 4:
|
|
393
|
-
self.__func_other_arg_sql_names.append("GroupSize")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.group_size, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
396
|
-
|
|
397
|
-
if self.min_support is not None and self.min_support != 0.05:
|
|
398
|
-
self.__func_other_arg_sql_names.append("MinSupport")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_support, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
401
|
-
|
|
402
|
-
if self.min_confidence is not None and self.min_confidence != 0.8:
|
|
403
|
-
self.__func_other_arg_sql_names.append("MinConfidence")
|
|
404
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_confidence, "'"))
|
|
405
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
406
|
-
|
|
407
|
-
if self.max_pattern_length is not None:
|
|
408
|
-
self.__func_other_arg_sql_names.append("MaxPatternLength")
|
|
409
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_pattern_length, "'"))
|
|
410
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
411
|
-
|
|
412
|
-
if self.antecedent_count_range is not None and self.antecedent_count_range != "1-INFINITE":
|
|
413
|
-
self.__func_other_arg_sql_names.append("AntecedentCountRange")
|
|
414
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.antecedent_count_range, "'"))
|
|
415
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
416
|
-
|
|
417
|
-
if self.consequence_count_range is not None and self.consequence_count_range != "1-1":
|
|
418
|
-
self.__func_other_arg_sql_names.append("ConsequenceCountRange")
|
|
419
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.consequence_count_range, "'"))
|
|
420
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
421
|
-
|
|
422
|
-
if self.delimiter is not None and self.delimiter != ",":
|
|
423
|
-
self.__func_other_arg_sql_names.append("Delimiter")
|
|
424
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
|
|
425
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
426
|
-
|
|
427
|
-
if self.pattern_distribution_key_column is not None:
|
|
428
|
-
self.__func_other_arg_sql_names.append("PatternDistributionKeyColumn")
|
|
429
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pattern_distribution_key_column, "'"))
|
|
430
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
431
|
-
|
|
432
|
-
if self.rule_distribution_key_column is not None:
|
|
433
|
-
self.__func_other_arg_sql_names.append("RuleDistributionKeyColumn")
|
|
434
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.rule_distribution_key_column, "'"))
|
|
435
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
436
|
-
|
|
437
|
-
# Generate lists for rest of the function arguments
|
|
438
|
-
sequence_input_by_list = []
|
|
439
|
-
if self.data_sequence_column is not None:
|
|
440
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
441
|
-
|
|
442
|
-
if len(sequence_input_by_list) > 0:
|
|
443
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
444
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
445
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
446
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
447
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
# Declare empty lists to hold input table information.
|
|
451
|
-
self.__func_input_arg_sql_names = []
|
|
452
|
-
self.__func_input_table_view_query = []
|
|
453
|
-
self.__func_input_dataframe_type = []
|
|
454
|
-
self.__func_input_distribution = []
|
|
455
|
-
self.__func_input_partition_by_cols = []
|
|
456
|
-
self.__func_input_order_by_cols = []
|
|
457
|
-
|
|
458
|
-
# Process data
|
|
459
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
|
|
460
|
-
self.__func_input_distribution.append("NONE")
|
|
461
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
462
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
463
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
464
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
465
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
466
|
-
|
|
467
|
-
function_name = "FPGrowth"
|
|
468
|
-
# Create instance to generate SQLMR.
|
|
469
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
470
|
-
self.__func_input_arg_sql_names,
|
|
471
|
-
self.__func_input_table_view_query,
|
|
472
|
-
self.__func_input_dataframe_type,
|
|
473
|
-
self.__func_input_distribution,
|
|
474
|
-
self.__func_input_partition_by_cols,
|
|
475
|
-
self.__func_input_order_by_cols,
|
|
476
|
-
self.__func_other_arg_sql_names,
|
|
477
|
-
self.__func_other_args,
|
|
478
|
-
self.__func_other_arg_json_datatypes,
|
|
479
|
-
self.__func_output_args_sql_names,
|
|
480
|
-
self.__func_output_args,
|
|
481
|
-
engine="ENGINE_ML")
|
|
482
|
-
# Invoke call to SQL-MR generation.
|
|
483
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
484
|
-
|
|
485
|
-
# Print SQL-MR query if requested to do so.
|
|
486
|
-
if display.print_sqlmr_query:
|
|
487
|
-
print(self.sqlmr_query)
|
|
488
|
-
|
|
489
|
-
# Set the algorithm name for Model Cataloging.
|
|
490
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
491
|
-
|
|
492
|
-
def __execute(self):
|
|
493
|
-
"""
|
|
494
|
-
Function to generate AED nodes for output tables.
