teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/data/bmi.csv
ADDED
|
@@ -0,0 +1,501 @@
|
|
|
1
|
+
gender,height,weight,bmi
|
|
2
|
+
Male,174,96,4
|
|
3
|
+
Male,189,87,2
|
|
4
|
+
Female,185,110,4
|
|
5
|
+
Female,195,104,3
|
|
6
|
+
Male,149,61,3
|
|
7
|
+
Male,189,104,3
|
|
8
|
+
Male,147,92,5
|
|
9
|
+
Male,154,111,5
|
|
10
|
+
Male,174,90,3
|
|
11
|
+
Female,169,103,4
|
|
12
|
+
Male,195,81,2
|
|
13
|
+
Female,159,80,4
|
|
14
|
+
Female,192,101,3
|
|
15
|
+
Male,155,51,2
|
|
16
|
+
Male,191,79,2
|
|
17
|
+
Female,153,107,5
|
|
18
|
+
Female,157,110,5
|
|
19
|
+
Male,140,129,5
|
|
20
|
+
Male,144,145,5
|
|
21
|
+
Male,172,139,5
|
|
22
|
+
Male,157,110,5
|
|
23
|
+
Female,153,149,5
|
|
24
|
+
Female,169,97,4
|
|
25
|
+
Male,185,139,5
|
|
26
|
+
Female,172,67,2
|
|
27
|
+
Female,151,64,3
|
|
28
|
+
Male,190,95,3
|
|
29
|
+
Male,187,62,1
|
|
30
|
+
Female,163,159,5
|
|
31
|
+
Male,179,152,5
|
|
32
|
+
Male,153,121,5
|
|
33
|
+
Male,178,52,1
|
|
34
|
+
Female,195,65,1
|
|
35
|
+
Female,160,131,5
|
|
36
|
+
Female,157,153,5
|
|
37
|
+
Female,189,132,4
|
|
38
|
+
Female,197,114,3
|
|
39
|
+
Male,144,80,4
|
|
40
|
+
Female,171,152,5
|
|
41
|
+
Female,185,81,2
|
|
42
|
+
Female,175,120,4
|
|
43
|
+
Female,149,108,5
|
|
44
|
+
Male,157,56,2
|
|
45
|
+
Male,161,118,5
|
|
46
|
+
Female,182,126,4
|
|
47
|
+
Male,185,76,2
|
|
48
|
+
Female,188,122,4
|
|
49
|
+
Male,181,111,4
|
|
50
|
+
Male,161,72,3
|
|
51
|
+
Male,140,152,5
|
|
52
|
+
Female,168,135,5
|
|
53
|
+
Female,176,54,1
|
|
54
|
+
Male,163,110,5
|
|
55
|
+
Male,172,105,4
|
|
56
|
+
Male,196,116,4
|
|
57
|
+
Female,187,89,3
|
|
58
|
+
Male,172,92,4
|
|
59
|
+
Male,178,127,5
|
|
60
|
+
Female,164,70,3
|
|
61
|
+
Male,143,88,5
|
|
62
|
+
Female,191,54,0
|
|
63
|
+
Female,141,143,5
|
|
64
|
+
Male,193,54,0
|
|
65
|
+
Male,190,83,2
|
|
66
|
+
Male,175,135,5
|
|
67
|
+
Female,179,158,5
|
|
68
|
+
Female,172,96,4
|
|
69
|
+
Female,168,59,2
|
|
70
|
+
Female,164,82,4
|
|
71
|
+
Female,194,136,4
|
|
72
|
+
Female,153,51,2
|
|
73
|
+
Male,178,117,4
|
|
74
|
+
Male,141,80,5
|
|
75
|
+
Male,180,75,2
|
|
76
|
+
Female,185,100,3
|
|
77
|
+
Female,197,154,4
|
|
78
|
+
Male,165,104,4
|
|
79
|
+
Female,168,90,4
|
|
80
|
+
Female,176,122,4
|
|
81
|
+
Male,181,51,0
|
|
82
|
+
Male,164,75,3
|
|
83
|
+
Female,166,140,5
|
|
84
|
+
Female,190,105,3
|
|
85
|
+
Male,186,118,4
|
|
86
|
+
Male,168,123,5
|
|
87
|
+
Male,198,50,0
|
|
88
|
+
Female,175,141,5
|
|
89
|
+
Male,145,117,5
|
|
90
|
+
Female,159,104,5
|
|
91
|
+
Female,185,140,5
|
|
92
|
+
Female,178,154,5
|
|
93
|
+
Female,183,96,3
|
|
94
|
+
Female,194,111,3
|
|
95
|
+
Male,177,61,2
|
|
96
|
+
Male,197,119,4
