teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,980 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- Unpublished work.
4
- Copyright (c) 2020 by Teradata Corporation. All rights reserved.
5
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
6
-
7
- Primary Owner: Rohit.Khurd@teradata.com
8
- Secondary Owner:
9
-
10
- teradataml Model Cataloging
11
- -------------------------------
12
- teradataml Model Cataloging functions provide interface to manage user created models
13
- generated by teradataml Analytic functions, and retrieve saved models to use with teradataml.
14
- """
15
-
16
- import pandas as pd
17
- import json
18
- import warnings
19
-
20
- from teradataml.common.constants import ModelCatalogingConstants as mac
21
- from collections import OrderedDict
22
- from teradataml.common.exceptions import TeradataMlException
23
- from teradataml.common.garbagecollector import GarbageCollector
24
- from teradataml.common.messagecodes import MessageCodes
25
- from teradataml.common.messages import Messages
26
- from teradataml.context.context import get_connection
27
- from teradataml.common.utils import UtilFuncs, function_deprecation
28
- from teradataml.dbutils.dbutils import _execute_transaction
29
- from teradataml.options.display import *
30
- from teradataml.utils.validators import _Validators
31
- from teradataml.catalog.function_argument_mapper import _argument_mapper
32
- from teradatasql import OperationalError as SqlOperationalError
33
- from teradataml.dataframe.dataframe import DataFrame, in_schema
34
-
35
- from teradataml.catalog.model_cataloging_utils import __check_if_model_cataloging_tables_exists,\
36
- __check_if_model_exists, __get_model_engine, __get_current_user, __get_model_inputs_outputs,\
37
- __get_model_parameters, __get_like_filter_expression_on_col, __retrieve_model_client_engine_algorithm,\
38
- __retrieve_model_attributes, __retrieve_model_outputs, __get_tables_for_model, __delete_model_tableview,\
39
- __retrieve_argument_and_output_map, __get_wrapper_class, __get_model_access, __retrieve_model_inputs
40
-
41
-
42
- __awu = _Validators()
43
- __gc = GarbageCollector()
44
-
45
-
46
- # TODO: Support for type argument in all MC API's.
47
- # This should be done when DLEngine support is added.
48
- # type - Required Argument. Indicates the type of the model. ML Engine or DL Engine.
49
-
50
- # TODO: Notes for save_model()
51
- # 1. TODO: Add support for overwrite = True
52
- #
53
- @function_deprecation("future")
54
- def save_model(model,
55
- name,
56
- description,
57
- model_project=None,
58
- entity_target=None,
59
- performance_metrics=None):
60
- """
61
- DESCRIPTION:
62
- Function to save a teradataml Analytic Function model in Teradata Vantage.
63
-
64
- PARAMETERS:
65
- model:
66
- Required Argument.
67
- Specifies the teradataml analytic function model to be saved.
68
- Types: teradataml analytic function object.
69
-
70
- name:
71
- Required Argument.
72
- Specifies the unique name to identify the saved model.
73
- The maximum length of the name is 128 characters.
74
- Types: str
75
-
76
- description:
77
- Required Argument.
78
- Specifies a note describing the model to be saved.
79
- The maximum length of the description is 1024 characters.
80
- Types: str
81
-
82
- model_project:
83
- Optional Argument.
84
- Specifies the project that the model is associated with.
85
- The maximum length of the model_project is 128 characters.
86
- Types: str
87
- Default Value: None
88
-
89
- entity_target:
90
- Optional Argument.
91
- Specifies a group or team that the model is associated with.
92
- The maximum length of the entity_target is 128 characters.
93
- Types: str
94
- Default Value: None
95
-
96
- performance_metrics:
97
- Optional Argument.
98
- Specifies the performance metrics for the model.
99
- performance_metrics must be a dictionary of the following form:
100
- { "<metric>" : { "measure" : <value> }, ... }
101
- For example:
102
- { "AUC" : { "measure" : 0.5 }, ... }
103
- The value should be of type float.
104
- Types: dict
105
- Default Value: None
106
-
107
- RETURNS:
108
- None.
109
-
110
- RAISES:
111
- TeradataMlException, TypeError, ValueError
112
-
113
- EXAMPLES:
114
- # Load the data to run the example
115
- load_example_data("decisionforest", ["housing_train"])
116
-
117
- # Create teradataml DataFrame objects.
118
- housing_train = DataFrame.from_table("housing_train")
119
-
120
- # This example uses home sales data to create a
121
- # classification tree that predicts home style, which can be input
122
- # to the DecisionForestPredict.
123
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
124
- rft_model = DecisionForest(data=housing_train,
125
- formula = formula,
126
- tree_type="classification",
127
- ntree=50,
128
- tree_size=100,
129
- nodesize=1,
130
- variance=0.0,
131
- max_depth=12,
132
- maxnum_categorical=20,
133
- mtry=3,
134
- mtry_seed=100,
135
- seed=100
136
- )
137
-
138
- # Let's save this generated model.