|
|
495
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
496
|
-
"""
|
|
497
|
-
# Create a list of input node ids contributing to a query.
|
|
498
|
-
self.__input_nodeids = []
|
|
499
|
-
self.__input_nodeids.append(self.data._nodeid)
|
|
500
|
-
|
|
501
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
502
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
503
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
504
|
-
try:
|
|
505
|
-
# Call aed_ml_query and generate AED nodes.
|
|
506
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "FPGrowth", self.__aqg_obj._multi_query_input_nodes)
|
|
507
|
-
except Exception as emsg:
|
|
508
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
509
|
-
|
|
510
|
-
# Update output table data frames.
|
|
511
|
-
self._mlresults = []
|
|
512
|
-
self.output_rule_table = "INFO: 'output_rule_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'PATTERNS'."
|
|
513
|
-
self.output_pattern_table = "INFO: 'output_pattern_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'RULES'."
|
|
514
|
-
if self.patterns_or_rules.lower() in ["both", "patterns"]:
|
|
515
|
-
self.output_pattern_table = self.__awu._create_data_set_object(df_input=node_id_list[1], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[1], self.__output_pattern_table_column_info))
|
|
516
|
-
self._mlresults.append(self.output_pattern_table)
|
|
517
|
-
|
|
518
|
-
if self.patterns_or_rules.lower() in ["both", "rules"]:
|
|
519
|
-
if self.patterns_or_rules.lower() == "both":
|
|
520
|
-
node_index = 2
|
|
521
|
-
else:
|
|
522
|
-
node_index = 1
|
|
523
|
-
self.output_rule_table = self.__awu._create_data_set_object(df_input=node_id_list[node_index], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[node_index], self.__output_rule_table_column_info))
|
|
524
|
-
self._mlresults.append(self.output_rule_table)
|
|
525
|
-
|
|
526
|
-
self.output = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
527
|
-
self._mlresults.append(self.output)
|
|
528
|
-
|
|
529
|
-
def __process_output_column_info(self):
|
|
530
|
-
"""
|
|
531
|
-
Function to process the output schema for all the ouptut tables.
|
|
532
|
-
This function generates list of column names and column types
|
|
533
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
534
|
-
"""
|
|
535
|
-
# Collecting STDOUT output column information.
|
|
536
|
-
stdout_column_info_name = []
|
|
537
|
-
stdout_column_info_type = []
|
|
538
|
-
stdout_column_info_name.append("output_information")
|
|
539
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
540
|
-
|
|
541
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
542
|
-
|
|
543
|
-
# Collecting output_pattern_table output column information.
|
|
544
|
-
if self.patterns_or_rules.lower() in ["both", "patterns"]:
|
|
545
|
-
output_pattern_table_column_info_name = []
|
|
546
|
-
output_pattern_table_column_info_type = []
|
|
547
|
-
if self.group_by_columns is not None:
|
|
548
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.group_by_columns, columns=None):
|
|
549
|
-
output_pattern_table_column_info_name.append(column_name)
|
|
550
|
-
output_pattern_table_column_info_type.append(column_type)
|
|
551
|
-
|
|
552
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.tran_item_columns, columns=None):
|
|
553
|
-
output_pattern_table_column_info_name.append("pattern_" + column_name)
|
|
554
|
-
output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
555
|
-
|
|
556
|
-
output_pattern_table_column_info_name.append("length_of_pattern")
|
|
557
|
-
output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
558
|
-
|
|
559
|
-
output_pattern_table_column_info_name.append("count")
|
|
560
|
-
output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
|
|
561
|
-
|
|
562
|
-
output_pattern_table_column_info_name.append("support")
|
|
563
|
-
output_pattern_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
564
|
-
|
|
565
|
-
self.__output_pattern_table_column_info = zip(output_pattern_table_column_info_name, output_pattern_table_column_info_type)
