teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -15,6 +15,7 @@
15
15
  from teradataml.dataframe.sql_interfaces import ColumnExpression
16
16
  from collections import OrderedDict
17
17
  from teradataml.geospatial.geometry_types import GeometryType
18
+ import datetime as dt
18
19
 
19
20
 
20
21
  # Function to generate Individual parameter structure.
@@ -110,8 +111,6 @@ _percentile_param_structure = [_generate_param_structure("percentile", (int, flo
110
111
 
111
112
  _expr_param_structure = [_generate_param_structure("expression", (ColumnExpression, int, float))]
112
113
 
113
- _trunc_param_structure = [opt_int_expr_param("expression", 0)]
114
-
115
114
  _widthbucket_param_structure = [_generate_param_structure("min", (float, int)),
116
115
  _generate_param_structure("max", (float, int)),
117
116
  _generate_param_structure("numBucket", (float, int))]
@@ -161,6 +160,16 @@ _regexp_replace_param_structure = [__regexp_string, req_str_expr_param("replace_
161
160
  _regexp_similar_param_structure = [__regexp_string, __match]
162
161
  _regexp_substr_param_structure = [__regexp_string, __position, __occurrence(1), __match]
163
162
 
163
+ _expression_calendar_param_structure = [_generate_param_structure("calendar_name", str, default_value="Teradata"),
164
+ _generate_param_structure("expression2", (ColumnExpression), default_value=None)]
165
+
166
+ _calendar_name_param_structure = [_generate_param_structure("calendar_name", str, default_value="Teradata")]
167
+
168
+ _day_value_param_structure = [_generate_param_structure("day_value", str)]
169
+
170
+ _expression_param_structure = [_generate_param_structure("expression", (ColumnExpression))]
171
+
172
+ _expression_int_param_structure = [_generate_param_structure("expression", (ColumnExpression,int))]
164
173
  # Most of the Aggregate functions take first parameter as the column on which the
165
174
  # Aggregate function is being applied. However, few functions do not accept
166
175
  # first parameter as the corresponding column. All such functions should be
@@ -231,7 +240,6 @@ SQL_FUNCTION_ADDITIONAL_PARAMETERS = {
231
240
  "MOD": _expr_param_structure,
232
241
  "POWER": _expr_param_structure,
233
242
  "ROUND": _expr_param_structure,
234
- "TRUNC": _trunc_param_structure,
235
243
  "WIDTH_BUCKET": _widthbucket_param_structure,
236
244
 
237
245
  # Trigonometric function
@@ -270,7 +278,43 @@ SQL_FUNCTION_ADDITIONAL_PARAMETERS = {
270
278
  "REGEXP_INSTR": _regexp_instr_param_structure,
271
279
  "REGEXP_REPLACE": _regexp_replace_param_structure,
272
280
  "REGEXP_SIMILAR": _regexp_similar_param_structure,
273
- "REGEXP_SUBSTR": _regexp_substr_param_structure
281
+ "REGEXP_SUBSTR": _regexp_substr_param_structure,
282
+
283
+ # Date Time Functions
284
+ "td_week_begin": _expression_calendar_param_structure,
285
+ "td_week_end": _expression_calendar_param_structure,
286
+ "td_sunday": _expression_calendar_param_structure,
287
+ "td_monday": _expression_calendar_param_structure,
288
+ "td_tuesday": _expression_calendar_param_structure,
289
+ "td_wednesday": _expression_calendar_param_structure,
290
+ "td_thursday": _expression_calendar_param_structure,
291
+ "td_friday": _expression_calendar_param_structure,
292
+ "td_saturday": _expression_calendar_param_structure,
293
+ "DayNumber_Of_Week": _calendar_name_param_structure,
294
+ "td_month_begin": _expression_calendar_param_structure,
295
+ "td_month_end": _expression_calendar_param_structure,
296
+ "DayNumber_Of_Month": _calendar_name_param_structure,
297
+ "DayOccurrence_Of_Month": _calendar_name_param_structure,
298
+ "WeekNumber_Of_Month": _calendar_name_param_structure,
299
+ "td_year_begin": _expression_calendar_param_structure,
300
+ "td_year_end": _expression_calendar_param_structure,
301
+ "DayNumber_Of_Year": _calendar_name_param_structure,
302
+ "WeekNumber_Of_Year": _calendar_name_param_structure,
303
+ "MonthNumber_Of_Year": _calendar_name_param_structure,
304
+ "td_quarter_begin": _expression_calendar_param_structure,
305
+ "td_quarter_end": _expression_calendar_param_structure,
306
+ "WeekNumber_Of_Quarter": _calendar_name_param_structure,
307
+ "MonthNumber_Of_Quarter": _calendar_name_param_structure,
308
+ "QuarterNumber_Of_Year": _calendar_name_param_structure,
309
+ "DayNumber_Of_Calendar": _calendar_name_param_structure,
310
+ "WeekNumber_Of_Calendar": _calendar_name_param_structure,
311
+ "MonthNumber_Of_Calendar": _calendar_name_param_structure,
312
+ "QuarterNumber_Of_Calendar": _calendar_name_param_structure,
313
+ "YearNumber_Of_Calendar": _calendar_name_param_structure,
314
+ "next_day": _day_value_param_structure,
315
+ "months_between": _expression_param_structure,
316
+ "add_months": _expression_int_param_structure,
317
+ "oadd_months": _expression_int_param_structure
274
318
  }
275
319
 