139
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
140
-
141
- """
142
- # Perform required validations for the API.
143
- # Check whether Model Cataloging tables exist or not.
144
- __check_if_model_cataloging_tables_exists()
145
-
146
- # Let's perform argument validations.
147
- # Create argument information matrix to do parameter checking
148
- __arg_info_matrix = []
149
- __arg_info_matrix.append(["name", name, False, (str), True])
150
- __arg_info_matrix.append(["description", description, False, (str), True])
151
- __arg_info_matrix.append(["model_project", model_project, True, (str), True])
152
- __arg_info_matrix.append(["entity_target", entity_target, True, (str), True])
153
- __arg_info_matrix.append(["performance_metrics", performance_metrics, True, (dict)])
154
-
155
- # Make sure that a correct type of values has been supplied to the arguments.
156
- __awu._validate_function_arguments(__arg_info_matrix)
157
-
158
- # Check length of the model name provided by user.
159
- __awu._validate_str_arg_length('name', name, 'LE', 128)
160
- # Check length of the model description provided by user.
161
- __awu._validate_str_arg_length('description', description, 'LE', 1024)
162
- # Check length of the model project name provided by user, if not None.
163
- if model_project:
164
- __awu._validate_str_arg_length('model_project', model_project, 'LE', 128)
165
- # Check length of the model entity target name provided by user, if not None.
166
- if entity_target:
167
- __awu._validate_str_arg_length('entity_target', entity_target, 'LE', 128)
168
-
169
- # Check type of model argument. If it's not MLE or SQLE model, raise the error.
170
- if not ("teradataml.analytics.mle." in str(type(model)) or "teradataml.analytics.sqle." in str(type(model))):
171
- raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, ["model"],
172
- ["teradataml Analytic Function Object"]))
173
-
174
- # Check if model._sql_specific_attributes is None
175
- if model._get_sql_specific_attributes() is None:
176
- # This means that the model is a retrieved model, and we should raise an exception here
177
- raise TeradataMlException(Messages.get_message(MessageCodes.CANNOT_SAVE_RETRIEVED_MODEL),
178
- MessageCodes.CANNOT_SAVE_RETRIEVED_MODEL)
179
-
180
- # Check if model with same name exists or not, raise error if it exists.
181
- __check_if_model_exists(name, raise_error_if_exists=True)
182
-
183
- # Validations are complete. Let's move forward with model saving.
184
- # We first gather the model related information.
185
- generating_engine = __get_model_engine(model)
186
- generating_client = mac.MODEL_TDML.value
187
- algorithm = model._get_algorithm_name().lower()
188
- build_time = model.get_build_time()
189
-
190
- # Get the current user name.
191
- conn = get_connection()
192
- created_by = __get_current_user(conn)
193
- status = mac.DEFAULT_SAVE_STATUS.value
194
- access = mac.DEFAULT_SAVE_ACCESS.value
195
- location = mac.MODEL_ENGINE_ADVSQL.value
196
-
197
- # Let's get the attributes, input and output related information.
198
- function_arg_map = _argument_mapper._get_function_map(engine=generating_engine,
199
- function_name=algorithm)
200
- vantage_version = _argument_mapper._vantage_version
201
-
202
- training_data, training_objects, remove_tables_entries_from_gc = __get_model_inputs_outputs(model,
203
- function_arg_map)
204
- training_data = json.dumps(training_data)
205
- training_objects = json.dumps(training_objects)
206
-
207
- algorithm_parameters = json.dumps(__get_model_parameters(model, function_arg_map))
208
- # Escape single quotes in values
209
- algorithm_parameters = algorithm_parameters.replace("'", "''")
210
-
211
- target_column = model.get_target_column()
212
- prediction_type = model.get_prediction_type()
213
-
214
- if performance_metrics:
215
- performance_metrics = json.dumps(performance_metrics)
216
- else:
217
- performance_metrics = None
218
-
219
- # Save the model based on the new details provided.
220
- # Call the Stored Procedure to save the model.