|
|
97
|
+
Female,170,156,5
|
|
98
|
+
Male,142,69,4
|
|
99
|
+
Male,160,139,5
|
|
100
|
+
Male,195,69,1
|
|
101
|
+
Female,190,50,0
|
|
102
|
+
Male,199,156,4
|
|
103
|
+
Male,154,105,5
|
|
104
|
+
Male,161,155,5
|
|
105
|
+
Female,198,145,4
|
|
106
|
+
Female,192,140,4
|
|
107
|
+
Male,195,126,4
|
|
108
|
+
Male,166,160,5
|
|
109
|
+
Male,159,154,5
|
|
110
|
+
Female,181,106,4
|
|
111
|
+
Male,149,66,3
|
|
112
|
+
Female,150,70,4
|
|
113
|
+
Female,146,157,5
|
|
114
|
+
Male,190,135,4
|
|
115
|
+
Female,192,90,2
|
|
116
|
+
Female,177,96,4
|
|
117
|
+
Male,148,60,3
|
|
118
|
+
Female,165,57,2
|
|
119
|
+
Female,146,104,5
|
|
120
|
+
Male,144,108,5
|
|
121
|
+
Female,176,156,5
|
|
122
|
+
Female,168,87,4
|
|
123
|
+
Male,187,122,4
|
|
124
|
+
Male,187,138,4
|
|
125
|
+
Female,184,160,5
|
|
126
|
+
Female,158,149,5
|
|
127
|
+
Male,158,96,4
|
|
128
|
+
Male,194,115,4
|
|
129
|
+
Female,145,79,4
|
|
130
|
+
Male,182,151,5
|
|
131
|
+
Male,154,54,2
|
|
132
|
+
Female,168,139,5
|
|
133
|
+
Female,187,70,2
|
|
134
|
+
Female,158,153,5
|
|
135
|
+
Female,167,110,4
|
|
136
|
+
Female,171,155,5
|
|
137
|
+
Female,183,150,5
|
|
138
|
+
Female,190,156,5
|
|
139
|
+
Male,194,108,3
|
|
140
|
+
Male,171,147,5
|
|
141
|
+
Male,159,124,5
|
|
142
|
+
Female,169,54,2
|
|
143
|
+
Female,167,85,4
|
|
144
|
+
Male,180,149,5
|
|
145
|
+
Male,163,123,5
|
|
146
|
+
Male,140,79,5
|
|
147
|
+
Male,197,125,4
|
|
148
|
+
Male,194,106,3
|
|
149
|
+
Female,140,146,5
|
|
150
|
+
Male,195,98,3
|
|
151
|
+
Female,168,115,3
|
|
152
|
+
Female,196,50,0
|
|
153
|
+
Male,140,52,3
|
|
154
|
+
Female,150,60,3
|
|
155
|
+
Female,168,140,5
|
|
156
|
+
Female,155,111,5
|
|
157
|
+
Female,179,103,4
|
|
158
|
+
Female,182,84,3
|
|
159
|
+
Male,168,160,5
|
|
160
|
+
Female,187,102,3
|
|
161
|
+
Male,181,105,4
|
|
162
|
+
Male,199,99,2
|
|
163
|
+
Female,184,76,2
|
|
164
|
+
Male,192,101,3
|
|
165
|
+
Female,182,143,5
|
|
166
|
+
Female,172,111,4
|
|
167
|
+
Male,181,78,2
|
|
168
|
+
Male,176,109,4
|
|
169
|
+
Female,156,106,5
|
|
170
|
+
Female,151,67,3
|
|
171
|
+
Female,188,80,2
|
|
172
|
+
Male,187,136,4
|
|
173
|
+
Male,174,138,5
|
|
174
|
+
Male,167,151,5
|
|
175
|
+
Female,196,131,4
|
|
176
|
+
Male,197,149,4
|
|
177
|
+
Female,185,119,4
|
|
178
|
+
Female,170,102,4
|
|
179
|
+
Female,181,94,3
|
|
180
|
+
Female,166,126,5
|
|
181
|
+
Male,188,100,3
|
|
182
|
+
Female,162,74,3
|
|
183
|
+
Male,177,117,4
|
|
184
|
+
Male,162,97,4
|
|
185
|
+
Male,180,73,2
|
|
186
|
+
Female,192,108,3
|
|
187
|
+
Male,165,80,3
|
|
188
|
+
Female,167,135,5
|
|
189
|
+
Female,182,84,3
|
|
190
|
+
Female,161,134,5
|
|
191
|
+
Male,158,95,4
|
|
192
|
+
