teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,401 @@
1
+ col1,col2,col3,col4,label,group_column,partition_column_1,partition_column_2
2
+ -1.4718350074635869e+00,3.86305518401881e-02,-1.6567151023219537e+00,-9.855107376841507e-01,-220,12,1,10
3
+ -1.0225068436356035e+00,-1.6981058194322545e+00,3.872804753950634e-01,-2.2555642294021894e+00,-112,8,1,11
4
+ 2.5405208385016018e-02,-1.6429652935306092e+00,-4.060717962598319e-01,-5.352701645328445e-01,-110,10,0,10
5
+ 1.5363770542457977e+00,-1.1054065723247261e-01,1.0201727117157997e+00,-6.920498477843912e-01,110,9,0,11
6
+ -1.1711604614500803e+00,-1.4812459621972984e+00,-1.272558135032317e+00,1.5187593369635801e+00,-156,9,0,10
7
+ -5.394546333745014e-01,-2.2886200400145285e+00,2.51484415021537e-01,-2.01640662779976e+00,-127,10,1,11
8
+ 2.225944331738259e+00,-6.677202863593994e-01,3.269625954044574e-01,3.3003511451031164e-01,72,11,0,10
9
+ 8.52551939461232e-01,8.579239242923363e-01,1.1411018666575734e+00,1.4665787155741776e+00,201,11,0,11
10
+ -1.1422555145018021e-01,-2.3929659114234414e-01,-2.4679355778875178e-01,-1.0793431660249952e+00,-66,11,0,11
11
+ 4.402227617534797e-02,-4.3046191188579297e-01,1.149379383367124e+00,2.975143539549459e-01,103,9,1,10
12
+ 3.39964983801262e-01,6.98457149107336e-01,3.77088908626934e-03,9.318483741143037e-01,60,8,1,11
13
+ 4.706609465849369e-02,-2.89005210954233e-01,-1.9986394755833727e+00,-1.1460004265074433e+00,-231,8,1,10
14
+ 3.087512418366131e-01,2.2739277512112846e-01,-1.016738648609769e+00,-1.1477532477079817e-01,-84,9,1,11
15
+ -3.0230275057533557e-01,1.2302906807277207e+00,1.2023798487844113e+00,-3.873268174079523e-01,137,8,1,10
16
+ -1.4527445720476923e-01,-1.6221844757669085e-01,7.694301781773039e-01,3.3053274323491577e-01,73,8,1,10
17
+ -9.962126403710662e-01,-9.038200727694681e-02,1.3675972398067135e+00,1.034409886481518e+00,132,9,1,11
18
+ -9.872866934576524e-01,-4.0129780513351004e-01,-3.1665529505210693e-01,5.969064812479539e-01,-50,10,1,10
19
+ 4.128708204461747e-01,-7.994223995430966e-01,2.4078750974193844e-01,2.8912050527881217e-01,13,11,1,10
20
+ 6.764332949464997e-01,-6.743326606573761e-01,3.183055827435118e-02,-6.35846078378881e-01,-22,10,0,10
21
+ -4.810271184607877e-01,6.898181645347884e-01,1.3018462295649984e+00,-6.280875596415789e-01,116,10,0,10
22
+ 2.759355114021582e+00,3.658487879168582e-01,1.2978252669735855e+00,4.811151263888354e-01,217,11,0,11
23
+ 4.4971210023199254e-01,3.1716062629268876e-01,5.200406145708678e-01,2.256086544711038e-01,77,9,1,11
24
+ -1.582685641802789e+00,-7.781835214561222e-01,1.7367749569767108e+00,-1.4465778900358943e+00,56,10,0,10
25
+ -1.0128148621739935e-01,-6.963266538610828e-01,-2.9039710080386677e-01,1.327782695957983e+00,-15,11,1,11
26
+ -1.7992483581235091e-01,1.4882521937955997e+00,1.8958891760305832e+00,1.1787795711596507e+00,261,8,1,11
27
+ 2.023471949769974e+00,1.3157396790806872e-01,-1.4055600473918899e+00,-3.497821801115369e-01,-89,11,0,11
28
+ 5.616534222974544e-02,-8.707971491818818e-01,-5.788496647644155e-01,-3.1155253212737266e-01,-92,9,1,10
29
+ 9.4351589317074e-02,-1.1268258087567435e+00,-7.306777528648248e-01,-3.8487980918127546e-01,-116,12,0,10
30
+ -2.125230447703092e-01,1.3264616423656934e+00,-9.64606424206264e-01,5.989468311627605e-02,-49,11,1,11
31
+ -3.2473026508296e-01,2.8479059913436316e-01,-3.0937759288336136e-01,-2.85288698344164e-02,-28,8,0,11
32
+ -1.4377914738015785e+00,5.785214977288784e-01,3.49654456993174e-01,-7.64143923906443e-01,-4,12,1,11
33
+ -7.401367907395136e-01,2.6805708407690005e+00,-2.0080851399566557e-01,-9.988487960953681e-01,25,9,1,11
34
+ -9.931236109295807e-01,-2.6773353689396645e-01,-1.1280113314700069e+00,2.80441705316296e-01,-132,9,0,11
35
+ -2.3421580134453654e-01,3.8273243001226814e-01,-3.424228053195387e-02,1.0963468456657985e+00,36,11,1,10
36
+ 6.168865543932788e-01,-7.290446587946957e-01,1.9655740072878491e-01,3.547576931132181e-01,19,11,0,11
37
+ -5.896320419510298e-01,1.3239767667533552e-02,-1.2194492760027727e-01,3.390592559424304e-01,-15,10,1,10
38
+ 1.0329891945199456e+00,2.4120396421895252e-01,1.1277836301278024e+00,8.811310970996323e-01,166,10,1,10
39
+ -5.992242774597194e-01,1.4333525028819918e+00,4.183980113091925e-01,4.355461592956536e-01,86,12,0,10
40
+ -5.946497697204054e-01,5.128364575927566e-01,-3.263184621583181e-01,6.027076564293296e-01,-10,10,1,11
41
+ -2.579855825448711e-02,-7.999136231406647e-01,-2.200757798203556e-01,1.3086687523521792e+00,-10,8,0,11
42
+ -3.5811407547985674e-01,-1.9839889682004574e-01,9.419230031014657e-02,-1.1476109448431353e+00,-40,9,0,11
43
+ 8.801789120807822e-01,6.433144650629279e-01,-1.5706234086334527e+00,-2.0690367616397173e-01,-111,8,0,11
44
+ -1.5277442354540868e-01,-5.535254802238957e-02,-2.6393734859268786e-01,3.5281660649437835e-01,-20,9,1,10
45
+ -1.2973796559567399e+00,-8.13595997094507e-01,-5.21641509970619e-01,-7.311964594819724e-02,-111,9,1,10
46
+ 1.7358789976857132e+00,1.011842432994189e+00,-6.579510447611686e-01,4.6838523427705164e-01,28,8,1,11
47
+ 7.086952731104266e-01,-4.802420417382233e-01,-5.232509433848951e-01,1.021224743167163e+00,-18,12,1,11
48
+ 8.75512413851909e-02,-4.980324506923049e-01,1.9295320538169858e+00,9.494208069257608e-01,195,11,0,11
49
+ 3.283012950007554e-01,6.071116719160459e-01,-1.0481704068254731e+00,-8.602624519575188e-01,-95,9,0,10
50
+ -3.509517686967038e-02,2.348215259487319e-01,2.1321534105704436e+00,9.364457258311158e-01,236,8,0,10
51
+ -1.7220079269688263e-01,-1.682142227670741e-01,3.7791010173847506e-01,1.3243587499958391e+00,64,12,1,10
52
+ 3.930629339800916e-01,-1.9457030831639588e+00,-9.127834941352918e-01,2.1950955579304526e-01,-137,12,1,10
53
+ -1.341327827684201e-01,7.644974530335336e-01,-2.683727352093812e-01,-1.6975829390248548e-01,-7,12,1,11
54
+ -1.7858909208732915e-01,-4.700328827008748e-01,-2.1673147057553863e-01,-9.301565025243212e-01,-68,9,0,11
55
+ 1.5692596145359043e+00,-4.9610233398256237e-01,-7.480498268034107e-02,1.2231983638817386e-02,14,12,0,11