221
- # But first, find the transaction mode of the session to decide which Stored Procedure to call
222
- save_sp = '{}{}'.format(mac.SAVE_MODEL.value, 'T')
223
- transaction_mode = conn.dialect.get_transaction_mode(conn)
224
- if transaction_mode and transaction_mode.lower() == 'a':
225
- save_sp = '{}{}'.format(mac.SAVE_MODEL.value, 'A')
226
-
227
- # Form the stored procedure call
228
- sp_call = "CALL {0}('{1}',{2},'{3}',{4},'{5}'," \
229
- "'{6}','{7}','{8}','{9}',{10}," \
230
- "'{11}','{12}','{13}','{14}','{15}'," \
231
- "'{16}','{17}','{18}',{19},{20}, SaveStatus)".format(save_sp,
232
- name,
233
- "'{}'".format(model_project)
234
- if model_project else 'NULL',
235
- description,
236
- "'{}'".format(target_column)
237
- if target_column else 'NULL',
238
- prediction_type,
239
- generating_engine,
240
- generating_client,
241
- vantage_version,
242
- algorithm,
243
- "'{}'".format(entity_target)
244
- if entity_target else 'NULL',
245
- build_time,
246
- created_by,
247
- status,
248
- access,
249
- location,
250
- training_objects,
251
- algorithm_parameters,
252
- training_data,
253
- "'{}'".format(performance_metrics)
254
- if performance_metrics else 'NULL',
255
- 'NULL')
256
-
257
- # Call the Stored Procedure
258
- try:
259
- _execute_transaction(sp_call)
260
- except SqlOperationalError:
261
- raise
262
- except Exception as err:
263
- raise TeradataMlException(
264
- Messages.get_message(MessageCodes.MODEL_CATALOGING_OPERATION_FAILED,
265
- "save",
266
- "Stored Procedure call failed."),
267
- MessageCodes.MODEL_CATALOGING_OPERATION_FAILED) from err
268
-
269
- # Update Garbage collection, to remove temp table info from the garbage collector.
270
- # Print the information for the user experience.
271
- print("Persisting model information.")
272
- # Let's remove entry for each table from Garbage Collector
273
- for table_name in remove_tables_entries_from_gc:
274
- dbname = UtilFuncs._teradata_unquote_arg(UtilFuncs._extract_db_name(table_name), "\"")
275
- tablename = UtilFuncs._teradata_unquote_arg(UtilFuncs._extract_table_name(table_name), "\"")
276
- __gc._delete_object_entry("\"{0}\".\"{1}\"".format(dbname, tablename),
277
- remove_entry_from_gc_list=True)
278
-
279
- print("Persisted table: {}".format(table_name))
280
-
281
- # Now that we have removed entry from GC, we can safely say that model table has been persisted.
282
- print("Successfully persisted model.")
283
-
284
- @function_deprecation("future")
285
- def list_models(name=None,
286
- algorithm_name=None,
287
- engine=None,
288
- accessible=True,
289
- public=False):
290
- """
291
- DESCRIPTION:
292
- Function to list models accessible to the user and optionally only models created by the user.
293
-
294
- PARAMETERS:
295
- name:
296
- Optional Argument.
297
- Specifies the search string for model name. When this argument is used,
298
- all models matching the name are listed.
299
- Types: str
300
-
301
- algorithm_name:
302
- Optional Argument.
303
- Specifies the search string for the analytic function name. When this argument is used,
304
- all models matching the algorithm_name are listed.
305
- Types: str
306
-
307
- engine:
308
- Optional Argument.
309
- Specifies the model generating engine as a filter.
310
- Types: str
311
- Permitted Values: ['ML Engine', 'Advanced SQL Engine']
312
-
313
- accessible:
314
- Optional Argument.
315
- Specifies whether to list all models that the user has access to, or only the models that the user created.
316
- When True, all models to which the user has access are listed.
317
- When False, all models created by the user are listed.
318
- Types: bool
319
- Default Value: True
320
-
321
- public:
322
- Optional Argument.
323
- Specifies whether to filter only those models that have public access.
324
- Types: bool
325
- Default Value: False
326
-
327
- RETURNS:
328
- None.
329
-
330
- RAISES:
331
- TeradataMlException, TypeError, ValueError
332
-
333
- EXAMPLES:
334
- # Load the data to run the example
335
- load_example_data("decisionforest", ["housing_train"])
336
-
337
- # Create teradataml DataFrame objects.
338
- housing_train = DataFrame.from_table("housing_train")
339
-
340
- # The examples use home sales data to create a
341
- # classification tree that predicts home style, which can be input
342
- # to the DecisionForestPredict.
343
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
344
- rft_model = DecisionForest(data=housing_train,
345
- formula = formula,
346
- tree_type="classification",
347
- ntree=50,
348
- tree_size=100,
349
- nodesize=1,
350
- variance=0.0,
351
- max_depth=12,
352
- maxnum_categorical=20,
353
- mtry=3,
354
- mtry_seed=100,
355
- seed=100
356
- )
357
-
358
- # Let's save this generated model.
359
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
360
-
361
- # Let's view the saved models accessible to the user
362
- # Example 1 - List all models saved and accessible to the current user.
363
- list_models()
364
-
365
- # Example 2 - List models accessible to the user with name = 'decision_forest_model'
366
- list_models(name = "decision_forest_model")
367
-
368
- # Example 3 - List all models accessible to the user with algorithm name 'DecisionForest'
369
- list_models(algorithm_name = "DecisionForest")
370
-
371
- # Example 4 - List all models accessible to user with algorithm name 'DecisionForest' and model name
372
- # containing string 'forest'.
373
- list_models(name = "forest", algorithm_name = "DecisionForest")
374
-
375
- # Example 5 - List all models accessible to user with algorithm name 'DecisionForest' and model generated using
376
- # 'ML Engine'.