Male,141,85,5
|
|
193
|
+
Male,154,100,5
|
|
194
|
+
Male,165,105,4
|
|
195
|
+
Female,142,137,5
|
|
196
|
+
Male,141,94,5
|
|
197
|
+
Male,145,108,5
|
|
198
|
+
Male,157,74,4
|
|
199
|
+
Female,177,117,4
|
|
200
|
+
Female,166,144,5
|
|
201
|
+
Male,193,151,5
|
|
202
|
+
Male,184,57,1
|
|
203
|
+
Male,179,93,3
|
|
204
|
+
Female,156,89,4
|
|
205
|
+
Male,182,104,4
|
|
206
|
+
Male,145,160,5
|
|
207
|
+
Female,150,87,4
|
|
208
|
+
Male,145,99,5
|
|
209
|
+
Female,196,122,4
|
|
210
|
+
Male,191,96,3
|
|
211
|
+
Female,148,67,4
|
|
212
|
+
Female,150,84,4
|
|
213
|
+
Male,148,155,5
|
|
214
|
+
Female,153,146,5
|
|
215
|
+
Female,196,159,5
|
|
216
|
+
Female,185,52,0
|
|
217
|
+
Female,171,131,5
|
|
218
|
+
Female,143,118,5
|
|
219
|
+
Female,142,86,5
|
|
220
|
+
Female,141,126,5
|
|
221
|
+
Male,159,109,5
|
|
222
|
+
Female,173,82,2
|
|
223
|
+
Male,183,138,5
|
|
224
|
+
Female,152,90,4
|
|
225
|
+
Male,178,140,5
|
|
226
|
+
Male,188,54,0
|
|
227
|
+
Female,155,144,5
|
|
228
|
+
Male,166,70,3
|
|
229
|
+
Male,188,123,4
|
|
230
|
+
Female,171,120,5
|
|
231
|
+
Male,179,130,5
|
|
232
|
+
Female,186,137,4
|
|
233
|
+
Female,153,78,2
|
|
234
|
+
Female,184,86,3
|
|
235
|
+
Female,177,81,3
|
|
236
|
+
Male,145,78,4
|
|
237
|
+
Male,170,81,3
|
|
238
|
+
Male,181,141,5
|
|
239
|
+
Male,165,155,5
|
|
240
|
+
Female,174,65,2
|
|
241
|
+
Female,146,110,5
|
|
242
|
+
Male,178,85,3
|
|
243
|
+
Male,166,61,2
|
|
244
|
+
Male,191,62,1
|
|
245
|
+
Female,177,155,5
|
|
246
|
+
Female,183,50,0
|
|
247
|
+
Male,151,114,5
|
|
248
|
+
Male,182,98,3
|
|
249
|
+
Female,142,159,5
|
|
250
|
+
Female,188,90,3
|
|
251
|
+
Male,161,89,4
|
|
252
|
+
Male,153,70,3
|
|
253
|
+
Male,140,143,5
|
|
254
|
+
Male,169,141,5
|
|
255
|
+
Female,162,159,5
|
|
256
|
+
Male,183,147,5
|
|
257
|
+
Female,162,58,2
|
|
258
|
+
Female,172,109,4
|
|
259
|
+
Female,150,119,5
|
|
260
|
+
Female,169,145,5
|
|
261
|
+
Female,184,132,4
|
|
262
|
+
Male,159,104,5
|
|
263
|
+
Male,163,131,5
|
|
264
|
+
Male,156,137,5
|
|
265
|
+
Female,157,52,2
|
|
266
|
+
Male,147,84,4
|
|
267
|
+
Male,141,86,5
|
|
268
|
+
Male,173,139,5
|
|
269
|
+
Male,154,145,5
|
|
270
|
+
Male,168,148,5
|
|
271
|
+
Male,168,50,1
|
|
272
|
+
Male,145,130,5
|
|
273
|
+
Male,152,103,5
|
|
274
|
+
Female,187,121,4
|
|
275
|
+
Female,163,57,0
|
|
276
|
+
Male,178,83,3
|
|
277
|
+
Female,187,94,3
|
|
278
|
+
Female,179,114,4
|
|
279
|
+
Male,190,80,2
|
|
280
|
+
Male,172,75,3
|
|
281
|
+
Male,188,57,1
|
|
282
|
+
Male,193,65,1
|
|
283
|
+
Female,147,126,5
|
|
284
|
+
Female,147,94,5
|
|
285
|
+
Male,166,107,4
|
|
286
|
+
Female,192,139,4
|
|
287
|
+
Male,181,139,4
|
|
288
|
+
Male,150,74,4
