teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,478 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.5
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.LAR import LAR
|
|
30
|
-
|
|
31
|
-
class LARPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
mode = "STEP",
|
|
37
|
-
s = None,
|
|
38
|
-
target_col = None,
|
|
39
|
-
newdata_sequence_column = None,
|
|
40
|
-
object_sequence_column = None,
|
|
41
|
-
newdata_order_column = None,
|
|
42
|
-
object_order_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The LARPredict function takes new data and the model output by the
|
|
46
|
-
function LAR and uses the predictors in the model to output
|
|
47
|
-
predictions for the new data.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
object:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the output model teradataml DataFrame from LAR or
|
|
54
|
-
instance of LAR, which contains the model for predict.
|
|
55
|
-
|
|
56
|
-
object_order_column:
|
|
57
|
-
Optional Argument.
|
|
58
|
-
Specifies Order By columns for object.
|
|
59
|
-
Values to this argument can be provided as a list, if multiple
|
|
60
|
-
columns are used for ordering.
|
|
61
|
-
Types: str OR list of Strings (str)
|
|
62
|
-
|
|
63
|
-
newdata:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies the test data teradataml DataFrame for predict.
|
|
66
|
-
|
|
67
|
-
newdata_order_column:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies Order By columns for newdata.
|
|
70
|
-
Values to this argument can be provided as a list, if multiple
|
|
71
|
-
columns are used for ordering.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
mode:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies the mode for the s argument:
|
|
77
|
-
"STEP": The s argument indicates the steps corresponding
|
|
78
|
-
to the steps in the model generated by the LAR function.
|
|
79
|
-
The s argument can include any real values in [1, k],
|
|
80
|
-
where k is the maximum step in the model.
|
|
81
|
-
"FRACTION": The s argument indicates the fractions of the L1 norm of
|
|
82
|
-
the coefficients against the maximum L1 norm. The maximum L1 norm is
|
|
83
|
-
that of the full OLS solution, which is the coefficients at the last
|
|
84
|
-
step. The s argument can include any real values in [0, 1].
|
|
85
|
-
"NORM": The s argument indicates the L1 norm of the coefficients. The s
|
|
86
|
-
argument can include any real values in [0, max L1 norm]. For maximum
|
|
87
|
-
L1 norm, see above.
|
|
88
|
-
"LAMBDA": The s argument indicates the maximum absolute correlations.
|
|
89
|
-
For definition, the s argument can include any real values.
|
|
90
|
-
Default Value: "STEP"
|
|
91
|
-
Permitted Values: STEP, FRACTION, NORM, LAMBDA
|
|
92
|
-
Types: str
|
|
93
|
-
|
|
94
|
-
s:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
Specifies the positions of the coefficients at which to generate
|
|
97
|
-
predictions. Each coefficient is a different float value in the range
|
|
98
|
-
specified by the mode argument.
|
|
99
|
-
Types: float OR list of floats
|
|
100
|
-
|
|
101
|
-
target_col:
|
|
102
|
-
Optional Argument.
|
|
103
|
-
Specifies the name of the response column in the input teradataml
|
|
104
|
-
DataFrame (for prediction comparison). The sum-of-square error (SSE)
|
|
105
|
-
for each prediction appears in the last row of the output teradataml DataFrame.
|
|
106
|
-
Types: str OR list of Strings (str)
|
|
107
|
-
|
|
108
|
-
newdata_sequence_column:
|
|
109
|
-
Optional Argument.
|
|
110
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
111
|
-
the input argument "newdata". The argument is used to ensure
|
|
112
|
-
deterministic results for functions which produce results that vary
|
|
113
|
-
from run to run.
|
|
114
|
-
Types: str OR list of Strings (str)
|
|
115
|
-
|
|
116
|
-
object_sequence_column:
|
|
117
|
-
Optional Argument.
|
|
118
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
119
|
-
the input argument "object". The argument is used to ensure
|
|
120
|
-
deterministic results for functions which produce results that vary
|
|
121
|
-
from run to run.
|
|
122
|
-
Types: str OR list of Strings (str)
|
|
123
|
-
|
|
124
|
-
RETURNS:
|
|
125
|
-
Instance of LARPredict.
|
|
126
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
127
|
-
references, such as LARPredictObj.<attribute_name>.