56
+ -1.7441877565539552e+00,-3.3210227734882514e-01,-7.214312955717558e-01,-4.4876701310549916e-01,-135,9,1,10
57
+ 1.5670385527236397e-01,-4.409226322925914e-01,-2.803554951845091e-01,-3.646935443916854e-01,-48,9,1,10
58
+ 1.0907497344345e+00,-1.5023965693817127e+00,-1.7776669547337063e+00,-5.327027919795545e-01,-209,9,1,11
59
+ -8.779706165358702e-01,-1.1390081931169653e+00,-1.214401382959259e+00,8.709617821716196e-01,-150,12,0,11
60
+ 4.814814737734622e-01,-9.55945000492777e-01,-3.4598177569938643e-01,-4.635959746460942e-01,-67,11,1,10
61
+ -8.228283242942818e-01,1.0490716508551272e-01,1.339129226154759e-01,-6.126257388749357e-01,-21,11,0,11
62
+ -2.53455446208423e+00,-1.1094775536361452e+00,-5.475181006794317e-01,6.659671460695378e-01,-132,9,1,11
63
+ -5.211893123011109e-01,1.3645318481024713e+00,-6.894491845499376e-01,-6.522935999350191e-01,-50,8,1,10
64
+ -7.614922118116233e-01,-3.5343174875719907e-01,-1.6164741886510325e+00,-2.918373627478628e-01,-192,8,0,10
65
+ -6.313759884493888e-01,-1.3707599825430605e+00,8.656529228158533e-01,1.0813760344581897e+00,51,10,0,10
66
+ 1.4350493867891545e+00,-7.466797825114957e-02,2.5871644022974605e-01,2.7560067398405635e-01,65,8,1,11
67
+ -2.2234031522244266e+00,-3.5399391125348395e-01,-1.3749512934180188e+00,-6.436184028328905e-01,-216,8,1,10
68
+ 2.4614778868484416e-01,1.4013448312919596e+00,-4.103817936578706e-01,5.289436184165822e-01,30,11,0,11
69
+ 9.387468756823101e-01,-6.1638052172214755e-02,-1.432735489934108e+00,8.753147092167086e-02,-112,8,1,10
70
+ 1.7699213881967337e+00,7.041110221415822e-01,-1.4956795162570162e+00,2.5263682403559984e+00,0,10,0,11
71
+ 1.4630444600104425e-01,-5.288698535561153e-01,1.7371185298702344e-01,5.665453158182124e-01,18,10,0,11
72
+ -1.1884244215830193e+00,1.660607559894514e+00,-1.4166034824256406e+00,-2.802202798391713e+00,-188,11,1,10
73
+ 8.299861590811032e-01,-3.655510899860373e-01,9.380925409056455e-01,2.9673317249411335e-01,105,8,0,10
74
+ -1.0974966547702447e+00,1.0156652815421012e+00,7.010413411650971e-01,-4.17477349885034e-01,62,12,1,10
75
+ -8.402903954793065e-01,3.0833124595934525e-01,-1.3780834670640771e+00,-3.1197610791621294e-01,-149,8,0,11
76
+ 1.9507753952317897e+00,-1.0485529650670926e+00,-1.4200179371789752e+00,-1.7062701906250126e+00,-172,10,1,10
77
+ 6.251186564337302e-01,-2.559576692142683e-01,-3.480463796426194e-01,-7.823669669020897e-01,-49,9,0,10
78
+ 1.0471402943328433e-01,5.55962679709798e-01,8.924738873315303e-01,-4.223148241252707e-01,93,11,0,10
79
+ -8.570781886711647e-01,-4.0123470991118243e-01,-8.000824760846013e-01,-1.0431294980353556e+00,-141,11,1,10
80
+ -1.3783917859609385e-01,-6.03839552796151e-01,-1.1495540632571182e+00,1.0983035407325124e+00,-101,9,0,11
81
+ -1.6615982911145637e+00,-1.82425665593783e+00,3.036039044620014e-01,7.726948371023817e-01,-52,9,0,11
82
+ 1.0791947281124892e+00,-4.4816536268070806e-01,-6.493379277303881e-01,-2.342310502145217e-02,-51,12,0,10
83
+ 4.790952240982286e-01,-7.564935288807483e-01,3.015140573967662e-01,1.0390964403783927e+00,44,11,1,10
84
+ 1.2224450703824274e+00,-1.0707526215105425e+00,1.0544517269311366e+00,-4.0317694697317963e-01,81,11,1,10
85
+ -6.311919417468571e-01,-4.674931736578535e-01,-8.624932997247339e-01,6.225191403049977e-01,-95,9,0,10
86
+ -1.8269113783045177e+00,9.17221542115856e-01,-5.704286766218815e-02,8.767267736904524e-01,6,8,0,10
87
+ -9.02438496657506e-02,-1.6388073071221778e+00,-7.333128075836657e-01,2.149574534867287e+00,-65,9,1,11
88
+ -3.4994336458910474e-01,-4.5703960660234855e-02,2.205076557571733e-01,-1.0299352833089765e+00,-19,10,1,11
89
+ 6.063195243593807e-01,7.732529774025997e-01,-1.1838806401933177e+00,-2.659172237996741e+00,-148,11,0,11
90
+ -9.489328108497634e-01,1.546688336463322e-01,1.0415683888185818e+00,-3.9267991037953184e-02,79,8,1,11
91
+ -9.681860639071049e-01,5.684589189242769e-01,-3.328117648522096e-01,4.8042449611778676e-01,-21,12,1,11
92
+ -1.8297404110045314e+00,8.627898917576322e-03,5.270042084546597e-01,4.53781912635684e-01,18,10,0,11
93
+ 9.943943913154989e-01,-2.7567053456055696e-01,-7.097279658468882e-01,1.738872677454511e+00,-1,12,0,10
94
+ 5.392491912918173e-01,6.722947570124355e-01,4.0746183624111043e-01,-7.699160744453164e-01,52,12,1,11
95
+ 3.178850972381816e-01,2.320799839280298e+00,1.1709087215544195e-01,5.342011708457715e-01,114,11,1,10
96
+ 5.53132064207584e-01,8.625960113284511e-01,-2.655619092974933e+00,1.5133280825732052e+00,-164,8,0,10
97
+ -1.3777921428577067e-01,-1.4464210639833286e+00,-4.523502755690917e-01,3.1943183333153063e-01,-86,10,0,11
98
+ 4.627822555257742e-01,1.7742614225375283e-01,-4.017809362082619e-01,-1.6301983469660446e+00,-68,11,0,10
99
+ -3.0676577602700456e-01,2.2558166356880352e-01,1.3891453156779274e+00,2.014060154918468e+00,190,8,1,10
100
+ -1.4793159799632536e+00,2.451229719075076e+00,-2.1120598363152e-01,-1.2040663866440973e-01,24,11,1,10
101
+ 1.8492637284793418e+00,-6.945678597313655e-01,-1.4963454032767076e-01,-4.3515355172163744e-01,-5,12,0,11
102
+ 1.9470986428203578e+00,-4.6931073627910674e-01,8.756956787795067e-01,-1.3651628772251687e+00,74,11,1,10
103
+ 6.450552734598769e-01,-1.6882300277714322e+00,-1.1246598255955272e-01,-5.324899192090677e-01,-68,10,0,11
104
+ -3.820254489503836e-01,-4.0630313044506255e-01,-8.640449911023695e-01,-1.4357951171632055e-01,-109,9,1,11
105
+ -5.615787496032209e-01,1.6066118981977281e-01,-9.526449528153877e-01,1.6085221559487237e+00,-51,11,1,10
106
+ 4.046954556143003e-01,1.2961498675278833e+00,6.164593126261553e-01,5.365965205668235e-01,128,12,0,11
107
+ 4.3904295767204254e-01,-3.9238899814963674e-01,-3.0461430547999266e+00,5.433118913875197e-01,-275,10,1,10
108
+ 8.820565993630106e-01,2.4676602397997058e-01,1.5259575608848084e+00,-7.727718829782021e-01,152,11,1,10
109
+ 4.453932508947973e-01,-5.543096265713009e-01,-4.706376581547914e-01,-2.16949569936649e-01,-59,12,0,10
110