276
320
  # When the argument for the following function is specified as str,
@@ -279,7 +323,14 @@ SQL_FUNCTION_ADDITIONAL_PARAMETERS = {
279
323
  SINGLE_QUOTE_FUNCTIONS = {
280
324
  "EDITDISTANCE", "LTRIM", "LOCATE", "RTRIM", "INDEX", "INSTR", "LEFT", "RIGHT",
281
325
  "LOCATE", "LPAD", "RPAD", "NGRAM", "NVP", "OREPLACE", "OTRANSLATE",
282
- "REGEXP_INSTR", "REGEXP_REPLACE", "REGEXP_SIMILAR", "REGEXP_SUBSTR"
326
+ "REGEXP_INSTR", "REGEXP_REPLACE", "REGEXP_SIMILAR", "REGEXP_SUBSTR", "td_week_begin",
327
+ "td_week_end", "td_sunday", "td_monday", "td_tuesday", "td_wednesday", "td_thursday",
328
+ "td_friday", "td_saturday", "DayNumber_Of_Week", "td_month_begin", "td_month_end", "DayNumber_Of_Month",
329
+ "DayOccurrence_Of_Month", "WeekNumber_Of_Month", "td_year_begin", "td_year_end",
330
+ "DayNumber_Of_Year", "WeekNumber_Of_Year", "MonthNumber_Of_Year", "td_quarter_begin",
331
+ "td_quarter_end", "WeekNumber_Of_Quarter", "MonthNumber_Of_Quarter", "QuarterNumber_Of_Year",
332
+ "DayNumber_Of_Calendar", "WeekNumber_Of_Calendar", "MonthNumber_Of_Calendar", "QuarterNumber_Of_Calendar",
333
+ "YearNumber_Of_Calendar", "next_day"
283
334
  }
284
335
 
285
336
  _get_param_struct = lambda x: \
@@ -286,6 +286,32 @@ VANTAGE_FUNCTION_TYPE_MAPPER = {
286
286
  'POSITION': INTEGER(),
287
287
  'SOUNDEX': VARCHAR(),
288
288
  'STRING_CS': INTEGER(),
289
+
290
+ # DateTime Functions
291
+ 'DAYNUMBER_OF_WEEK': INTEGER(),
292
+ 'DAYNUMBER_OF_MONTH': INTEGER(),
293
+ 'DAYNUMBER_OF_YEAR': INTEGER(),
294
+ 'DAYNUMBER_OF_CALENDAR': INTEGER(),
295
+ 'WEEKNUMBER_OF_MONTH': INTEGER(),
296
+ 'WEEKNUMBER_OF_QUARTER': INTEGER(),
297
+ 'WEEKNUMBER_OF_YEAR': INTEGER(),
298
+ 'WEEKNUMBER_OF_CALENDAR': INTEGER(),
299
+ 'MONTHNUMBER_OF_YEAR': INTEGER(),
300
+ 'MONTHNUMBER_OF_CALENDAR': INTEGER(),
301
+ 'MONTHNUMBER_OF_QUARTER': INTEGER(),
302
+ 'QUARTERNUMBER_OF_YEAR': INTEGER(),
303
+ 'QUARTERNUMBER_OF_CALENDAR': INTEGER(),
304
+ 'YEARNUMBER_OF_CALENDAR': INTEGER(),
305
+ 'DAYOCCURRENCE_OF_MONTH': INTEGER(),
306
+ 'YEAR': INTEGER(),
307
+ 'MONTH': INTEGER(),
308
+ 'HOUR': INTEGER(),
309
+ 'MINUTE': INTEGER(),
310
+ 'SECOND': DECIMAL(8, 2),
311
+ 'WEEK': INTEGER(),
312
+ 'NEXT_DAY': DATE(),
313
+ 'MONTHS_BETWEEN': INTEGER(),
314
+ 'OADD_MONTHS': DATE()
289
315
  }
290
316
 