|
|
128
|
-
Output teradataml DataFrame attribute name is:
|
|
129
|
-
result
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
RAISES:
|
|
133
|
-
TeradataMlException
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
EXAMPLES:
|
|
137
|
-
# Load example data
|
|
138
|
-
load_example_data("larpredict", ["diabetes", "diabetes_test"])
|
|
139
|
-
|
|
140
|
-
# Create teradataml DataFrame objects.
|
|
141
|
-
diabetes = DataFrame.from_table("diabetes")
|
|
142
|
-
diabetes_test = DataFrame.from_table("diabetes_test")
|
|
143
|
-
|
|
144
|
-
# Example 1 - Build a model using LAR and use it's output as direct input to LARPredict
|
|
145
|
-
# Build a LAR model with response variable 'y' and ten baseline predictors.
|
|
146
|
-
td_lar_out = LAR(formula = "y ~ hdl + glu + ldl + map1 + sex + tch + age + ltg + bmi + tc",
|
|
147
|
-
data = diabetes,
|
|
148
|
-
type = "LAR",
|
|
149
|
-
max_steps = 20,
|
|
150
|
-
intercept = True
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
# Example: Use the model object directly as input to the LARPredict function.
|
|
154
|
-
lar_predict_out1 = LARPredict(object = td_lar_out,
|
|
155
|
-
newdata = diabetes_test,
|
|
156
|
-
mode = "step",
|
|
157
|
-
s = 1.6,
|
|
158
|
-
target_col = ["y"]
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
# Print the results
|
|
162
|
-
print(lar_predict_out1)
|
|
163
|
-
|
|
164
|
-
# Example 2 - Use the table from an already persisted LAR model.
|
|
165
|
-
# Persist the model table generated by the LAR function.
|
|
166
|
-
copy_to_sql(td_lar_out.output_table, "model_td_lar_out")
|
|
167
|
-
|
|
168
|
-
# Create teradataml DataFrame objects.
|
|
169
|
-
model_td_lar_out = DataFrame.from_table("model_td_lar_out")
|
|
170
|
-
|
|
171
|
-
lar_predict_out2 = LARPredict(object = model_td_lar_out,
|
|
172
|
-
newdata = diabetes_test,
|
|
173
|
-
mode = "step",
|
|
174
|
-
s = 1.6,
|
|
175
|
-
target_col = ["y"]
|
|
176
|
-
)
|
|
177
|
-
|
|
178
|
-
# Print the results
|
|
179
|
-
print(lar_predict_out2)
|
|
180
|
-
|
|
181
|
-
# The prediction result can be persisted in a table - "result_td_lar_predict_out2".
|
|
182
|
-
copy_to_sql(lar_predict_out2.result, table_name = "result_td_lar_predict_out2")
|
|
183
|
-
|
|
184
|
-
"""
|
|
185
|
-
|
|
186
|
-
# Start the timer to get the build time
|
|
187
|
-
_start_time = time.time()
|
|
188
|
-
|
|
189
|
-
self.object = object
|
|
190
|
-
self.newdata = newdata
|
|
191
|
-
self.mode = mode
|
|
192
|
-
self.s = s
|
|
193
|
-
self.target_col = target_col
|
|
194
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
195
|
-
self.object_sequence_column = object_sequence_column
|
|
196
|
-
self.newdata_order_column = newdata_order_column
|
|
197
|
-
self.object_order_column = object_order_column
|
|
198
|
-
|
|
199
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
200
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
201
|
-
self.__aed_utils = AedUtils()
|
|
202
|
-
|
|
203
|
-
# Create argument information matrix to do parameter checking
|
|
204
|
-
self.__arg_info_matrix = []
|
|
205
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
206
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
207
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
208
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
209
|
-
self.__arg_info_matrix.append(["mode", self.mode, True, (str)])
|
|
210
|
-
self.__arg_info_matrix.append(["s", self.s, True, (float,list)])
|
|
211
|
-
self.__arg_info_matrix.append(["target_col", self.target_col, True, (str,list)])
|
|
212
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
213
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
214
|
-
|
|
215
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
216
|
-
# Perform the function validations
|
|
217
|
-
self.__validate()
|
|
218
|
-
# Generate the ML query
|
|
219
|
-
self.__form_tdml_query()
|
|
220
|
-
# Execute ML query
|
|
221
|
-
self.__execute()
|
|
222
|
-
# Get the prediction type
|
|
223
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
224
|
-
|
|
225
|
-
# End the timer to get the build time
|
|
226
|
-
_end_time = time.time()
|
|
227
|
-
|
|
228
|
-
# Calculate the build time
|
|
229
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
230
|
-
|
|
231
|
-
def __validate(self):
|
|
232
|
-
"""
|
|
233
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
234
|
-
arguments, input argument and table types. Also processes the
|
|
235
|
-
argument values.