+ -1.0930615087305058e+00,5.765908166149409e-01,-2.0829875557799488e-01,3.960067126616453e-01,-15,8,1,11
111
+ -5.072344618949226e-01,-5.22619416398478e-01,1.042977594646376e+00,4.140913537935951e-01,80,10,0,11
112
+ -4.0403229385093714e-01,-8.565493082342095e-01,-1.5415873996717875e+00,2.594424587768152e+00,-109,11,1,11
113
+ 6.964386733914393e-01,1.8081318105789754e+00,4.36638474629293e-01,1.9272899649972683e-01,126,10,0,10
114
+ 4.0198936344470165e-01,1.0500020720820478e-02,1.7858704939058352e+00,1.2691209270361992e-01,183,10,0,11
115
+ 2.2567234972982093e+00,-1.1573552591908536e+00,-3.122922511256933e-01,-1.576670161638159e-01,-18,11,1,11
116
+ -9.456157955562914e-01,-6.727560892298173e-02,-1.3183958696447342e+00,-3.7070400322045344e-01,-161,12,1,11
117
+ -1.0677420110191065e+00,-1.0043227122146134e+00,-9.981917282318641e-01,-1.3730425509508952e+00,-195,9,0,10
118
+ -5.256729626954629e-02,-1.188859257784029e+00,-5.068163542986875e-01,-5.963140384505081e-01,-107,8,1,10
119
+ 6.769080350302455e-01,1.4944845444913688e+00,-2.0699850250135325e+00,4.2625873077810095e-01,-115,8,0,11
120
+ -7.61573388256559e-01,-2.36417381714118e+00,2.033418170524325e-02,-1.3479254226291204e+00,-137,11,0,11
121
+ -6.848100909403132e-01,1.1394006845433007e+00,-1.2348258203536526e+00,4.02341641177549e-01,-82,8,0,10
122
+ 7.574683300614039e-01,-1.6064396894498327e+00,-1.3730535360419285e+00,1.866683148331627e+00,-112,8,1,11
123
+ 8.024563957963952e-01,-8.612256850547025e-01,1.9100649530990337e+00,-2.680033709513804e-01,163,10,0,10
124
+ -1.794229271489721e+00,-2.224770102429203e-01,-8.589199078076716e-01,5.0954277011289496e-02,-131,10,1,11
125
+ 7.065731681919482e-01,2.082749780768603e-01,9.766390364837128e-01,3.563663971744019e-01,127,10,1,11
126
+ 8.842208704466141e-02,-1.936279805846507e+00,1.8877859679382855e-01,5.238910238342056e-01,-31,9,0,10
127
+ 1.501152270061292e-01,-6.028753363911904e-02,2.78081047967944e-01,-6.429525533528905e-01,9,10,0,11
128
+ 1.67398570701071e+00,-4.932407014757259e-02,2.390336012467649e-01,-1.0003303489537054e+00,32,8,0,11
129
+ 1.8949963754791346e-01,-1.5602389099728736e-01,1.0490931879200103e+00,3.1709747732901796e+00,191,12,0,10
130
+ -3.550287310553741e-01,1.9050636405600176e+00,-1.4777219659844777e-02,-3.004787855854223e-01,46,11,0,11
131
+ 1.747915902505673e-02,-8.034096641738411e-01,-6.895497777502005e-01,-4.5553250351734315e-01,-105,12,0,10
132
+ -2.77259275642665e+00,-3.108861716984717e-01,9.740016626878341e-02,3.990463456401302e-01,-57,12,1,11
133
+ 4.2262862170882565e-01,4.768983689222224e-01,1.4844958138007808e-01,5.290452383344316e-01,56,11,0,10
134
+ -5.911831037644297e-01,-1.1145611841841251e-02,1.1498899870062375e-02,-8.376780419079453e-01,-38,8,0,10
135
+ -2.721317560182082e-01,-3.5742733548173485e-02,3.3601574266199213e-01,8.864915393596159e-01,49,12,0,10
136
+ 1.6595507961898721e+00,-1.7558905834377194e+00,4.5093446180591484e-01,-6.840108977372166e-01,3,8,1,11
137
+ -8.540957393017248e-01,1.4940790731576061e+00,-2.0515826376580087e-01,3.1306770165090136e-01,20,8,0,11
138
+ -1.7262826023316769e+00,-6.72460447775951e-01,-3.595531615405413e-01,-8.13146282044454e-01,-123,12,0,11
139
+ -6.713415461452177e-02,-5.858655113386085e-02,-3.1754309393019925e-01,-1.6324233020679833e+00,-81,10,0,11
140
+ -5.00409667304264e-01,7.519465876771957e-01,5.629897185861278e-01,-1.1949868052686603e+00,31,9,1,11
141
+ -1.7815628557055914e+00,2.011256681463137e+00,-4.4595426455857026e-02,1.9506969715138117e-01,26,9,0,10
142
+ 4.032645401632468e-01,4.6616642603403075e-01,-3.702424407043429e-01,-4.5380404105200106e-01,-22,9,0,11
143
+ 5.410082199598076e-01,-8.137944832313059e-01,-1.4491176107369304e+00,-1.3177173431407654e+00,-190,9,1,11
144
+ 9.688826385630508e-01,6.90429024383049e-01,7.966721083646714e-01,-6.579260925367952e-01,103,10,1,11
145
+ 1.2016978556675064e+00,8.091802968531627e-01,-1.1980928801910382e+00,4.066570874668812e-01,-44,12,1,11
146
+ 8.672766288084278e-01,3.0601824338517807e-02,-6.964157844693558e-02,5.157494276988904e-02,17,8,0,11
147
+ 3.1721821519130206e-01,2.7992459904323824e-01,-9.815038964295794e-02,9.101789080925919e-01,34,9,1,10
148
+ -1.2140774030941206e+00,1.068509399316009e+00,-4.5338580385138766e-01,-6.878376110286823e-01,-56,10,0,11
149
+ -1.0985707275553296e+00,9.605572244572284e-01,2.258404786026901e-01,-5.494985463040403e-01,11,12,1,11
150
+ -3.627411659871381e-01,6.651722238316789e-02,3.024718977397814e-01,-6.343220936809636e-01,3,9,1,10
151
+ 1.079618592036821e+00,-3.090129690471222e-01,-1.6760038063299767e+00,1.15233156478312e+00,-109,9,1,11
152
+ -7.474548114407578e-01,-1.17312340511416e+00,1.9436211856492926e+00,-4.1361898075974735e-01,113,12,1,10
153
+ -5.375833685580619e-01,-7.554627263656334e-01,-1.2012015190173893e+00,5.232617386880769e-01,-137,12,0,10
154
+ -1.506998398214272e+00,2.238435633129107e-01,3.2962298212773805e-01,1.285984007080293e+00,39,8,0,11
155
+ -8.157915419939713e-01,8.126740421090424e-01,5.87259379399826e-01,-5.053583172644099e-01,48,12,0,11
156
+ -6.958351193495473e-01,-4.122717546045429e-01,-4.034591834208012e-01,-1.8300285504278102e+00,-123,10,0,10
157
+ 6.103793791072052e-01,-7.255973784635843e-01,-1.3833639553950554e+00,-1.582938397335082e+00,-187,10,0,11
158
+ -1.3467175057975553e+00,6.663830820319143e-01,-4.607197873885533e-01,-1.3342584714027534e+00,-92,12,1,11
159
+ 7.200337593416528e-01,-7.657021944780863e-01,5.55786964082873e-01,1.0349314566299353e-02,44,8,1,11
160
+ -1.5308034973994926e+00,1.2213849594591983e+00,-1.9284182854396467e-01,-3.331928284515295e-02,-14,9,1,11
161
+ 8.496813703770767e-02,8.505306835234382e-01,-8.391241905992737e-01,-1.0117740841054885e+00,-77,8,0,11
162
+ 9.945445703071175e-02,1.1541840304940192e+00,1.725044164928659e-01,2.1062021342063624e-02,59,11,0,11
163
+ -1.871838500258336e-01,2.2697546239876076e+00,-1.4543656745987648e+00,4.575851730144607e-02,-63,12,0,11
164
+ -7.744589687708259e-01,1.1452621730192247e+00,3.464944420067607e-01,7.741606098188164e-01,75,9,1,11