|
|
289
|
+
Male,178,160,5
|
|
290
|
+
Female,156,52,2
|
|
291
|
+
Male,149,100,5
|
|
292
|
+
Male,156,74,4
|
|
293
|
+
Male,183,105,3
|
|
294
|
+
Female,162,68,3
|
|
295
|
+
Female,165,83,4
|
|
296
|
+
Female,168,143,5
|
|
297
|
+
Male,160,156,5
|
|
298
|
+
Female,169,88,2
|
|
299
|
+
Female,140,76,4
|
|
300
|
+
Female,187,92,3
|
|
301
|
+
Male,151,82,4
|
|
302
|
+
Female,186,140,5
|
|
303
|
+
Male,182,108,4
|
|
304
|
+
Male,188,81,2
|
|
305
|
+
Male,179,110,4
|
|
306
|
+
Female,156,126,5
|
|
307
|
+
Male,188,114,4
|
|
308
|
+
Male,183,153,5
|
|
309
|
+
Male,144,88,5
|
|
310
|
+
Male,196,69,1
|
|
311
|
+
Male,171,141,5
|
|
312
|
+
Male,171,147,5
|
|
313
|
+
Female,180,156,5
|
|
314
|
+
Male,191,146,5
|
|
315
|
+
Female,179,67,2
|
|
316
|
+
Female,180,60,2
|
|
317
|
+
Female,154,132,5
|
|
318
|
+
Male,188,99,3
|
|
319
|
+
Male,142,135,5
|
|
320
|
+
Male,170,95,4
|
|
321
|
+
Male,152,141,5
|
|
322
|
+
Female,190,118,4
|
|
323
|
+
Female,181,111,4
|
|
324
|
+
Male,153,104,5
|
|
325
|
+
Male,187,140,5
|
|
326
|
+
Female,144,66,4
|
|
327
|
+
Female,148,54,2
|
|
328
|
+
Female,199,92,2
|
|
329
|
+
Female,167,85,4
|
|
330
|
+
Female,164,71,3
|
|
331
|
+
Female,185,102,3
|
|
332
|
+
Female,164,160,5
|
|
333
|
+
Male,142,71,4
|
|
334
|
+
Male,165,68,2
|
|
335
|
+
Female,172,62,2
|
|
336
|
+
Female,157,56,2
|
|
337
|
+
Male,155,57,2
|
|
338
|
+
Female,167,153,5
|
|
339
|
+
Female,164,126,5
|
|
340
|
+
Female,189,125,4
|
|
341
|
+
Female,161,145,5
|
|
342
|
+
Female,155,71,3
|
|
343
|
+
Female,171,118,4
|
|
344
|
+
Female,154,92,4
|
|
345
|
+
Male,179,83,3
|
|
346
|
+
Male,170,115,4
|
|
347
|
+
Female,184,106,4
|
|
348
|
+
Female,191,68,2
|
|
349
|
+
Male,162,58,2
|
|
350
|
+
Male,178,138,5
|
|
351
|
+
Female,157,60,2
|
|
352
|
+
Male,184,83,2
|
|
353
|
+
Male,197,88,2
|
|
354
|
+
Female,160,51,2
|
|
355
|
+
Male,184,153,5
|
|
356
|
+
Male,190,50,0
|
|
357
|
+
Male,174,90,3
|
|
358
|
+
Female,189,124,4
|
|
359
|
+
Female,186,143,5
|
|
360
|
+
Female,180,58,1
|
|
361
|
+
Female,186,148,4
|
|
362
|
+
Female,193,61,1
|
|
363
|
+
Male,161,103,4
|
|
364
|
+
Female,151,158,5
|
|
365
|
+
Female,195,147,4
|
|
366
|
+
Female,184,152,5
|
|
367
|
+
Male,141,80,5
|
|
368
|
+
Female,185,94,3
|
|
369
|
+
Female,186,127,4
|
|
370
|
+
Male,142,131,5
|
|
371
|
+
Female,147,67,4
|
|
372
|
+
Male,151,62,3
|
|
373
|
+
Female,160,124,5
|
|
374
|
+
Male,185,60,1
|
|
375
|
+
Female,163,63,2
|
|
376
|
+
Male,174,95,4
|
|
377
|
+
Female,150,144,5
|
|
378
|
+
Male,142,91,5
|
|
379
|
+
Male,178,142,5
|
|
380
|
+
Female,154,96,5
|
|
381
|
+
Male,176,87,3
|
|
382
|
+
Male,159,120,5
|
|
383
|
+
Male,191,62,1
|
|
384
|
+
Male,177,117,4