|
|
236
|
-
"""
|
|
237
|
-
if isinstance(self.object, LAR):
|
|
238
|
-
self.object = self.object._mlresults[0]
|
|
239
|
-
|
|
240
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
241
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
242
|
-
|
|
243
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
244
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
245
|
-
|
|
246
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
247
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
248
|
-
self.__awu._validate_input_table_datatype(self.object, "object", LAR)
|
|
249
|
-
|
|
250
|
-
# Check for permitted values
|
|
251
|
-
mode_permitted_values = ["STEP", "FRACTION", "NORM", "LAMBDA"]
|
|
252
|
-
self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
|
|
253
|
-
|
|
254
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
255
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
256
|
-
self.__awu._validate_input_columns_not_empty(self.target_col, "target_col")
|
|
257
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_col, "target_col", self.newdata, "newdata", False)
|
|
258
|
-
|
|
259
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
260
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
261
|
-
|
|
262
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
263
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
264
|
-
|
|
265
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
266
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
267
|
-
|
|
268
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
269
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
def __form_tdml_query(self):
|
|
273
|
-
"""
|
|
274
|
-
Function to generate the analytical function queries. The function defines
|
|
275
|
-
variables and list of arguments required to form the query.
|
|
276
|
-
"""
|
|
277
|
-
|
|
278
|
-
# Output table arguments list
|
|
279
|
-
self.__func_output_args_sql_names = []
|
|
280
|
-
self.__func_output_args = []
|
|
281
|
-
|
|
282
|
-
# Model Cataloging related attributes.
|
|
283
|
-
self._sql_specific_attributes = {}
|
|
284
|
-
self._sql_formula_attribute_mapper = {}
|
|
285
|
-
self._target_column = None
|
|
286
|
-
self._algorithm_name = None
|
|
287
|
-
|
|
288
|
-
# Generate lists for rest of the function arguments
|
|
289
|
-
self.__func_other_arg_sql_names = []
|
|
290
|
-
self.__func_other_args = []
|
|
291
|
-
self.__func_other_arg_json_datatypes = []
|
|
292
|
-
|
|
293
|
-
if self.target_col is not None:
|
|
294
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
295
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_col, "\""), "'"))
|
|
296
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
297
|
-
|
|
298
|
-
if self.mode is not None and self.mode != "STEP":
|
|
299
|
-
self.__func_other_arg_sql_names.append("CoefMode")
|
|
300
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode, "'"))
|
|
301
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
302
|
-
|
|
303
|
-
if self.s is not None:
|
|
304
|
-
self.__func_other_arg_sql_names.append("CoefPositions")
|
|
305
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.s, "'"))
|
|
306
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
307
|
-
|
|
308
|
-
# Generate lists for rest of the function arguments
|
|
309
|
-
sequence_input_by_list = []
|
|
310
|
-
if self.newdata_sequence_column is not None:
|
|
311
|
-
sequence_input_by_list.append("data:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
312
|
-
|
|
313
|
-
if self.object_sequence_column is not None:
|
|
314
|
-
sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
315
|
-
|
|
316
|
-
if len(sequence_input_by_list) > 0:
|
|
317
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
318
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
319
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
320
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
321
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
# Declare empty lists to hold input table information.
|
|
325
|
-
self.__func_input_arg_sql_names = []
|
|
326
|
-
self.__func_input_table_view_query = []
|
|
327
|
-
self.__func_input_dataframe_type = []
|
|
328
|
-
self.__func_input_distribution = []
|
|
329
|
-
self.__func_input_partition_by_cols = []
|
|
330
|
-
self.__func_input_order_by_cols = []
|
|
331
|
-
|
|
332
|
-
# Process newdata
|
|
333
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
334
|
-
self.__func_input_distribution.append("FACT")
|
|
335
|
-
self.__func_input_arg_sql_names.append("data")
|
|
336
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
337
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
338
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
339
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
340
|
-
|
|
341
|
-
# Process object
|
|
342
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
343
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
344
|
-
self.__func_input_arg_sql_names.append("model")
|
|
345
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
346
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
347
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
348
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
349
|
-
|
|
350
|
-
function_name = "LARPredict"
|
|
351
|
-
# Create instance to generate SQLMR.
|
|
352
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
353
|
-
self.__func_input_arg_sql_names,
|
|
354
|
-
self.__func_input_table_view_query,
|
|
355
|
-
self.__func_input_dataframe_type,
|
|
356
|
-
self.__func_input_distribution,
|
|
357
|
-
self.__func_input_partition_by_cols,
|
|
358
|
-
self.__func_input_order_by_cols,
|
|
359
|
-
self.__func_other_arg_sql_names,
|
|
360
|
-
self.__func_other_args,
|
|
361
|
-
self.__func_other_arg_json_datatypes,
|
|
362
|
-
self.__func_output_args_sql_names,
|
|
363
|
-
self.__func_output_args,
|
|
364
|
-
engine="ENGINE_ML")
|
|
365
|
-
# Invoke call to SQL-MR generation.
|
|
366
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
367
|
-
|
|
368
|
-
# Print SQL-MR query if requested to do so.
|
|
369
|
-
if display.print_sqlmr_query:
|
|
370
|
-
print(self.sqlmr_query)
|
|
371
|
-
|
|
372
|
-
# Set the algorithm name for Model Cataloging.
|
|
373
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
374
|
-
|
|
375
|
-
def __execute(self):
|
|
376
|
-
"""
|
|
377
|
-
Function to execute SQL-MR queries.