291
317
  # Few datattype lists useful for our lambda functions to get the output types.
@@ -404,7 +430,25 @@ VANTAGE_FUNCTION_ARGTYPE_DEPENDENT_MAPPER = {
404
430
  'LAST': lambda x: x,
405
431
  'MAD': lambda x: FLOAT() if not __check_type(x, [DECIMAL(), NUMBER()]) else x,
406
432
  'MODE': lambda x: x,
407
- 'PERCENTILE': lambda x: FLOAT() if not __check_type(x, [DECIMAL(), NUMBER()]) else x
433
+ 'PERCENTILE': lambda x: FLOAT() if not __check_type(x, [DECIMAL(), NUMBER()]) else x,
434
+
435
+ # Date Time Functions
436
+ 'TD_SUNDAY': lambda x: x,
437
+ 'TD_MONDAY': lambda x: x,
438
+ 'TD_TUESDAY': lambda x: x,
439
+ 'TD_WEDNESDAY': lambda x: x,
440
+ 'TD_THURSDAY': lambda x: x,
441
+ 'TD_FRIDAY': lambda x: x,
442
+ 'TD_SATURDAY': lambda x: x,
443
+ 'TD_WEEK_BEGIN': lambda x: x,
444
+ 'TD_WEEK_END': lambda x: x,
445
+ 'TD_QUARTER_BEGIN': lambda x: x,
446
+ 'TD_QUARTER_END': lambda x: x,
447
+ 'TD_MONTH_BEGIN': lambda x: x,
448
+ 'TD_MONTH_END': lambda x: x,
449
+ 'TD_YEAR_BEGIN': lambda x: x,
450
+ 'TD_YEAR_END': lambda x: x,
451
+ 'ADD_MONTHS': lambda x: x
408
452
  }
409
453
 
410
454
  # This dictionary maps the SQL Geospatial function name to the
@@ -14,7 +14,9 @@ from teradataml.common.messages import Messages
14
14
  from teradataml.common.messagecodes import MessageCodes
15
15
  from sqlalchemy import desc, nullsfirst, nullslast
16
16
  from teradataml.common.exceptions import TeradataMlException
17
+ from teradataml.common.utils import UtilFuncs
17
18
  from teradataml.utils.dtypes import _Dtypes
19
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
18
20
 
19
21
 
20
22
  class Window:
@@ -54,7 +56,7 @@ class Window:
54
56
  of columns.
55
57
  Refer 'DataFrame.tdtypes' to get the types of the
56
58
  columns of a teradataml DataFrame.
57
- Types: str OR list of Strings (str)
59
+ Types: str OR list of Strings (str) OR ColumnExpression OR list of ColumnExpressions
58
60
 
59
61
  order_columns:
60
62
  Optional Argument.
@@ -66,7 +68,7 @@ class Window:
66
68
  of columns.
67
69
  Refer 'DataFrame.tdtypes' to get the types of the
68
70
  columns of a teradataml DataFrame.
69
- Types: str OR list of Strings (str)
71
+ Types: str OR list of Strings (str) OR ColumnExpression OR list of ColumnExpressions
70
72
 
71
73
  sort_ascending:
72
74
  Optional Argument.
@@ -183,8 +185,8 @@ class Window:
183
185
 