165
+ -1.3298842230959199e-01,-1.1776289624826308e+00,-1.1401963009349616e+00,1.7549861537420586e+00,-100,12,1,10
166
+ -1.9585489551365387e+00,2.0727074697361864e-01,3.07732574679432e-01,1.5925046837370244e-01,-7,9,0,11
167
+ -1.0848560594614451e+00,1.7123052213432965e+00,-7.9211502056515e-01,-1.0455245570694658e+00,-73,9,0,11
168
+ 3.187276529430212e-01,1.1880297923523018e+00,3.169426119248496e-01,9.20858823780819e-01,105,11,0,11
169
+ 3.148172045158238e-01,8.689634868967954e-01,2.7687190584612803e-01,-9.711045704444846e-01,35,12,1,11
170
+ -1.0612222874459092e+00,-2.4133779145310455e-01,-8.781903428100731e-01,6.993804835878171e-01,-97,11,1,11
171
+ 9.060446582753853e-01,1.9229420264803847e+00,1.4805147914344243e+00,1.8675589604265699e+00,283,9,1,11
172
+ 9.67446150050235e-01,1.0304382674156047e+00,-2.0473236130579617e+00,-1.2266216593966155e+00,-170,9,1,10
173
+ 1.133079879559722e+00,-8.056265075393678e-01,-1.1183119243216322e+00,-1.3105401154141233e-01,-109,11,0,11
174
+ 2.4444345596163258e-01,5.072389511096153e-01,-1.162297003871491e-01,-9.474885949068795e-01,-15,12,1,11
175
+ -5.854312042777726e-01,1.2248705641936597e+00,6.485610634357618e-02,-1.2796891732042395e+00,-3,8,1,11
176
+ -2.5957698183403943e-01,4.5134015432010274e-02,2.339624806020058e+00,-2.764328450158372e-01,208,10,1,11
177
+ 3.718110814974935e-01,-1.252593341503319e+00,-5.863200252111324e-01,-4.5764059428952597e-01,-102,10,0,11
178
+ 8.809375610809715e-01,5.426107834987963e-01,7.159388934369917e-01,-2.994612860227619e+00,20,9,0,10
179
+ -1.5362436862772237e+00,-1.1651498407833565e+00,9.008264869541871e-01,4.6566243973045984e-01,21,8,1,11
180
+ -4.6847604467972315e-01,-9.571474731510168e-01,-1.348424319121701e+00,-4.015575444993436e-01,-184,11,1,10
181
+ 1.3263858966870303e+00,3.7642553115562943e-01,-1.0994007905841945e+00,2.98238174206056e-01,-49,10,1,11
182
+ -1.184686590411552e+00,-8.5172919725359e-01,1.8227236001279594e+00,-5.215796779933731e-01,99,12,1,10
183
+ -8.889713580954499e-01,-2.2260568094832048e-01,-9.130792180417964e-01,-1.6812182154944335e+00,-165,11,1,10
184
+ -1.8845858449794477e+00,-2.004215715498915e+00,3.7687652085089274e-01,-5.457119740177824e-01,-95,8,0,10
185
+ 9.076987979878987e-01,6.878813911747546e-01,4.985726659982265e-02,1.3480357804247187e+00,90,10,0,10
186
+ -7.392466628041514e-02,1.1002843382203737e+00,1.2980219723262212e+00,2.6962240525635797e+00,238,8,1,11
187
+ 1.75818953296028e-01,-1.3322116545945017e+00,-1.9686246897860202e+00,-6.600563201340829e-01,-247,10,0,11
188
+ 4.047618120404975e-01,6.051200840821667e-01,8.95555985551324e-01,-1.3190863977996706e-01,111,8,0,11
189
+ 3.114470715541555e-01,-8.483205228052325e-01,-3.2566946882017417e-01,4.7043314484648185e-01,-38,10,0,10
190
+ -1.1582031851840289e+00,-1.2128678162090247e+00,2.837695543833455e-01,-2.821958766904351e-01,-51,10,0,10
191
+ 3.7923553353558676e-01,-2.1954102833121325e-01,-1.0840366206719345e+00,3.517801106813583e-01,-90,10,1,10
192
+ 1.2372191423350658e-01,9.295051114795281e-01,5.822245913979243e-01,-2.0946030712061448e+00,28,10,1,11
193
+ 1.5470314969908445e+00,6.430545453392927e-01,5.882249291179367e-01,2.125870464375366e-01,122,9,1,11
194
+ -3.638588099707899e-01,3.700572191014953e-02,7.679024077327037e-01,5.898798207345195e-01,82,8,1,10
195
+ 2.3218103620027578e-01,-1.5407970144446248e+00,6.326199420033171e-02,1.565065379653756e-01,-36,11,1,10
196
+ 1.3749640663929898e+00,-1.1791579306376878e+00,1.3014280716647608e+00,8.952602728899299e-01,142,9,0,10
197
+ 2.135122384354861e-02,1.8495912466796365e+00,-2.1416665620008424e-01,-4.990166379941829e-01,29,8,0,10
198
+ -4.1004969320254847e-01,7.863279621089762e-01,-4.6641909673594306e-01,-9.444462559182504e-01,-54,8,1,11
199
+ -3.9121705217401626e-01,1.4111720638896117e+00,7.858038268311726e-01,-5.7469518465394644e-02,111,11,1,11
200
+ 1.7426687806556311e+00,4.986902749098275e-01,1.0479721559680528e+00,2.842796708072146e-01,167,9,1,10
201
+ 8.67407411354918e-01,-5.914026678081108e-01,1.1244191845103682e+00,7.553956956633383e-01,129,8,0,11
202
+ 1.0653154920979948e+00,-2.0694471055729102e-01,-6.780954607862469e-01,7.539914669784796e-01,-23,10,1,10
203
+ -1.715463312222481e-01,-3.92828182274956e-02,-1.1680934977411974e+00,5.232766605317537e-01,-101,9,0,11
204
+ 1.7944488052250736e+00,1.3554427025944182e+00,-3.981481287500751e-01,-1.6137353627777917e-01,48,11,0,10
205
+ 1.4737648151384048e+00,1.0400862450537032e+00,1.6464380952639762e-01,8.851875412089273e-01,113,10,0,10
206
+ 6.354245265539955e-01,1.474344016509719e-01,-9.774648772458692e-01,8.7938994191337e-01,-46,8,1,10
207
+ 1.7879286573317985e-01,1.3852615467222305e+00,-3.030982534240727e-01,4.4103290727315136e-01,36,8,0,11
208
+ 1.3768982590334733e-01,1.1173053155366646e+00,-5.189002044248521e-01,-7.537044661806008e-01,-29,11,0,10
209
+ 9.222066715665268e-01,9.47251967773748e-01,-1.550100930908342e-01,6.140793703460803e-01,58,8,0,11
210
+ -1.6606998118692633e+00,-1.4059629162678993e+00,-5.900576458695397e-01,-1.1048940506592783e-01,-148,12,1,11
211
+ 2.6429357210147417e+00,8.313510579847683e-01,4.879726826630046e-01,-9.196506900626618e-01,112,10,1,11
212
+ -5.0603540961665895e-02,-4.6886418796679563e-01,-2.201441285500558e+00,1.993001968964652e-01,-220,10,0,10
213
+ 2.4316821540249173e-01,4.5730964672081126e-01,9.623417448143452e-01,7.708369604049367e-01,135,11,1,11
214
+ -8.837552319915497e-02,2.098494779230553e-01,-1.2406245995562275e+00,2.2246316400860677e-01,-106,12,0,10
215
+ -6.634782863621074e-01,-7.447548220484399e-01,-8.264385386590144e-01,-9.84525244254323e-02,-123,12,0,11
216
+ 5.897036055747239e-01,1.8791791774257802e-02,-5.937774477786675e-01,-2.011880319244709e+00,-100,9,0,10
217
+ 4.9383677628095635e-01,8.416312640736364e-01,-2.4945858016094885e-01,4.949498165009074e-02,18,8,1,11
218
+ -7.565047058842289e-02,7.706730544633433e-01,-1.3043973378332732e-01,1.821915097860406e+00,65,12,0,11
219
+ 1.123905305614439e+00,9.600477411499279e-01,-4.164990824366925e-01,-2.7682299477388833e-01,13,8,1,10