|
|
378
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
379
|
-
"""
|
|
380
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
381
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
382
|
-
try:
|
|
383
|
-
# Generate the output.
|
|
384
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
385
|
-
except Exception as emsg:
|
|
386
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
387
|
-
|
|
388
|
-
# Update output table data frames.
|
|
389
|
-
self._mlresults = []
|
|
390
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
391
|
-
self._mlresults.append(self.result)
|
|
392
|
-
|
|
393
|
-
def show_query(self):
|
|
394
|
-
"""
|
|
395
|
-
Function to return the underlying SQL query.
|
|
396
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
397
|
-
"""
|
|
398
|
-
return self.sqlmr_query
|
|
399
|
-
|
|
400
|
-
def get_prediction_type(self):
|
|
401
|
-
"""
|
|
402
|
-
Function to return the Prediction type of the algorithm.
|
|
403
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
404
|
-
as saved in the Model Catalog.
|
|
405
|
-
"""
|
|
406
|
-
return self._prediction_type
|
|
407
|
-
|
|
408
|
-
def get_target_column(self):
|
|
409
|
-
"""
|
|
410
|
-
Function to return the Target Column of the algorithm.
|
|
411
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
412
|
-
as saved in the Model Catalog.
|
|
413
|
-
"""
|
|
414
|
-
return self._target_column
|
|
415
|
-
|
|
416
|
-
def get_build_time(self):
|
|
417
|
-
"""
|
|
418
|
-
Function to return the build time of the algorithm in seconds.
|
|
419
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
420
|
-
as saved in the Model Catalog.
|
|
421
|
-
"""
|
|
422
|
-
return self._build_time
|
|
423
|
-
|
|
424
|
-
def _get_algorithm_name(self):
|
|
425
|
-
"""
|
|
426
|
-
Function to return the name of the algorithm.
|
|
427
|
-
"""
|
|
428
|
-
return self._algorithm_name
|
|
429
|
-
|
|
430
|
-
def _get_sql_specific_attributes(self):
|
|
431
|
-
"""
|
|
432
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
433
|
-
"""
|
|
434
|
-
return self._sql_specific_attributes
|
|
435
|
-
|
|
436
|
-
@classmethod
|
|
437
|
-
def _from_model_catalog(cls,
|
|
438
|
-
result = None,
|
|
439
|
-
**kwargs):
|
|
440
|
-
"""
|
|
441
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
442
|
-
"""
|
|
443
|
-
kwargs.pop("result", None)
|
|
444
|
-
|
|
445
|
-
# Model Cataloging related attributes.
|
|
446
|
-
target_column = kwargs.pop("__target_column", None)
|
|
447
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
448
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
449
|
-
build_time = kwargs.pop("__build_time", None)
|
|
450
|
-
|
|
451
|
-
# Let's create an object of this class.
|
|
452
|
-
obj = cls(**kwargs)
|
|
453
|
-
obj.result = result
|
|
454
|
-
|
|
455
|
-
# Initialize the sqlmr_query class attribute.
|
|
456
|
-
obj.sqlmr_query = None
|
|
457
|
-
|
|
458
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
459
|
-
obj._sql_specific_attributes = None
|
|
460
|
-
obj._target_column = target_column
|
|
461
|
-
obj._prediction_type = prediction_type
|
|
462
|
-
obj._algorithm_name = algorithm_name
|
|
463
|
-
obj._build_time = build_time
|
|
464
|
-
|
|
465
|
-
# Update output table data frames.
|
|
466
|
-
obj._mlresults = []
|
|
467
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
468
|
-
obj._mlresults.append(obj.result)
|
|
469
|
-
return obj
|
|
470
|
-
|
|
471
|
-
def __repr__(self):
|
|
472
|
-
"""
|
|
473
|
-
Returns the string representation for a LARPredict class instance.
|
|
474
|
-
"""
|
|
475
|
-
repr_string="############ STDOUT Output ############"
|
|
476
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
477
|
-
return repr_string
|
|
478
|
-
|