377
- list_models(name = "forest", algorithm_name = "DecisionForest", engine = "ML Engine")
378
-
379
- # Example 6 - List all models created by the user with algorithm name 'DecisionForest' and model generated using
380
- # 'ML Engine' and access not set to Public.
381
- list_models(name = "forest", algorithm_name = "DecisionForest", engine = "ML Engine",
382
- accessible = False, public = False)
383
-
384
- """
385
- # Perform required validations for the API.
386
- # Check whether Model Cataloging tables exist or not.
387
- __check_if_model_cataloging_tables_exists()
388
-
389
- # Let's perform argument validations.
390
- # Create argument information matrix to do parameter checking
391
- __arg_info_matrix = []
392
- __arg_info_matrix.append(["name", name, True, (str), True])
393
- __arg_info_matrix.append(["algorithm_name", algorithm_name, True, (str), True])
394
- __arg_info_matrix.append(["engine", engine, True, (str), True, [mac.MODEL_ENGINE_ML.value,
395
- mac.MODEL_ENGINE_ADVSQL.value]])
396
- __arg_info_matrix.append(["public", public, True, (bool)])
397
- __arg_info_matrix.append(["accessible", accessible, True, (bool)])
398
-
399
- # Make sure that a correct type of values has been supplied to the arguments.
400
- __awu._validate_function_arguments(__arg_info_matrix)
401
-
402
- public = False if not public else True
403
- accessible = False if not accessible else True
404
-
405
- # Let's get the required details to list down the models.
406
- model_details = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_DETAILSX.value))
407
-
408
- filter_condition = None
409
- if not accessible:
410
- # We shall show only models created by current user.
411
- conn = get_connection()
412
- current_user = __get_current_user(conn)
413
- filter_condition = model_details[mac.CREATED_BY.value].str.lower() == current_user.lower()
414
-
415
- if public:
416
- # Additional filter to filter out models with PUBLIC access.
417
- filter_expression = model_details[mac.MODEL_ACCESS.value] == mac.PUBLIC_ACCESS.value
418
- if filter_condition:
419
- filter_condition = filter_condition & filter_expression
420
- else:
421
- filter_condition = filter_expression
422
-
423
- if name:
424
- # Filter Expression on ModeName column.
425
- # We are looking to find all rows with ModelName matching with 'name' string.
426
- # This is case-insensitive look-up.
427
- filter_expression = __get_like_filter_expression_on_col(model_details._metaexpr,
428
- mac.MODEL_DERIVED_NAME.value, name)
429
- if filter_condition:
430
- filter_condition = filter_condition & filter_expression
431
- else:
432
- filter_condition = filter_expression
433
-
434
- if algorithm_name:
435
- # Filter Expression on ModeAlgorithm column.
436
- # We are looking to find all rows with ModeAlgorithm matching with 'algorithm_name' string.
437
- # This is case-insensitive look-up.
438
- filter_expression = __get_like_filter_expression_on_col(model_details._metaexpr,
439
- mac.MODEL_DERIVED_ALGORITHM.value,
440
- algorithm_name)
441
- if filter_condition:
442
- filter_condition = filter_condition & filter_expression
443
- else:
444
- filter_condition = filter_expression
445
-
446
- if engine is not None:
447
- # Filter Expression on ModelGeneratingEngine column.
448
- # We are looking to find all rows with ModelGeneratingEngine matching with 'engine' string.
449
- # This is case-insensitive look-up.
450
- filter_expression = __get_like_filter_expression_on_col(model_details._metaexpr,
451
- mac.MODEL_DERIVED_GENENG.value,
452
- engine)
453
- if filter_condition:
454
- filter_condition = filter_condition & filter_expression
455
- else:
456
- filter_condition = filter_expression
457
-
458
- if filter_condition:
459
- model_details = model_details[filter_condition]
460
-
461
- display_df = model_details.select(mac.MODEL_LIST_LIST.value)
462
- if display_df.shape[0] != 0:
463
- orig_max_rows_num = display.max_rows
464
- try:
465
- display.max_rows = 99999
466
- print(display_df)
467
- except Exception:
468
- raise
469
- finally:
470
- display.max_rows = orig_max_rows_num
471
- else:
472
- # If any of the non-default search-criterion were provided.
473
- if name is not None or algorithm_name is not None or engine is not None \
474
- or not accessible or public:
475
- # MODEL_WITH_SEARCH_CRITERION_NOT_FOUND
476
- raise TeradataMlException(
477
- Messages.get_message(MessageCodes.MODEL_WITH_SEARCH_CRITERION_NOT_FOUND),
478
- MessageCodes.MODEL_WITH_SEARCH_CRITERION_NOT_FOUND)
479
- else:
480
- # Since no search-criterion were provided by the user,
481
- # we print a simple message.
482
- print("No models found.")
483
-
484
- @function_deprecation("future")
485
- def describe_model(name):
486
- """
487
- DESCRIPTION:
488
- List details of the model, if accessible to the user.
489
-
490
- PARAMETERS:
491
- name:
492
- Required Argument.