184
186
  awu_matrix = []
185
187
  awu_matrix.append(["object", object, False, (DataFrame, _SQLColumnExpression)])
186
- awu_matrix.append(["partition_columns", partition_columns, True, (str, list), True])
187
- awu_matrix.append(["order_columns", order_columns, True, (str, list), True])
188
+ awu_matrix.append(["partition_columns", partition_columns, True, (str, list, _SQLColumnExpression), True])
189
+ awu_matrix.append(["order_columns", order_columns, True, (str, list, _SQLColumnExpression), True])
188
190
  awu_matrix.append(["sort_ascending", sort_ascending, True, bool])
189
191
  awu_matrix.append(["nulls_first", nulls_first, True, (bool, type(None))])
190
192
  awu_matrix.append(["window_start_point", window_start_point, True, int])
@@ -383,9 +385,14 @@ class Window:
383
385
 
384
386
  # sqlalchemy Over clause accepts 3 parameters to frame the SQL query:
385
387
  # partition_by, order_by & rows.
388
+ from teradataml.dataframe.sql import ColumnExpression
386
389
  window_properties = {"window_function": func_name,
387
- "partition_by": self.__partition_columns,
388
- "order_by": self.__generate_sqlalchemy_order_by_syntax(),
390
+ "partition_by": [col if isinstance(col, str) else col.expression for col
391
+ in UtilFuncs._as_list(self.__partition_columns)
392
+ if col is not None],
393
+ "order_by": [col.expression if isinstance(col, ColumnExpression) else col for col
394
+ in UtilFuncs._as_list(self.__generate_sqlalchemy_order_by_syntax())
395
+ if col is not None],
389
396
  "rows": (self.__window_start_point,
390
397
  self.__window_end_point
391
398
  ),
@@ -440,40 +447,34 @@ class Window:
440
447
  window.__validate_window_columns("Feb", "partition_columns")
441
448
  window.__validate_window_columns("Feb", "order_columns")
442
449
  """
443
-
450
+ from teradataml.common.utils import UtilFuncs
451
+ window_columns = UtilFuncs._as_list(columns_in_window)
444
452
  if self.__is_window_on_tdml_column:
445
- _Validators._validate_columnexpression_dataframe_has_columns(columns_in_window,
453
+ _Validators._validate_columnexpression_dataframe_has_columns(window_columns,
446
454
  window_arg_name,
447
455
  self.__object
448
456
  )
449
457
  else:
450
- _Validators._validate_dataframe_has_argument_columns(columns_in_window,
458
+ columns_in_expression = []
459
+ for col in window_columns:
460
+ if isinstance(col, str):
461
+ columns_in_expression.append(col)
462
+ else:
463
+ columns_in_expression = columns_in_expression + col._all_columns
464
+ _Validators._validate_dataframe_has_argument_columns(columns_in_expression,
451
465
  window_arg_name,
452
466
  self.__object,
453
467
  'teradataml'
454
468
  )
455
469
 
456
- from teradataml.common.utils import UtilFuncs
457
- window_columns = UtilFuncs._as_list(columns_in_window)
458
470
  columns = UtilFuncs._get_all_columns(self.__object,
459
471
  self.__is_window_on_tdml_column)
460
- columns_and_types = {c.name.lower(): type(c.type) for c in columns}
461
- invalid_types = ["{}({})".format(column, columns_and_types[column.lower()].__name__)
462
- for column in window_columns if columns_and_types[column.lower()]
463
- in _Dtypes._get_sort_unsupported_data_types()
464
- ]
465
-
466
- if invalid_types:
467
- invalid_column_types = (col_type.__name__ for col_type in
468
- _Dtypes._get_sort_unsupported_data_types())
469
- error_message = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE,
470
- ", ".join(invalid_types),
471
- window_arg_name,
472
- "Unsupported",
473
- ", ".join(invalid_column_types))
474
-
475
- raise ValueError(error_message)
476
472
 
473
+ # Validate invalid types.
474
+ _Validators._validate_invalid_column_types(
475
+ columns, window_arg_name, window_columns, _Dtypes._get_sort_unsupported_data_types())
476
+
477
+ @collect_queryband(arg_name="func_name", prefix="DF_WinAgg")
477
478
  def __process_dataframe_window_aggregate(self, func_name, *args, **kwargs):
478
479
  """
479
480
  Description:
@@ -651,10 +652,10 @@ class Window:
651
652
  return
652
653
 