|
|
385
|
+
Male,151,154,5
|
|
386
|
+
Female,182,149,5
|
|
387
|
+
Female,197,72,2
|
|
388
|
+
Male,146,138,5
|
|
389
|
+
Female,160,83,4
|
|
390
|
+
Female,157,66,3
|
|
391
|
+
Female,150,50,2
|
|
392
|
+
Female,167,58,2
|
|
393
|
+
Female,180,70,2
|
|
394
|
+
Female,183,76,2
|
|
395
|
+
Female,183,87,3
|
|
396
|
+
Female,152,154,5
|
|
397
|
+
Female,164,71,3
|
|
398
|
+
Male,187,96,3
|
|
399
|
+
Male,169,136,5
|
|
400
|
+
Female,149,61,3
|
|
401
|
+
Male,163,137,5
|
|
402
|
+
Female,195,104,3
|
|
403
|
+
Male,174,107,4
|
|
404
|
+
Male,182,70,2
|
|
405
|
+
Male,169,110,4
|
|
406
|
+
Male,193,130,4
|
|
407
|
+
Male,148,141,5
|
|
408
|
+
Male,186,68,2
|
|
409
|
+
Male,165,143,5
|
|
410
|
+
Female,146,123,5
|
|
411
|
+
Female,166,133,5
|
|
412
|
+
Male,179,56,1
|
|
413
|
+
Female,177,101,4
|
|
414
|
+
Male,181,154,5
|
|
415
|
+
Female,161,154,5
|
|
416
|
+
Female,157,103,5
|
|
417
|
+
Female,169,98,4
|
|
418
|
+
Female,152,114,5
|
|
419
|
+
Female,162,64,2
|
|
420
|
+
Male,162,130,5
|
|
421
|
+
Female,177,61,2
|
|
422
|
+
Female,195,61,1
|
|
423
|
+
Male,140,146,5
|
|
424
|
+
Female,186,146,5
|
|
425
|
+
Female,178,107,4
|
|
426
|
+
Male,174,54,1
|
|
427
|
+
Female,180,59,1
|
|
428
|
+
Male,188,141,4
|
|
429
|
+
Female,187,130,4
|
|
430
|
+
Female,153,77,4
|
|
431
|
+
Female,165,95,4
|
|
432
|
+
Female,178,79,2
|
|
433
|
+
Female,163,154,5
|
|
434
|
+
Female,150,97,5
|
|
435
|
+
Male,179,127,4
|
|
436
|
+
Male,165,62,2
|
|
437
|
+
Male,168,158,5
|
|
438
|
+
Female,153,133,5
|
|
439
|
+
Male,184,157,5
|
|
440
|
+
Male,188,65,1
|
|
441
|
+
Female,166,153,5
|
|
442
|
+
Female,172,116,4
|
|
443
|
+
Male,182,73,2
|
|
444
|
+
Male,143,149,5
|
|
445
|
+
Male,152,146,5
|
|
446
|
+
Female,186,128,4
|
|
447
|
+
Male,159,140,5
|
|
448
|
+
Male,146,70,4
|
|
449
|
+
Female,176,121,4
|
|
450
|
+
Female,146,101,5
|
|
451
|
+
Male,159,145,5
|
|
452
|
+
Male,162,157,5
|
|
453
|
+
Female,172,90,4
|
|
454
|
+
Female,169,121,5
|
|
455
|
+
Male,182,50,0
|
|
456
|
+
Female,183,79,2
|
|
457
|
+
Male,176,77,2
|
|
458
|
+
Female,188,128,4
|
|
459
|
+
Female,175,83,2
|
|
460
|
+
Male,154,81,4
|
|
461
|
+
Female,184,147,5
|
|
462
|
+
Male,179,123,4
|
|
463
|
+
Male,152,132,5
|
|
464
|
+
Male,179,56,1
|
|
465
|
+
Female,145,141,5
|
|
466
|
+
Female,181,80,2
|
|
467
|
+
Male,158,127,5
|
|
468
|
+
Female,188,99,3
|
|
469
|
+
Male,145,142,5
|
|
470
|
+
Male,161,115,5
|
|
471
|
+
Male,198,109,3
|
|
472
|
+
Male,147,142,5
|
|
473
|
+
Male,154,112,5
|
|
474
|
+
Female,178,65,2
|
|
475
|
+
Male,195,153,5
|
|
476
|
+
Female,167,79,3
|
|
477
|
+
Male,183,131,4
|
|
478
|
+
Female,164,142,5
|
|
479
|
+
Male,167,64,2
|
|
480
|
+