493
- Specifies the name of the model to list the details for.
494
- Types: str
495
-
496
- RETURNS:
497
- None.
498
-
499
- RAISES:
500
- TeradataMlException, TypeError, ValueError
501
-
502
- EXAMPLES:
503
- # Load the data to run the example
504
- load_example_data("decisionforest", ["housing_train"])
505
-
506
- # Create teradataml DataFrame objects.
507
- housing_train = DataFrame.from_table("housing_train")
508
-
509
- # This example uses home sales data to create a
510
- # classification tree that predicts home style, which can be input
511
- # to the DecisionForestPredict.
512
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
513
- rft_model = DecisionForest(data=housing_train,
514
- formula = formula,
515
- tree_type="classification",
516
- ntree=50,
517
- tree_size=100,
518
- nodesize=1,
519
- variance=0.0,
520
- max_depth=12,
521
- maxnum_categorical=20,
522
- mtry=3,
523
- mtry_seed=100,
524
- seed=100
525
- )
526
-
527
- # Let's save this generated model.
528
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
529
-
530
- # List all details of recently saved model 'decision_forest_model'.
531
- describe_model(name="decision_forest_model")
532
-
533
- """
534
- # Perform required validations for the API.
535
- # Check whether Model Cataloging tables exist or not.
536
- __check_if_model_cataloging_tables_exists()
537
-
538
- # Let's perform argument validations.
539
- # Create argument information matrix to do parameter checking
540
- __arg_info_matrix = []
541
- __arg_info_matrix.append(["name", name, False, (str), True])
542
-
543
- # Make sure that a correct type of values has been supplied to the arguments.
544
- __awu._validate_function_arguments(__arg_info_matrix)
545
-
546
- # Let's get the required details to list down the models.
547
- # We shall show only model accessible by current user.
548
- __check_if_model_exists(name, accessible=True, raise_error_if_model_not_found=True)
549
-
550
- df_info_mapper = OrderedDict({mac.MODELS_DETAILS.value: "Model Details",
551
- mac.MODELS_ATTRS.value: "Model Attributes",
552
- mac.MODELS_INPUTSX.value: "Model Training Data",
553
- mac.MODELS_OBJECTS.value: "Model Training Objects",
554
- mac.MODELS_PERF.value: "Model Performance Metrics",
555
- mac.MODELS_LOC.value: "Model Location Based Information"
556
- })
557
-
558
- for info_table, description in df_info_mapper.items():
559
- display_df = None
560
- if info_table in [mac.MODELS_OBJECTS.value, mac.MODELS_ATTRS.value, mac.MODELS_INPUTSX.value]:
561
- model_client, model_engine, model_algorithm = __retrieve_model_client_engine_algorithm(name)
562
- function_arg_map = _argument_mapper._get_function_map(engine=model_engine,
563
- function_name=model_algorithm.lower())
564
- if info_table == mac.MODELS_OBJECTS.value:
565
- # Output Information.
566
- # We wish to display teradataml relevant information, so we get that using this function call
567
- # instead of directly reading the underlying view.
568
- display_df = __retrieve_model_outputs(name, model_client, function_arg_map)
569
- elif info_table == mac.MODELS_ATTRS.value:
570
- # Attribute Information.
571
- # We wish to display teradataml relevant information, so we get that using this function call
572
- # instead of directly reading the underlying view.
573
- model_parameters = __retrieve_model_attributes(name, model_client, function_arg_map)[0]
574
- attr_name = [key for key in model_parameters.keys()]
575
- attr_value = [model_parameters[key] for key in attr_name]
576
- display_df = pd.DataFrame({'AttrName': attr_name, 'AttrValue': attr_value})
577
- else:
578
- # Input data Information.
579
- # We wish to display teradataml relevant information, so we get that using this function call
580
- # instead of directly reading the underlying view.
581
- model_inputs = __retrieve_model_inputs(name, model_client, function_arg_map)
582
- input_name = [key for key in model_inputs.keys()]
583
- table_name = [model_inputs[key][mac.MODEL_OBJ_TABLE_NAME.value] for key in input_name]
584
- nrows = [model_inputs[key][mac.MODEL_INPUT_NROWS.value] for key in input_name]
585
- ncols = [model_inputs[key][mac.MODEL_INPUT_NCOLS.value] for key in input_name]
586
- display_df = pd.DataFrame({'InputName': input_name,
587
- 'InputTableName': table_name,
588
- 'NRows': nrows,
589
- 'NCols': ncols})
590
- else:
591
- display_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, info_table))
592
- display_df = display_df[display_df[mac.MODEL_DERIVED_NAME.value] == name].to_pandas()
593
-
594
- if info_table == mac.MODELS_DETAILS.value:
595
- # We do a transpose of the Model Details to provide better readability of
596
- # the ouptut since it is one record with multiple columns.