653
654
  from teradataml.common.utils import UtilFuncs
655
+ from teradataml.dataframe.sql import ColumnExpression
654
656
  order_by = UtilFuncs._as_list(self.__order_columns)
655
- wrap_order_by = lambda sqlalc_func: [sqlalc_func(ele) for
657
+ wrap_order_by = lambda sqlalc_func: [sqlalc_func(ele) if not isinstance(ele, ColumnExpression) else ele for
656
658
  ele in order_by]
657
-
658
659
  if not self.__sort_ascending:
659
660
  order_by = wrap_order_by(desc)
660
661
 
@@ -29,10 +29,12 @@ from teradataml.utils.validators import _Validators
29
29
  from teradatasql import OperationalError
30
30
  from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
31
31
  from teradatasqlalchemy.dialect import TDCreateTablePost as post
32
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
32
33
  from sqlalchemy import Table, Column, MetaData, CheckConstraint, \
33
34
  PrimaryKeyConstraint, ForeignKeyConstraint, UniqueConstraint
34
35
 
35
36
 
37
+ @collect_queryband(queryband='DrpTbl')
36
38
  def db_drop_table(table_name, schema_name=None):
37
39
  """
38
40
  DESCRIPTION:
@@ -88,6 +90,8 @@ def db_drop_table(table_name, schema_name=None):
88
90
  table_name),
89
91
  MessageCodes.DROP_FAILED) from err
90
92
 
93
+
94
+ @collect_queryband(queryband='DrpVw')
91
95
  def db_drop_view(view_name, schema_name=None):
92
96
  """
93
97
  DESCRIPTION:
@@ -144,6 +148,8 @@ def db_drop_view(view_name, schema_name=None):
144
148
  view_name),
145
149
  MessageCodes.DROP_FAILED) from err
146
150
 
151
+
152
+ @collect_queryband(queryband='LstTbls')
147
153
  def db_list_tables(schema_name=None, object_name=None, object_type='all'):
148
154
  """
149
155
  DESCRIPTION:
@@ -251,6 +257,7 @@ def db_list_tables(schema_name=None, object_name=None, object_type='all'):
251
257
  raise TeradataMlException(Messages.get_message(MessageCodes.LIST_DB_TABLES_FAILED),
252
258
  MessageCodes.LIST_DB_TABLES_FAILED) from err
253
259
 
260
+
254
261
  def _get_select_table_kind(schema_name, table_name, table_kind):
255
262
  """
256
263
  Get the list of the table names from the specified schema name.
@@ -336,6 +343,7 @@ def _get_select_table_kind(schema_name, table_name, table_kind):
336
343
  except Exception as err:
337
344
  return pd.DataFrame()
338
345
 
346
+
339
347
  def _execute_transaction(queries):
340
348
  """
341
349
  Internal function to execute the query or list of queries passed, as one transaction.
@@ -391,6 +399,7 @@ def _execute_transaction(queries):
391
399
  # Finally, we must set auto_commit to ON
392
400
  cur.execute(auto_commit_on)
393
401
 
402
+
394
403
  def _execute_stored_procedure(function_call, fetchWarnings=True, expect_none_result=False):
395
404
  """
396
405
  DESCRIPTION:
@@ -450,6 +459,7 @@ def _execute_stored_procedure(function_call, fetchWarnings=True, expect_none_res
450
459
 
451
460
  return UtilFuncs._execute_query(exec_sp_stmt, fetchWarnings, expect_none_result)
452
461
 
462
+
453
463
  def _get_function_call_as_string(sqlcFuncObj):
454
464
  """
455
465
  DESCRIPTION:
@@ -486,6 +496,7 @@ def _get_function_call_as_string(sqlcFuncObj):
486
496
 
487
497
  return str(sqlcFuncObj.compile(**kw))
488
498
 
499
+
489
500
  def _get_quoted_object_name(schema_name, object_name):
490
501
  """
491
502
  DESCRIPTION:
@@ -524,6 +535,8 @@ def _get_quoted_object_name(schema_name, object_name):
524
535
  quoted_object_name = "{0}.{1}".format(schema_name, tdp.quote(object_name))
525
536
  return quoted_object_name
526
537
 
538
+
539
+ @collect_queryband(queryband='VwLg')
527
540
  def view_log(log_type="script", num_lines=1000, query_id=None, log_dir=None):
528
541
  """
529
542
  DESCRIPTION:
@@ -703,7 +716,6 @@ def _fetch_url_and_save(url, file_path):
703
716
  file.write(resp.content.decode('utf-8'))
704
717
 