220
+ -3.529673960291556e-02,9.265583009670965e-01,5.580818806186658e-01,-1.1169495537467236e+00,51,12,0,10
221
+ 7.826017516166135e-02,8.215857120497958e-01,5.292646299360854e-03,8.005648034309968e-01,54,9,1,11
222
+ 9.693967081580112e-01,1.8831506970562544e+00,-1.3477590611424464e+00,-1.2704849984857336e+00,-76,11,1,10
223
+ 1.2591671296108138e+00,1.2674116548186567e+00,4.9949823346865946e-01,-6.205312579833403e-02,120,12,0,11
224
+ 1.037585667050634e+00,-1.7346389707287913e-01,-5.100295397556169e-01,1.3925184494342724e+00,11,8,0,10
225
+ 1.3978962610867354e+00,2.066905117080033e-01,5.310425069780597e-01,2.3914558065378702e-01,98,9,1,10
226
+ 7.747283190671621e-01,3.903649435086224e-01,1.5885306910975325e+00,-5.109261812322631e-01,168,9,0,10
227
+ -2.3110160759299653e-01,6.774621693464117e-01,5.182038948242156e-02,-8.791606288350748e-01,-3,12,0,11
228
+ 1.1149623229474022e+00,1.6692508063769687e+00,3.0198921035755294e-01,6.081564276006415e-01,131,9,0,11
229
+ 2.4612125247911617e-02,-4.513030371025261e-01,2.656879749662359e-01,7.231004937377982e-01,31,9,1,11
230
+ -2.5591846663440965e+00,-3.8464542314251776e-01,-4.438360931551978e-01,1.0781973037142378e+00,-86,11,1,10
231
+ 1.3462210732223001e+00,-1.4902653879072982e+00,1.496139636951632e+00,-9.724028893524976e-01,95,9,0,10
232
+ 6.845011068591904e-01,-3.091144447717088e-01,-2.3346666154369272e-01,1.7327211869191332e+00,34,11,1,10
233
+ 7.774903558319101e-01,-5.096521817516535e-01,-4.380743016111864e-01,-1.2527953600499262e+00,-76,8,0,11
234
+ 5.249178636458827e-01,-5.664398537322193e-01,-3.0769127736700175e-01,2.6902407317624666e-01,-27,11,0,11
235
+ -2.226751005151545e-01,1.6481349322075596e+00,1.6422775548733395e-01,5.672902778526694e-01,83,9,0,10
236
+ -7.380309092056887e-01,6.40131526097592e-01,-1.6169560443108344e+00,-2.4326124398935636e-02,-150,9,1,11
237
+ 1.3185510180908366e+00,-5.654978063746563e-01,4.760313834381145e-01,-2.158068563961257e+00,-5,10,0,11
238
+ 1.3599485416794843e+00,-9.180047698190454e-01,2.524966270768724e-01,8.203217972614217e-01,49,9,1,11
239
+ 8.202478373246812e-01,-7.826291558275251e-01,-1.1038929902688775e-01,-1.0546284639850139e+00,-48,8,0,11
240
+ -1.1570172808158679e+00,2.3986710589527857e-01,1.5895867412564327e-01,1.9286395555038602e-01,0,11,0,11
241
+ 2.3820019202203863e-01,-1.4828833575740425e+00,-1.3094121463310142e+00,8.178618311849958e-01,-145,11,1,10
242
+ 9.921368285185058e-01,4.209182841756566e-01,2.4660218626133443e-01,-6.255570351092533e-01,43,11,1,11
243
+ 1.6338084112892493e-02,9.837790681547566e-02,3.8141625420917086e-01,6.74922572408068e-02,41,12,0,11
244
+ 2.5402316207591715e+00,-9.68082117664578e-01,4.7706809235686526e-01,-3.5595149304680634e-01,64,10,0,10
245
+ -1.3032427541123157e+00,1.1514787314009216e-01,-3.7914756287992274e-01,-1.7423561978092306e+00,-115,10,0,10
246
+ -1.5447710967776116e+00,-1.225435518830168e+00,8.443629764015471e-01,-1.0002153473895647e+00,-29,12,1,10
247
+ -9.880019424937344e-01,5.640085350738091e-01,-1.2845522979925272e+00,-1.0434349149469264e-01,-129,12,0,11
248
+ 8.444543066045863e-01,-1.6553440383096778e+00,1.5364446081566638e-01,-1.5844735631509355e+00,-67,11,0,11
249
+ 3.777591697307179e-01,8.326507394644783e-01,3.270662091210221e-01,1.6315974275322715e+00,116,8,1,11
250
+ 2.2959755607951444e-02,-6.67712720570559e-01,1.6819217400731377e+00,-8.52585847170647e-01,112,10,0,11
251
+ -8.209882269614045e-03,3.8909396886572056e-01,1.1710410646204883e+00,-3.265609776792077e-01,114,10,0,10
252
+ -2.934850548893775e-01,-1.6193599828975425e+00,-5.110404635801098e-01,1.7406294458953309e+00,-60,11,0,11
253
+ 4.7224715008784873e-01,2.711701846373109e-01,-8.014968853943748e-01,-6.471814318477607e-01,-73,12,1,11
254
+ -2.5412388076882246e+00,6.234536094243824e-01,8.906716814313947e-01,5.129168468277764e-01,58,11,0,10
255
+ 9.492464735582357e-01,-3.576807186022113e-02,2.3807453512197503e+00,3.30576756274374e-01,257,8,0,10
256
+ -2.977908794017283e-01,-6.37437025552229e-01,-3.9727181432879766e-01,-1.3288057758695562e-01,-70,8,0,11
257
+ -1.1747454641811148e-01,-5.6133020448757114e-02,-1.385042735095726e-03,-6.872990371566635e-01,-25,12,1,11
258
+ 4.014990550902875e-01,-2.369586905226603e+00,8.640523004976479e-01,-2.2396040586617367e+00,-55,10,0,11
259
+ -5.316059080114549e-01,-1.0068317522989838e+00,1.6815767162673276e+00,-7.922866618061449e-01,88,8,0,11
260
+ -2.7396771671895563e+00,-1.30106954193704e-01,9.395322938556872e-02,9.430460873225178e-01,-35,10,0,10
261
+ -1.4169061131262595e+00,-5.693120534701851e-01,2.6990435494076137e-01,-4.668455460527625e-01,-42,8,1,11
262
+ 4.1704350296760356e-01,4.98726958311932e-01,-7.379317802412299e-01,-1.2037351921997794e+00,-77,9,1,10
263
+ 9.632135592119682e-02,1.1813786012882859e+00,-6.319037580051673e-01,1.6392857245258663e-01,-12,9,1,11
264
+ -1.8180776303835695e+00,2.280533251240672e-01,2.0147994670443287e-01,5.407735853003902e-01,-1,10,1,11
265
+ -3.948495140334503e-01,-1.568211160255477e-02,1.6092816829822298e-01,-1.9065349358139935e-01,0,12,0,11
266
+ 1.6709430327888573e+00,-3.7514711666128386e-01,-1.226196191783019e+00,1.8333919925760125e-01,-82,11,1,11
267
+ -1.3414967255830426e+00,1.4893559620744803e+00,5.213037482757137e-01,6.119271927311578e-01,85,9,0,10
268
+ -7.95500550053291e-01,-1.1046165975264708e+00,-3.0936257273958937e-02,1.5788651944164882e+00,-14,12,0,11
269
+ -7.785475594085076e-02,-6.585529668050037e-01,-5.142339659399888e-01,-1.0180418752873648e+00,-103,11,0,10
270
+ -9.211211469195592e-02,1.0523213705927585e-01,-9.165940810038319e-02,3.126754702756948e-02,-6,12,1,11
271
+ -7.421650204064419e-01,-2.5529898158340787e+00,6.536185954403606e-01,8.644361988595057e-01,-18,9,0,11
272
+ 2.3810314783231212e-01,-1.550429345083481e+00,4.173188210318355e-01,-9.443684908242939e-01,-35,8,0,11
273
+ -2.7177156649069667e-01,8.245572195642364e-01,5.311783665356953e-01,-1.2824197402770202e-01,68,12,1,10
274