597
- display_df = display_df.set_index(mac.MODEL_DERIVED_NAME.value).transpose()
598
- else:
599
- # Otherwise, we remove the 'ModelName' column from the
600
- # projection which is redundant.
601
- cols = display_df.columns.tolist()
602
- cols.remove(mac.MODEL_DERIVED_NAME.value)
603
- display_df = display_df[cols]
604
-
605
- if display_df.shape[0] > 0:
606
- # Set the max_rows parameter to a fairly high value
607
- orig_max_rows_num = display.max_rows
608
- try:
609
- display.max_rows = 99999
610
-
611
- # Print the relevant information for the model
612
- print("\n\n*** '{}': {} ***".format(name, description))
613
- print(display_df)
614
- except Exception:
615
- raise
616
- finally:
617
- # Reset the max_rows parameter to it's original value
618
- display.max_rows = orig_max_rows_num
619
-
620
- @function_deprecation("future")
621
- def delete_model(name, delete_objects=False):
622
- """
623
- DESCRIPTION:
624
- Delete a model, and optionally delete the model objects.
625
- A model can be deleted only by the creator of the model.
626
-
627
- PARAMETERS:
628
- name:
629
- Required Argument.
630
- Specifies the name of the model to be deleted.
631
- Types: str
632
-
633
- delete_objects:
634
- Optional Argument.
635
- Specifies whether to drop the model objects also.
636
- When True, the model objects related to the model are deleted/dropped.
637
- Types: bool
638
- Default Value: False
639
-
640
- RETURNS:
641
- None.
642
-
643
- RAISES:
644
- TeradataMlException, TypeError, ValueError
645
-
646
- EXAMPLES:
647
- # Load the data to run the example
648
- load_example_data("decisionforest", ["housing_train"])
649
-
650
- # Create teradataml DataFrame objects.
651
- housing_train = DataFrame.from_table("housing_train")
652
-
653
- # The examples use home sales data to create a
654
- # classification tree that predicts home style, which can be input
655
- # to the DecisionForestPredict.
656
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
657
- rft_model = DecisionForest(data=housing_train,
658
- formula = formula,
659
- tree_type="classification",
660
- ntree=50,
661
- tree_size=100,
662
- nodesize=1,
663
- variance=0.0,
664
- max_depth=12,
665
- maxnum_categorical=20,
666
- mtry=3,
667
- mtry_seed=100,
668
- seed=100
669
- )
670
-
671
- # Let's save this generated model.
672
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
673
-
674
- # Example 1 - Only delete model information from the Model Catalog.
675
- delete_model('decision_forest_model')
676
-
677
- # Example 2 - Delete model information from the Model Catalog and drop model objects as well.
678
- delete_model('decision_forest_model', True)
679
- """
680
- # Perform required validations for the API.
681
- # Check whether Model Cataloging tables exist or not.
682
- __check_if_model_cataloging_tables_exists()
683
-
684
- # Let's perform argument validations.
685
- # Create argument information matrix to do parameter checking
686
- __arg_info_matrix = []
687
- __arg_info_matrix.append(["name", name, False, (str), True])
688
- __arg_info_matrix.append(["delete_objects", delete_objects, True, (bool)])
689
-
690
- # Make sure that a correct type of values has been supplied to the arguments.
691
- __awu._validate_function_arguments(__arg_info_matrix)
692
-
693
- # Let's check if the user created the model since only the creator can delete it
694
- __check_if_model_exists(name, created=True, raise_error_if_model_not_found=True)
695
-
696
- conn = get_connection()
697
- current_user = __get_current_user(conn)
698
-
699
- # Get the models tables for the given model
700
- model_tables = __get_tables_for_model(name, current_user)
701
-
702
- # First, find the transaction mode of the session to decide which Stored Procedure to call
703
- delete_sp = '{}{}'.format(mac.DELETE_MODEL.value, 'T')
704
- transaction_mode = conn.dialect.get_transaction_mode(conn)
705
- if transaction_mode and transaction_mode.lower() == 'a':
706
- delete_sp = '{}{}'.format(mac.DELETE_MODEL.value, 'A')
707
-
708
- # Form the stored procedure call
709
- sp_call = "CALL {0}('{1}', DeleteStatus)".format(delete_sp, name)
710
-
711
- # Call the stored Procedure after any grant statements and only if they were successful
712
- try:
713
- # Call the Stored Procedure
714
- _execute_transaction(sp_call)
715
- except SqlOperationalError:
716
- raise
717
- except Exception as ex:
718
- raise TeradataMlException(
719
- Messages.get_message(MessageCodes.MODEL_CATALOGING_OPERATION_FAILED,
720
- "delete",
721
- "Stored Procedure call failed."),
722
- MessageCodes.MODEL_CATALOGING_OPERATION_FAILED) from ex
723
-
724
- print("Deleted model '{}' successfully.".format(name))
725
-
726
- if delete_objects:
727
- failed_to_drop = []
728
- for table_name in model_tables:
729
- if not __delete_model_tableview(table_name):
730
- failed_to_drop.append(table_name)
731
- if len(failed_to_drop) > 0:
732
- warnings.warn('Failed to drop the following Model Objects: {}.'.format(failed_to_drop))
733
- else:
734
- print("Model Objects dropped successfully.")