705
718
 
706
-
707
719
  def _check_if_python_packages_installed():
708
720
  """
709
721
  DESCRIPTION:
@@ -739,6 +751,8 @@ def _check_if_python_packages_installed():
739
751
  if "bash: pip3: command not found" not in str(err):
740
752
  raise
741
753
 
754
+
755
+ @collect_queryband(queryband='PkgDtls')
742
756
  def db_python_package_details(names=None):
743
757
  """
744
758
  DESCRIPTION:
@@ -999,6 +1013,7 @@ def _create_table(table_name,
999
1013
  raise TeradataMlException(Messages.get_message(msg_code, "create table", str(err)), msg_code)
1000
1014
 
1001
1015
 
1016
+ @collect_queryband(queryband='LstKwrds')
1002
1017
  def list_td_reserved_keywords(key=None, raise_error=False):
1003
1018
  """
1004
1019
  DESCRIPTION:
@@ -1127,6 +1142,8 @@ def _execute_query_and_generate_pandas_df(query, index=None, **kwargs):
1127
1142
  EXAMPLES:
1128
1143
  pdf = _execute_query_and_generate_pandas_df("SELECT * from t1", "col1")
1129
1144
  """
1145
+ # Empty queryband buffer before SQL call.
1146
+ UtilFuncs._set_queryband()
1130
1147
  cur = execute_sql(query)
1131
1148
  columns = kwargs.pop('columns', [col[0] for col in cur.description])
1132
1149
  rows = cur.fetchall()
@@ -22,6 +22,7 @@ from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
22
22
  from teradataml.plot.plot import _Plot
23
23
  from teradataml.utils.validators import _Validators
24
24
  from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
25
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
25
26
 
26
27
  class GeoDataFrame(DataFrame):
27
28
  """
@@ -29,6 +30,8 @@ class GeoDataFrame(DataFrame):
29
30
  analysis on tables, views, and queries on Teradata Vantage that contains
30
31
  Geospatial data.
31
32
  """
33
+
34
+ @collect_queryband(queryband="GDF")
32
35
  def __init__(self, table_name=None, index=True, index_label=None,
33
36
  query=None, materialize=False):
34
37
  """
@@ -115,6 +118,7 @@ class GeoDataFrame(DataFrame):
115
118
  return True
116
119
  return False
117
120
 
121
+ @collect_queryband(queryband="GDF_plot")
118
122
  def plot(self, x=None, y=None, kind="geometry", **kwargs):
119
123
  """
120
124
  DESCRIPTION:
@@ -495,6 +499,14 @@ class GeoDataFrame(DataFrame):
495
499
  Applicable only for the wiggle and mesh plots.
496
500
  Types: int OR float
497
501
 
502
+ ignore_nulls:
503
+ Optional Argument.
504
+ Specifies whether to delete rows with null values or not present in 'x', 'y' and
505
+ 'scale' params.
506
+ Default Value: False
507
+ Types: bool
508
+
509
+
498
510
  RAISES:
499
511
  TeradataMlException
500
512
 
@@ -516,6 +528,7 @@ class GeoDataFrame(DataFrame):
516
528
  1010 MULTIPOINT (10.345 20.32 30.6, MULTILINESTRING ((1 3 6,3 0 6, MULTIPOLYGON (((0 0 0,0 0 20,0 None None
517
529
  >>>
518
530
  >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
531
+ >>> us_population = DataFrame("us_population")
519
532
  >>> us_population
520
533
  location_type population_year population
521
534
  state_name
@@ -613,7 +626,7 @@ class GeoDataFrame(DataFrame):
613
626
  >>> plot_population = df_1990.plot(y=(df_1990.population, df_1990.state_shape),
614
627
  ... cmap='rainbow',
615
628
  ... figure=fig,
616
- ... ax=axis[0],
629
+ ... ax=axes[0],
617
630
  ... reverse_yaxis=True,
618
631
  ... vmin=55036.0,
619
632
  ... vmax=39538223.0,
@@ -624,7 +637,7 @@ class GeoDataFrame(DataFrame):
624
637
  >>> plot_population = df_2000.plot(y=(df_2000.population, df_2000.state_shape),
625
638
  ... cmap='rainbow',
626
639
  ... figure=fig,
627
- ... ax=axis[1],
640
+ ... ax=axes[1],
628
641
  ... reverse_yaxis=True,
629
642
  ... vmin=55036.0,
630
643
  ... vmax=39538223.0,
@@ -636,7 +649,7 @@ class GeoDataFrame(DataFrame):
636
649
  ... y=(df_2010.population, df_2010.state_shape),
637
650
  ... cmap='rainbow',
638
651
  ... figure=fig,
639
- ... ax=axis[2],
652
+ ... ax=axes[2],
640
653
  ... reverse_yaxis=True,
641
654
  ... vmin=55036.0,
642
655
  ... vmax=39538223.0,
@@ -649,7 +662,7 @@ class GeoDataFrame(DataFrame):
649
662
  ... y=(df_2020.population, df_2020.state_shape),
650
663
  ... cmap='rainbow',
651
664
  ... figure=fig,
652
- ... ax=axis[3],
665
+ ... ax=axes[3],
653
666
  ... reverse_yaxis=True,
654
667
  ... vmin=55036.0,
655
668
  ... vmax=39538223.0,
@@ -736,6 +749,7 @@ class GeoDataFrame(DataFrame):
736
749
  # TODO - Raise error or Keep it open ended to accept SQL Function names.
737
750
  raise AttributeError("'GeoDataFrame' object has no attribute %s" % name)
738
751
 