+ 2.2436018945826404e+00,5.053869385773427e-01,3.592491565134564e-01,-1.5824944779817585e+00,60,10,0,10
275
+ 4.960009463439622e-01,1.3191368763015756e+00,-8.824188185499185e-01,1.1285940645145685e+00,6,11,0,11
276
+ 1.9279384513077216e-02,7.199837301431654e-01,-1.1029062129553697e+00,-1.016972745548716e-01,-82,11,0,10
277
+ 1.7195893074161945e+00,3.708250012811021e-01,1.4206180518723566e-01,1.5199948607657727e+00,112,11,0,11
278
+ -3.156031233858582e-01,-1.0056471869014538e-02,1.2380069359584398e+00,-1.040599230085145e+00,78,8,1,11
279
+ 1.9979560797500047e+00,9.304084961111163e-01,-1.7531640232701995e-01,-1.4219198716404369e+00,22,12,1,11
280
+ 1.4053654387244203e+00,-1.4227949086263427e+00,1.9223247554443985e+00,-2.1150560151878075e+00,106,11,1,11
281
+ 3.7005588784751875e-01,9.77249677148556e-02,5.829536797532936e-01,-3.994490292628752e-01,56,9,0,11
282
+ -7.22870075600049e-02,-1.217938511593151e+00,-3.0496363785442043e-01,1.0289354925948542e+00,-42,11,1,10
283
+ -2.3205942757907416e+00,-6.006575576577885e-01,1.5522431800485608e+00,2.869044880033464e-01,77,8,1,11
284
+ -3.752224007606727e-01,4.3480795773115793e-01,5.400944605248059e-01,7.324240097548762e-01,78,11,0,11
285
+ 7.912172392953508e-02,-1.4876615223367926e-01,9.600420496977001e-02,-4.5113303693334814e-02,4,9,1,11
286
+ 1.2111452896827009e+00,2.8634368889227957e-01,6.088438344754508e-01,-1.0452533661469547e+00,66,10,0,11
287
+ -8.299645975379619e-01,7.458640654355353e-02,-1.0770990694039948e+00,-4.246633024328657e-01,-132,12,1,11
288
+ -2.6192237344250482e-02,9.409176145751134e-01,4.0520408032288807e-01,4.980524046828567e-01,84,9,0,11
289
+ 6.783800988404703e-01,-4.5582534779936884e-01,1.4261587520192662e+00,9.361291483110824e-01,163,11,0,11
290
+ -4.225715166064269e-02,-1.7020413861440594e-02,3.791517355550818e-01,2.259308950690852e+00,100,9,1,11
291
+ -3.0224973045507003e-01,6.764607323616232e-01,-3.820089555778202e-01,-2.2425893425164034e-01,-26,11,0,11
292
+ -9.646120137337284e-01,8.758327615873309e-01,-1.1510746848722672e-01,4.574156062209908e-01,8,8,0,11
293
+ 7.849575212405001e-01,-1.951804101481602e+00,-6.59891729729498e-01,-1.139802455426774e+00,-143,12,1,11
294
+ 5.2165079260974405e-02,6.252314510271875e-01,-1.6020576556067476e+00,-1.1043833394284506e+00,-161,10,0,11
295
+ 6.63258089679174e-01,7.316589270303925e-01,-6.548837514448298e-02,3.4816923524180865e-01,45,11,0,11
296
+ 3.3367432737426683e-01,7.610377251469934e-01,1.2167501649282841e-01,4.4386323274542566e-01,58,11,0,10
297
+ -1.4299912586854484e+00,2.843145189979445e-01,4.1540062617112683e-01,-1.0314824603152577e+00,-16,8,0,11
298
+ 7.243685048699644e-01,-9.378802311514517e-01,4.3310795315134365e-01,-4.059417271884834e-01,14,11,0,11
299
+ 1.4644077047824985e-01,2.1717963263828013e-01,7.821118109215218e-02,1.404545514939712e+00,59,12,1,10
300
+ 3.960865849565602e-01,-9.389815726777853e-01,1.0170209914132446e+00,1.4229834965161061e+00,115,11,0,11
301
+ -7.667048545369003e-01,3.382254736851153e-01,6.51781261700616e-01,1.4710002454108063e-03,54,11,1,10
302
+ 3.7816251960217356e-01,1.5327792143584575e+00,1.469358769900285e+00,1.549474256969163e-01,205,11,1,10
303
+ 1.2433193844551549e+00,-1.601836048972537e+00,-8.871809418450403e-01,-9.327890415064383e-01,-135,12,1,10
304
+ 1.1368913626026953e+00,2.303916697683942e+00,-1.0600158227215473e+00,-1.3594970067832082e-01,2,9,1,10
305
+ -5.008409428482209e-02,-1.3597807255038137e+00,-4.140081155796743e-02,-7.57870860425166e-01,-74,12,0,10
306
+ 2.571182431510025e-03,-1.8081439264982515e+00,4.113342428976086e-01,-4.832495424791074e-01,-37,10,0,10
307
+ -1.7913275480411837e+00,-9.191134448699437e-01,1.9275384906521617e-01,-3.6505521654625767e-01,-68,11,1,11
308
+ -4.3782004474443403e-01,1.126635922106507e+00,-1.0799315083634233e+00,-1.1474686524111024e+00,-107,8,0,11
309
+ 3.562928174722889e-01,-5.986539369229861e-01,-1.1158969859603944e+00,7.666631816450861e-01,-95,11,0,10
310
+ -4.9331988336219407e-01,-5.973160689653627e-01,-2.37921729736007e-01,-1.4240609089825316e+00,-96,11,0,10
311
+ 6.947491436560059e-01,1.4195316332077967e-01,-3.193284171450952e-01,6.915387510701866e-01,11,11,1,11
312
+ -2.5857263167677125e-01,3.6448124924050557e-01,1.4713219561423383e+00,1.5927707544174836e+00,192,9,0,10
313
+ 1.0819352184772653e+00,-3.4624944764730997e-01,-7.946363210714987e-01,1.9796728994496746e-01,-54,8,0,11
314
+ 9.789614541262709e-02,-9.327409107943778e-01,-1.2630683491022754e+00,4.524890926396464e-01,-136,9,0,11
315
+ -1.2791611070282582e+00,8.635196583813146e-01,-8.047537406378693e-01,2.3466470305265617e+00,-9,8,0,10
316
+ -4.367483374580074e-01,-3.4796185592084583e-01,-1.3533888581477134e+00,-1.0326431018921296e+00,-181,9,0,10
317
+ 2.240893199201458e+00,1.764052345967664e+00,4.001572083672233e-01,9.787379841057392e-01,182,11,0,11
318
+ -2.245321648371402e+00,-5.07517601657357e-01,-1.051880102551674e+00,2.497200391587007e+00,-99,9,1,10
319
+ -5.3913263675299e-01,4.064154936762062e-01,-1.931767015498399e-01,7.557402888945426e-01,4,9,1,11
320
+ 1.7133427216493666e+00,-1.3159074105115212e+00,-4.61584604814709e-01,-6.824160532463124e-02,-48,11,1,11
321
+ 2.711127964467149e-01,-2.916419863518446e-01,-1.7410228083589014e+00,-7.803044065015394e-01,-191,11,1,11
322
+ 1.0547579251802828e+00,-1.8923618933173414e+00,-1.7781314370301254e-01,2.5099811600832395e-01,-48,10,0,11
323
+ 1.5182611703557054e+00,2.134800489101689e-01,-1.2085736537332212e+00,-2.420198298702195e-01,-76,10,0,11
324
+ -1.1539503636520094e+00,-7.496903447028966e-01,3.28087476137118e-02,-2.5827966329699446e+00,-126,10,1,10
325
+ 2.1338682472045374e+00,2.3958275985639133e-01,-3.698011663038032e-01,9.725357891425369e-01,54,8,0,10
326
+ -8.622669997532367e-01,9.920486253150243e-02,1.5762989726277177e+00,5.023282400747796e-01,146,9,0,10
327
+ -5.525406734167292e-01,-8.031413873416283e-01,-4.6433769143549164e-01,1.021790585588673e+00,-55,9,0,10
328
+ 4.2833187053041766e-01,-5.10805137568873e-01,-1.180632184122412e+00,-2.8182228338654868e-02,-119,10,0,10