735
- else:
736
- print('Model Objects that can be dropped: {}.'.format(model_tables))
737
-
738
- @function_deprecation("future")
739
- def retrieve_model(name):
740
- """
741
- DESCRIPTION:
742
- Function to retrieve a saved model accessible to the current user.
743
-
744
- PARAMETERS:
745
- name:
746
- Required Argument.
747
- Specifies the name of the model to retrieve.
748
- Types: str
749
-
750
- RETURNS:
751
- The Analytic function object corresponding to the model retrieved.
752
-
753
- RAISES:
754
- TeradataMlException, TypeError, ValueError
755
-
756
- EXAMPLES:
757
- # Load the data to run the example
758
- load_example_data("decisionforestpredict", ["housing_train","housing_test"])
759
-
760
- # Create teradataml DataFrame objects.
761
- housing_train = DataFrame.from_table("housing_train")
762
- housing_test = DataFrame.from_table("housing_test")
763
-
764
- # This example uses home sales data to create a
765
- # classification tree that predicts home style, which can be input
766
- # to the DecisionForestPredict.
767
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
768
- rft_model = DecisionForest(data=housing_train,
769
- formula = formula,
770
- tree_type="classification",
771
- ntree=50,
772
- tree_size=100,
773
- nodesize=1,
774
- variance=0.0,
775
- max_depth=12,
776
- maxnum_categorical=20,
777
- mtry=3,
778
- mtry_seed=100,
779
- seed=100
780
- )
781
-
782
- # Let's save this generated model.
783
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
784
-
785
- # Retrieve the saved model.
786
- retrieved_rft_model = retrieve_model("decision_forest_model")
787
-
788
- # Use the retrieved model in predict.
789
- decision_forest_predict_out = DecisionForestPredict(object = retrieved_rft_model,
790
- newdata = housing_test,
791
- id_column = "sn",
792
- detailed = False,
793
- terms = ["homestyle"],
794
- newdata_order_column=['sn', 'price'],
795
- object_order_column=['worker_ip', 'task_index']
796
- )
797
-
798
- # Print the results.
799
- decision_forest_predict_out.result
800
- """
801
- # Perform required validations for the API.
802
- # Check whether Model Cataloging tables exist or not.
803
- __check_if_model_cataloging_tables_exists()
804
-
805
- # Let's perform argument validations.
806
- # Create argument information matrix to do parameter checking
807
- __arg_info_matrix = []
808
- __arg_info_matrix.append(["name", name, False, (str), True])
809
-
810
- # Make sure that a correct type of values has been supplied to the arguments.
811
- __awu._validate_function_arguments(__arg_info_matrix)
812
-
813
- # We shall show only retrieve models accessible by current user.
814
- # Let's first make sure, whether such model with name exists or not.
815
- __check_if_model_exists(name, accessible=True, raise_error_if_model_not_found=True)
816
-
817
- # Let's read model attributes and their values/output tables.
818
- model_class, model_engine, attr_and_output_dictionary = __retrieve_argument_and_output_map(name)
819
-
820
- # Get wrapper class for which model is to be instantiated. We shall later use the same to instantiate the
821
- # wrapper.
822
- class_ = __get_wrapper_class(model_engine, model_class)
823
-
824
- # Let's instantiate model class and return the model of CLASS model_class.
825
- # But first we make sure the keys are strings
826
- new_dict = {}
827
- for key in attr_and_output_dictionary:
828
- val = attr_and_output_dictionary[key]
829
- if not isinstance(key, str):
830
- key = str(key)
831
-
832
- new_dict[key] = val
833
-
834
- return class_._from_model_catalog(**new_dict)
835
-
836
-
837
- # TODO: For publish model
838
- # 1. Should have a way to issue GRANTs/REVOKEs
839
- # 2. Should also have a way to undo the publish operation (revoke access) and set access to Private
840
- # or a different role/user.
841
- # Need to get a list of users who already have access to it
842
- @function_deprecation("future")
843
- def publish_model(name, grantee=None, status=None):
844
- """
845
- DESCRIPTION:
846
- Function to publish a model.
847
- It can be used to update the access level from PRIVATE to PUBLIC or TEAM.
848
- It can also be used to update the status of the model to one of the expected values.
849
- A model can be published only by the creator of the model.
850
-
851
- PARAMETERS:
852
- name:
853
- Required Argument.
854
- Specifies the name of the model to be published.
855
- Types: str
856
-
857
- grantee:
858
- Optional Argument. Must be specified when status is not specified.
859
- Specifies a user or role (including PUBLIC) to update the model's access level to.
860
- Types: str
861
-
862
- status:
863
- Optional Argument. Must be specified when grantee is not specified.
864
- Specify a string to set the status of the model to.