752
+ @collect_queryband(arg_name="func_name", prefix="GDF")
739
753
  def __process_geometry(self, func_name, *args, **kwargs):
740
754
  """
741
755
  Function helps to execute the Geospatial function on the column(s)
@@ -1065,7 +1079,6 @@ class GeoDataFrame(DataFrame):
1065
1079
  error_code = MessageCodes.NO_GEOM_COLUMN_EXIST
1066
1080
  raise TeradataMlException(Messages.get_message(error_code), error_code)
1067
1081
 
1068
-
1069
1082
  def _generate_child_metaexpr(self, metaexpr):
1070
1083
  """
1071
1084
  Internal function that generates the metaexpression by converting
@@ -1090,5 +1103,3 @@ class GeoDataFrame(DataFrame):
1090
1103
  if not isinstance(col, GeoDataFrameColumn) else col
1091
1104
  for col in metaexpr.c]
1092
1105
  return metaexpr
1093
-
1094
-
@@ -23,6 +23,7 @@ from teradataml.dataframe.vantage_function_types import \
23
23
  from teradataml.geospatial.geometry_types import GeometryType
24
24
  from teradataml.utils.validators import _Validators
25
25
  from teradatasqlalchemy import (GEOMETRY, MBR, MBB, BLOB, CLOB)
26
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
26
27
 
27
28
  # Geospatial Function name mappers
28
29
  geo_func_as_property = \
@@ -114,6 +115,7 @@ class GeoDataFrameColumn(_SQLColumnExpression):
114
115
  return lambda *args, **kwargs: \
115
116
  self.__process_func_with_args(item, *args, **kwargs)
116
117
 
118
+ @collect_queryband(arg_name="func_name", prefix="GDFC")
117
119
  def __process_geospatial_function_property(self, func_name):
118
120
  """
119
121
  DESCRIPTION:
@@ -148,6 +150,7 @@ class GeoDataFrameColumn(_SQLColumnExpression):
148
150
  func_name=function_name, col_name=self.name, property=True,
149
151
  type_=out_type_)
150
152
 
153
+ @collect_queryband(arg_name="func_name", prefix="GDFC")
151
154
  def __process_geospatial_method_with_no_args(self, func_name):
152
155
  """
153
156
  DESCRIPTION:
@@ -178,6 +181,7 @@ class GeoDataFrameColumn(_SQLColumnExpression):
178
181
  func_name=function_name, col_name=self.name, return_func=False,
179
182
  type_=out_type_)
180
183
 
184
+ @collect_queryband(arg_name="func_name", prefix="GDFC")
181
185
  def __process_func_with_args(self, func_name, *c, **kwargs):
182
186
  """
183
187
  DESCRIPTION:
@@ -368,6 +372,7 @@ class GeoDataFrameColumn(_SQLColumnExpression):
368
372
  """
369
373
  return GeoDataFrameColumn(new_expression)
370
374
 
375
+ @collect_queryband(queryband="GDFC_relates")
371
376
  def relates(self, geom_column, amatrix):
372
377
  """
373
378
  Please refer to Function Reference Guide for Teradata Package for Python