329
+ -4.243176209779015e-01,7.714059486768455e-01,1.0294388287827672e+00,-9.087632459590531e-01,87,8,0,11
330
+ -1.888347802177838e-01,5.40123026400494e-01,2.2904670705305388e+00,1.6002678187487591e+00,277,11,0,11
331
+ -1.513572082976979e-01,1.8675579901499675e+00,-9.77277879876411e-01,9.500884175255894e-01,-4,12,1,10
332
+ 1.3674149824601585e+00,2.75097020298358e-02,2.2320163895251777e+00,-1.0497970101895356e-01,243,11,1,10
333
+ 1.903115575939397e-01,-1.4617326882614081e+00,-6.834397667886818e-01,3.6754489602226903e-01,-99,10,1,11
334
+ 5.47480572104665e-01,1.6180542690002255e+00,-8.244091213278346e-01,4.2258037227288275e-01,3,10,1,11
335
+ -9.07300121525327e-01,1.6155926723816796e-01,1.5634047450289295e+00,-7.905230218330772e-01,108,12,1,11
336
+ -5.757879698130661e-01,-8.133642592042029e-01,-1.466424327802514e+00,5.210648764527586e-01,-165,9,0,11
337
+ 8.002979493400275e-01,-1.8505367100934153e-01,-8.076484876163557e-01,-1.4465346995633879e+00,-105,8,1,11
338
+ 9.971179807917595e-01,1.3709890062911214e+00,-5.098432421384791e-01,3.2486961579618606e-01,32,12,0,10
339
+ -8.645528271104713e-02,-4.0318830684953333e-01,9.494055237932187e-01,-1.6325494883317873e-01,69,9,1,10
340
+ 1.2978457906510987e+00,9.424681192203938e-01,-2.675947462353477e-01,-6.780257815644504e-01,19,9,1,10
341
+ 6.552637307225978e-01,-3.691818379424436e-01,-2.393791775759264e-01,1.0996595958871132e+00,12,12,1,11
342
+ -3.9315319475411287e-01,2.5280350541915453e-01,-4.080147090398969e-01,1.7746585609733332e+00,12,10,0,10
343
+ 7.77604137902912e-01,1.1255753090645429e-01,-6.555450294843581e-01,6.751685717432486e-02,-37,8,1,10
344
+ 6.479677910098883e-01,-8.963697225521802e-01,-1.962732009140752e+00,1.584820527349018e+00,-154,9,1,11
345
+ -4.213275873246805e-01,1.319117557874122e-01,-1.9805655910689397e+00,7.68770644399475e-01,-171,11,0,11
346
+ -1.5669947108616025e+00,6.705704503109099e-01,-7.075056975105769e-01,3.976673458649517e-02,-81,10,0,11
347
+ 6.81594518281627e-01,8.568306119026912e-01,-6.510255933001469e-01,-1.0342428417844647e+00,-45,8,1,10
348
+ 2.6705086934918293e-01,-7.395629963913133e-01,1.5430145954067358e+00,-1.2928569097234486e+00,89,10,0,10
349
+ -6.60608593976992e-01,-1.34841308775612e+00,1.264983329856256e+00,-3.007838764760271e-01,48,12,0,11
350
+ -1.567767724308454e+00,-3.474506524985633e-01,-5.812684768603252e-01,-1.6326345262344952e+00,-153,10,0,10
351
+ -1.775887999961829e+00,9.853175089398669e-01,7.66919669661199e-01,4.026255311300352e-01,74,11,1,11
352
+ -3.903926939855081e-01,1.761266127419863e+00,7.540956636562427e-01,-6.250273906846713e-01,104,9,0,11
353
+ 9.967596428198156e-01,1.5877615237453675e+00,-6.432576017887388e-01,-1.1335928256384589e+00,-15,10,1,11
354
+ 5.892558918162996e-02,-1.7685384506770307e+00,3.5548179274376907e-01,8.145198224878664e-01,-1,10,0,11
355
+ -8.935744023141913e-01,3.30897511387602e-02,-8.541612608143545e-01,-7.199405321418947e-01,-122,8,1,11
356
+ 1.5634896910398005e-01,-8.877857476301128e-01,-1.980796468223927e+00,-3.479121493261526e-01,-224,8,0,10
357
+ 1.971810551973674e-01,-8.958157604108271e-01,5.483281304979799e-01,9.866745381579567e-02,28,11,0,11
358
+ 6.350314368921064e-01,-1.4912575927056055e+00,4.393917012645369e-01,1.6667349537252904e-01,10,9,1,11
359
+ -1.3256801465371804e-01,9.214083978105813e-01,4.608144771488305e-01,9.237965603139469e-01,99,11,1,11
360
+ 1.117016288095853e+00,2.383144774863942e+00,9.444794869904138e-01,-9.128222254441586e-01,172,8,0,10
361
+ 9.361075501096976e-01,-1.3751844793172407e+00,5.009922321799466e-01,-4.8024903499492544e-01,9,8,0,11
362
+ 1.0645851361278518e+00,3.5950439957101016e-01,-1.4456681693373594e-01,-3.615992807816198e-01,14,12,0,11
363
+ -7.931173627076716e-01,-5.028167006425383e-01,2.4124536795437486e+00,-9.60504381633148e-01,163,10,1,11
364
+ -5.992800267109062e-02,-3.249349583204991e-01,-7.113063597427886e-01,-3.881541924822496e-01,-91,12,0,11
365
+ 8.595197343438468e-02,1.9145087202391178e-01,8.805111991771105e-01,-4.5408036251560513e-01,78,8,1,11
366
+ -3.909533751876011e-01,1.9559123082506942e+00,3.9009332268792646e-01,-6.5240858238702e-01,75,12,1,10
367
+ 1.2898291075741067e-01,-9.072983643832422e-01,5.194539579613895e-02,7.290905621775369e-01,-1,9,1,10
368
+ -6.801782039968504e-01,-1.3065268517353166e+00,1.658130679618188e+00,-1.1816404512856976e-01,92,9,0,11
369
+ -1.4013472930393105e+00,9.606933984606597e-01,1.3290628465396823e+00,-8.174930976162265e-01,100,10,1,11
370
+ 6.799748442451024e-01,1.265077838088766e+00,2.1149701273187801e-01,-7.049213525074449e-01,59,11,1,10
371
+ 1.8133842921782128e-01,-5.175190425104033e-01,-9.788298593587699e-01,-4.3918952180214793e-01,-119,10,1,11
372
+ -5.359145616661618e-01,-9.23912015810002e-01,1.4121516982986309e+00,-1.3804307523072692e+00,48,11,0,10
373
+ 1.336527949436392e+00,7.717905512136674e-01,8.235041539637314e-01,2.16323594928069e+00,200,10,1,11
374
+ 2.0210435614847975e+00,4.631303293186071e-01,2.790957643924534e-01,3.3890412521594454e-01,102,11,1,11
375
+ -8.98942156465536e-01,-8.974009269018305e-01,1.3124703671409963e+00,-8.589723884443423e-01,46,9,1,10
376
+ 3.86902497859262e-01,-1.6138978475579515e+00,-2.127402802139687e-01,-8.954665611936756e-01,-92,9,0,10
377
+ 1.0777438059762627e+00,6.937731526901325e-01,-1.595734381462669e-01,-1.3370155966843916e-01,31,8,1,10
378
+ 5.080679093914777e-01,-8.511560251940574e-02,-5.643010333021604e-01,9.667680111664602e-01,-15,8,1,10
379
+ 1.2572196508289941e+00,1.0590272544419663e+00,-1.0225643912606857e+00,-8.552404572508642e-01,-54,9,0,11
380
+ 8.214059370248112e-01,4.4819528442331247e-01,1.6961815728281606e+00,-1.4857703354702717e-02,196,11,0,10
381
+ 9.78567297446043e-01,2.5385604406458987e-02,6.103917643054128e-01,2.8601252697811796e-01,91,8,1,10
382
+ -6.023318535828621e-01,7.303517903770194e-01,1.1045784735714765e+00,-1.014825907734441e+00,85,8,0,11
383
+ 6.203582983435125e-01,-1.8430695501566485e+00,-4.779740040404867e-01,-4.7965581400794766e-01,-107,11,1,10