865
- Types: str
866
- Permitted Values: ['ACTIVE', 'RETIRED', 'CANDIDATE', 'PRODUCTION', 'IN-DEVELOPMENT']
867
-
868
- RETURNS:
869
- None.
870
-
871
- RAISES:
872
- TeradataMlException, TypeError, ValueError
873
-
874
- EXAMPLES:
875
- # Load the data to run the example
876
- load_example_data("decisionforest", ["housing_train"])
877
-
878
- # Create teradataml DataFrame objects.
879
- housing_train = DataFrame.from_table("housing_train")
880
-
881
- # The examples use home sales data to create a
882
- # classification tree that predicts home style, which can be input
883
- # to the DecisionForestPredict.
884
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
885
- rft_model = DecisionForest(data=housing_train,
886
- formula = formula,
887
- tree_type="classification",
888
- ntree=50,
889
- tree_size=100,
890
- nodesize=1,
891
- variance=0.0,
892
- max_depth=12,
893
- maxnum_categorical=20,
894
- mtry=3,
895
- mtry_seed=100,
896
- seed=100
897
- )
898
-
899
- # Let's save this generated model.
900
- save_model(model=rft_model, name="decision_forest_model", description="Decision Forest test")
901
-
902
- # Example 1 - Update only the access.
903
- publish_model('decision_forest_model', grantee='john')
904
-
905
- # Example 2 - Update only the status.
906
- publish_model('decision_forest_model', status='Active')
907
-
908
- # Example 3 - Update both the access and status.
909
- publish_model('decision_forest_model', grantee='PUBLIC', status='Production')
910
- """
911
- # Perform required validations for the API.
912
- # Check whether Model Cataloging tables exist or not.
913
- __check_if_model_cataloging_tables_exists()
914
-
915
- # Let's perform argument validations.
916
- # Create argument information matrix to do parameter checking
917
- __arg_info_matrix = []
918
- __arg_info_matrix.append(["name", name, False, (str), True])
919
- __arg_info_matrix.append(["grantee", grantee, True, (str), True])
920
- __arg_info_matrix.append(["status", status, True, (str), True, mac.MODEL_VALID_STATUS.value])
921
-
922
- # Make sure that a correct type of values has been supplied to the arguments.
923
- __awu._validate_function_arguments(__arg_info_matrix)
924
-
925
- # Both grantee and status cannot be null
926
- if grantee is None and status is None:
927
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "grantee", "status"),
928
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
929
-
930
- # Let's check if the user created the model since only the creator can publish it
931
- __check_if_model_exists(name, created=True, raise_error_if_model_not_found=True)
932
-
933
- conn = get_connection()
934
-
935
- # First, find the transaction mode of the session to decide which Stored Procedure to call
936
- publish_sp = '{}{}'.format(mac.PUBLISH_MODEL.value, 'T')
937
- transaction_mode = conn.dialect.get_transaction_mode(conn)
938
- if transaction_mode and transaction_mode.lower() == 'a':
939
- publish_sp = '{}{}'.format(mac.PUBLISH_MODEL.value, 'A')
940
-
941
- print_message = None
942
- current_user = __get_current_user(conn)
943
- old_access = __get_model_access(name)
944
- # Update the access only when we have a grantee that is not the same as the current user or 'private',
945
- # and when the current access level is PRIVATE.
946
- if grantee is not None and grantee.lower() != current_user.lower() \
947
- and grantee.lower() != 'private' and old_access.lower() == 'private':
948
- grant_list = __get_tables_for_model(name, current_user)
949
-
950
- print_message = "Please execute the following GRANT statements:\n{}".format(
951
- '\n'.join('GRANT SELECT ON {} to {};'.format(obj, grantee) for obj in grant_list))
952
- elif grantee is not None:
953
- warnings.warn("'grantee' must not be equal '{0}' or the current user's name,"
954
- " and the earlier access level must be '{0}'.".format(mac.DEFAULT_SAVE_ACCESS.value))
955
- # Set grantee to None so that it is not passed in stored procedure
956
- grantee = None
957
-
958
- # Call the stored procedure after any grant statements and only if they were successful
959
- # Form the stored procedure call
960
- sp_call = "CALL {0}('{1}',{2},{3}, PublishStatus)".format(publish_sp,
961
- name,
962
- "'{}'".format(grantee) if grantee else 'NULL',
963
- "'{}'".format(status) if status else 'NULL'
964
- )
965
-
966
- try:
967
- # Call the Stored Procedure
968
- _execute_transaction(sp_call)
969
- except SqlOperationalError:
970
- raise
971
- except Exception as ex:
972
- raise TeradataMlException(
973
- Messages.get_message(MessageCodes.MODEL_CATALOGING_OPERATION_FAILED,
974
- "publish",
975
- "Stored Procedure call failed."),
976
- MessageCodes.MODEL_CATALOGING_OPERATION_FAILED) from ex
977
-
978
- print("Model published successfully!")
979
- if print_message:
980
- print(print_message)