|
|
566
|
-
|
|
567
|
-
# Collecting output_rule_table output column information.
|
|
568
|
-
if self.patterns_or_rules.lower() in ["both", "rules"]:
|
|
569
|
-
output_rule_table_column_info_name = []
|
|
570
|
-
output_rule_table_column_info_type = []
|
|
571
|
-
if self.group_by_columns is not None:
|
|
572
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.group_by_columns, columns=None):
|
|
573
|
-
output_rule_table_column_info_name.append(column_name)
|
|
574
|
-
output_rule_table_column_info_type.append(column_type)
|
|
575
|
-
|
|
576
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.tran_item_columns, columns=None):
|
|
577
|
-
output_rule_table_column_info_name.append("antecedent_" + column_name)
|
|
578
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
579
|
-
|
|
580
|
-
output_rule_table_column_info_name.append("consequence_" + column_name)
|
|
581
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
582
|
-
|
|
583
|
-
output_rule_table_column_info_name.append("count_of_antecedent")
|
|
584
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
585
|
-
|
|
586
|
-
output_rule_table_column_info_name.append("count_of_consequence")
|
|
587
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
588
|
-
|
|
589
|
-
output_rule_table_column_info_name.append("cntb")
|
|
590
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
|
|
591
|
-
|
|
592
|
-
output_rule_table_column_info_name.append("cnt_antecedent")
|
|
593
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
|
|
594
|
-
|
|
595
|
-
output_rule_table_column_info_name.append("cnt_consequence")
|
|
596
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("bigint"))
|
|
597
|
-
|
|
598
|
-
output_rule_table_column_info_name.append("score")
|
|
599
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
600
|
-
|
|
601
|
-
output_rule_table_column_info_name.append("support")
|
|
602
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
603
|
-
|
|
604
|
-
output_rule_table_column_info_name.append("confidence")
|
|
605
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
606
|
-
|
|
607
|
-
output_rule_table_column_info_name.append("lift")
|
|
608
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
609
|
-
|
|
610
|
-
output_rule_table_column_info_name.append("conviction")
|
|
611
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
612
|
-
|
|
613
|
-
output_rule_table_column_info_name.append("leverage")
|
|
614
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
615
|
-
|
|
616
|
-
output_rule_table_column_info_name.append("coverage")
|
|
617
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
618
|
-
|
|
619
|
-
output_rule_table_column_info_name.append("chi_square")
|
|
620
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
621
|
-
|
|
622
|
-
output_rule_table_column_info_name.append("z_score")
|
|
623
|
-
output_rule_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
624
|
-
|
|
625
|
-
self.__output_rule_table_column_info = zip(output_rule_table_column_info_name, output_rule_table_column_info_type)
|
|
626
|
-
|
|
627
|
-
def show_query(self):
|
|
628
|
-
"""
|
|
629
|
-
Function to return the underlying SQL query.
|
|
630
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
631
|
-
"""
|
|
632
|
-
return self.sqlmr_query
|
|
633
|
-
|
|
634
|
-
def get_prediction_type(self):
|
|
635
|
-
"""
|
|
636
|
-
Function to return the Prediction type of the algorithm.
|
|
637
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
638
|
-
as saved in the Model Catalog.
|
|
639
|
-
"""
|
|
640
|
-
return self._prediction_type
|
|
641
|
-
|
|
642
|
-
def get_target_column(self):
|
|
643
|
-
"""
|
|
644
|
-
Function to return the Target Column of the algorithm.
|
|
645
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
646
|
-
as saved in the Model Catalog.
|
|
647
|
-
"""
|
|
648
|
-
return self._target_column
|
|
649
|
-
|
|
650
|
-
def get_build_time(self):
|
|
651
|
-
"""
|
|
652
|
-
Function to return the build time of the algorithm in seconds.