384
+ -1.0730527629117469e-01,-4.2171451290578935e-02,-2.868871923899076e-01,-6.16264020956474e-02,-33,9,1,11
385
+ -5.256405931019397e-01,-7.621145119224981e-01,-8.877801366359354e-01,9.363985435524596e-01,-95,12,1,10
386
+ 2.0644928613593194e+00,4.9374177734918845e-01,-1.1610393903436653e-01,-2.0306844677814944e+00,-2,12,0,11
387
+ -1.5500141893581478e+00,5.517135478023174e-02,2.989774561190176e-01,1.648504010268179e+00,40,8,0,10
388
+ -1.6108784034499337e+00,-6.564636749715315e-01,-2.8345545052747023e+00,2.1167910214836754e+00,-269,8,0,11
389
+ -1.2631729120851543e+00,1.0450233755026905e+00,5.990395263761841e-01,-3.4069234387793046e-01,51,10,0,11
390
+ -8.909150829955279e-01,-7.196043885517929e-01,-8.129929885540773e-01,2.745163577239395e-01,-115,9,0,11
391
+ 9.721923200291803e-02,2.242522209656819e-01,-1.6786883628286566e+00,2.1496559062609352e-01,-142,11,0,11
392
+ -1.188944955203736e+00,-7.047002758562337e-01,9.432607249694948e-01,7.471883342046318e-01,57,9,0,11
393
+ 1.9429293804577166e-01,-3.9522898265435435e-01,-1.159420516399913e+00,-8.593076697161273e-02,-121,8,1,10
394
+ 7.811981017099934e-01,-5.428614760167177e-01,4.160500462614255e-01,-1.1561824318219127e+00,6,10,1,10
395
+ -3.854897603756083e-01,-3.8687084685064654e-01,-5.102927396336285e-01,1.8392549434030994e-01,-65,8,1,11
396
+ 1.0946383747120914e+00,-1.4449401990733717e+00,-1.2105429941233516e+00,-7.886692545093662e-01,-160,12,1,10
397
+ 1.454273506962975e+00,-1.0321885179355784e-01,4.1059850193837233e-01,1.44043571160878e-01,75,12,0,11
398
+ -4.4846500620405927e-01,-2.7773591454274333e+00,1.151733974780799e+00,-5.892289865101498e-01,-14,8,1,10
399
+ -1.098827793093138e-01,-2.616454457109007e-01,-1.8224478378994294e-01,-2.0289684076666706e-01,-34,9,0,10
400
+ 2.053325637779597e-01,-1.2986867221630902e+00,1.2760753460061875e+00,1.3250140528868153e+00,120,10,0,10
401
+ 1.412327706037443e+00,2.42117960985123e-01,-8.887202573536308e-01,9.367424635352571e-01,-13,11,0,10
@@ -0,0 +1,63 @@
1
+ {
2
+ "test_classification" : {
3
+ "col1" : "float",
4
+ "col2" : "float",
5
+ "col3" : "float",
6
+ "col4" : "float",
7
+ "label" : "integer"
8
+ },
9
+ "test_prediction": {
10
+ "col1" : "float",
11
+ "col2" : "float",
12
+ "col3" : "float",
13
+ "col4" : "float"
14
+ },
15
+ "train_regression" : {
16
+ "col1" : "float",
17
+ "col2" : "float",
18
+ "col3" : "float",
19
+ "col4" : "float",
20
+ "label" : "integer"
21
+ },
22
+ "test_regression": {
23
+ "col1" : "float",
24
+ "col2" : "float",
25
+ "col3" : "float",
26
+ "col4" : "float"
27
+ },
28
+ "train_regression_multiple_labels" : {
29
+ "col1" : "float",
30
+ "col2" : "float",
31
+ "col3" : "float",
32
+ "col4" : "float",
33
+ "label1" : "integer",
34
+ "label2" : "integer"
35
+ },
36
+ "train_multiclass" : {
37
+ "col1" : "float",
38
+ "col2" : "float",
39
+ "col3" : "float",
40
+ "col4" : "float",
41
+ "label" : "integer"
42
+ },
43
+ "multi_model_regression": {
44
+ "col1" : "float",
45
+ "col2" : "float",
46
+ "col3" : "float",
47
+ "col4" : "float",
48
+ "label" : "integer",
49
+ "group_column" : "integer",
50
+ "partition_column_1" : "integer",
51
+ "partition_column_2" : "integer"
52
+ },
53
+ "multi_model_classification": {
54
+ "col1" : "float",
55
+ "col2" : "float",
56
+ "col3" : "float",
57
+ "col4" : "float",
58
+ "label" : "integer",
59
+ "group_column" : "integer",
60
+ "partition_column_1" : "integer",
61
+ "partition_column_2" : "integer"
62
+ }
63
+ }
@@ -0,0 +1,65 @@
1
+ import sys
2
+ import numpy as np
3
+ from sklearn.pipeline import make_pipeline
4
+ from sklearn.preprocessing import StandardScaler
5
+ from sklearn.svm import SVC
6
+ import base64, pickle
7
+
8
+ DELIMITER = "\t"
9
+
10
+ def get_value(value):
11
+ ret_val = value
12
+ try:
13
+ ret_val = float(value.replace(' ', ''))
14
+ except Exception as ex:
15
+ # If the value can't be converted to float, then it is string.
16
+ pass
17
+ return ret_val
18
+
19
+
20
+ def get_values_list(values, ignore_none=True):
21
+ ret_vals = []
22
+ for val in values:
23
+ if val == "" and ignore_none:
24
+ # Empty cell value in the database table.
25
+ continue
26
+ ret_vals.append(get_value(val))
27
+
28
+ return ret_vals
29
+
30
+ data_partition_column_values = []
31
+ data_partition_column_indices = [5, 6]
32
+
33
+ features = []
34
+ labels = []
35
+
36
+ while 1:
37
+ try:
38
+ line = input()
39
+ if line == '': # Exit if user provides blank line
40
+ break
41
+ else:
42
+ values = line.split(DELIMITER)
43
+
44
+ features.append(get_values_list(values[:4]))
45
+ labels.append(get_values_list([values[4]]))
46
+ if not data_partition_column_values:
47
+ # Partition column values is same for all rows. Hence, only read once.
48
+ for i, val in enumerate(data_partition_column_indices):
49
+ data_partition_column_values.append(int(values[val]))
50
+
51
+ except EOFError: # Exit if reached EOF or CTRL-D
52
+ break
53
+
54
+ if not len(features):
55
+ sys.exit(0)
56
+
57
+ X = np.array(features)
58
+ y = np.array(labels)
59
+
60
+ clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
61
+ clf.fit(X, y)
62
+
63
+ model = base64.b64encode(pickle.dumps(clf))
64
+
65
+ print(*(data_partition_column_values + [model]), sep=DELIMITER)
@@ -0,0 +1,20 @@
1
+ #!/usr/bin/Rscript
2
+
3
+ # Read input from STDIN (standard input)
4
+ input <- file("stdin", open = "r")
5
+ while (length(line <- readLines(input, n = 1)) > 0) {
6
+ # Remove leading and trailing whitespace
7
+ line <- trimws(line)
8
+ # Split the line into words
9
+ words <- unlist(strsplit(line, "\\s+"))
10
+ # Increase counters
11
+ for (word in words) {
12
+ # Write the results to STDOUT (standard output);
13
+ # what we output here will be the input for the
14
+ # Reduce step, i.e., the input for reducer.py
15
+ #
16
+ # tab-delimited; the trivial word count is 1
17
+ cat(paste(word,"\t","1\n"))
18
+ }
19
+ }
20
+ close(input)
File without changes