|
|
653
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
654
|
-
as saved in the Model Catalog.
|
|
655
|
-
"""
|
|
656
|
-
return self._build_time
|
|
657
|
-
|
|
658
|
-
def _get_algorithm_name(self):
|
|
659
|
-
"""
|
|
660
|
-
Function to return the name of the algorithm.
|
|
661
|
-
"""
|
|
662
|
-
return self._algorithm_name
|
|
663
|
-
|
|
664
|
-
def _get_sql_specific_attributes(self):
|
|
665
|
-
"""
|
|
666
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
667
|
-
"""
|
|
668
|
-
return self._sql_specific_attributes
|
|
669
|
-
|
|
670
|
-
@classmethod
|
|
671
|
-
def _from_model_catalog(cls,
|
|
672
|
-
output_pattern_table = None,
|
|
673
|
-
output_rule_table = None,
|
|
674
|
-
output = None,
|
|
675
|
-
**kwargs):
|
|
676
|
-
"""
|
|
677
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
678
|
-
"""
|
|
679
|
-
kwargs.pop("output_pattern_table", None)
|
|
680
|
-
kwargs.pop("output_rule_table", None)
|
|
681
|
-
kwargs.pop("output", None)
|
|
682
|
-
|
|
683
|
-
# Model Cataloging related attributes.
|
|
684
|
-
target_column = kwargs.pop("__target_column", None)
|
|
685
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
686
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
687
|
-
build_time = kwargs.pop("__build_time", None)
|
|
688
|
-
|
|
689
|
-
# Let's create an object of this class.
|
|
690
|
-
obj = cls(**kwargs)
|
|
691
|
-
obj.output_pattern_table = output_pattern_table
|
|
692
|
-
obj.output_rule_table = output_rule_table
|
|
693
|
-
obj.output = output
|
|
694
|
-
|
|
695
|
-
# Initialize the sqlmr_query class attribute.
|
|
696
|
-
obj.sqlmr_query = None
|
|
697
|
-
|
|
698
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
699
|
-
obj._sql_specific_attributes = None
|
|
700
|
-
obj._target_column = target_column
|
|
701
|
-
obj._prediction_type = prediction_type
|
|
702
|
-
obj._algorithm_name = algorithm_name
|
|
703
|
-
obj._build_time = build_time
|
|
704
|
-
|
|
705
|
-
# Update output table data frames.
|
|
706
|
-
obj._mlresults = []
|
|
707
|
-
if obj.output_pattern_table is None:
|
|
708
|
-
obj.output_pattern_table = "INFO: 'output_pattern_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'RULES'."
|
|
709
|
-
else:
|
|
710
|
-
obj.output_pattern_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_pattern_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_pattern_table))
|
|
711
|
-
obj._mlresults.append(obj.output_pattern_table)
|
|
712
|
-
|
|
713
|
-
if obj.output_rule_table is None:
|
|
714
|
-
obj.output_rule_table = "INFO: 'output_rule_table' output DataFrame is not created, when 'patterns_or_rules' is set to 'PATTERNS'."
|
|
715
|
-
else:
|
|
716
|
-
obj.output_rule_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_rule_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_rule_table))
|
|
717
|
-
obj._mlresults.append(obj.output_rule_table)
|
|
718
|
-
|
|
719
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
720
|
-
obj._mlresults.append(obj.output)
|
|
721
|
-
return obj
|
|
722
|
-
|
|
723
|
-
def __repr__(self):
|
|
724
|
-
"""
|
|
725
|
-
Returns the string representation for a FPGrowth class instance.
|
|
726
|
-
"""
|
|
727
|
-
repr_string="############ STDOUT Output ############"
|
|
728
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
729
|
-
repr_string="{}\n\n\n############ output_pattern_table Output ############".format(repr_string)
|
|
730
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_pattern_table)
|
|
731
|
-
repr_string="{}\n\n\n############ output_rule_table Output ############".format(repr_string)
|
|
732
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_rule_table)
|
|
733
|
-
return repr_string
|
|
734
|
-
|