Female,151,55,2
|
|
481
|
+
Female,147,107,5
|
|
482
|
+
Female,155,115,5
|
|
483
|
+
Female,172,108,4
|
|
484
|
+
Female,142,86,5
|
|
485
|
+
Male,146,85,4
|
|
486
|
+
Female,188,115,4
|
|
487
|
+
Male,173,111,4
|
|
488
|
+
Female,160,109,5
|
|
489
|
+
Male,187,80,2
|
|
490
|
+
Male,198,136,4
|
|
491
|
+
Female,179,150,5
|
|
492
|
+
Female,164,59,2
|
|
493
|
+
Female,146,147,5
|
|
494
|
+
Female,198,50,0
|
|
495
|
+
Female,170,53,1
|
|
496
|
+
Male,152,98,5
|
|
497
|
+
Female,150,153,5
|
|
498
|
+
Female,184,121,4
|
|
499
|
+
Female,141,136,5
|
|
500
|
+
Male,150,95,5
|
|
501
|
+
Male,173,131,5
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
def BincodeFit(data
|
|
2
|
-
nbins
|
|
3
|
-
minvalue_column
|
|
1
|
+
def BincodeFit(data=None, fit_data=None, target_columns=None, method_type=None,
|
|
2
|
+
nbins=None, label_prefix=None, target_colnames=None,
|
|
3
|
+
minvalue_column=None, maxvalue_column=None, label_column=None,
|
|
4
4
|
**generic_arguments):
|
|
5
5
|
"""
|
|
6
6
|
DESCRIPTION:
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
def BincodeTransform(data
|
|
1
|
+
def BincodeTransform(data=None, object=None, accumulate=None,
|
|
2
2
|
**generic_arguments):
|
|
3
3
|
"""
|
|
4
4
|
DESCRIPTION:
|
|
@@ -10,6 +10,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
10
10
|
data.
|
|
11
11
|
2. Output of BincodeFit() function which contains the binning data.
|
|
12
12
|
|
|
13
|
+
|
|
13
14
|
PARAMETERS:
|
|
14
15
|
data:
|
|
15
16
|
Required Argument.
|
|
@@ -105,7 +106,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
105
106
|
object=bin_code_1.output,
|
|
106
107
|
object_order_column="TD_MinValue_BINFIT",
|
|
107
108
|
accumulate=['passenger', 'ticket']
|
|
108
|
-
|
|
109
|
+
)
|
|
109
110
|
|
|
110
111
|
# Print the result DataFrame.
|
|
111
112
|
print(obj.result)
|
|
@@ -117,14 +118,14 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
117
118
|
method_type='Equal-Width',
|
|
118
119
|
nbins=2,
|
|
119
120
|
label_prefix='label_prefix'
|
|
120
|
-
|
|
121
|
+
)
|
|
121
122
|
|
|
122
123
|
# Run BincodeTransform.
|
|
123
124
|
obj = BincodeTransform(data=titanic_data,
|
|
124
125
|
object=bin_code_2.output,
|
|
125
126
|
accumulate=['passenger', 'ticket']
|
|
126
|
-
|
|
127
|
+
)
|
|
127
128
|
|
|
128
129
|
# Print the result DataFrame.
|
|
129
130
|
print(obj.result)
|
|
130
|
-
"""
|
|
131
|
+
"""
|
|
@@ -5,7 +5,7 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
|
|
|
5
5
|
combinations of the feature by extracting the target column, degree, bias and interaction
|
|
6
6
|
information from the output of the PolynomialFeaturesFit() function.
|
|
7
7
|
|
|
8
|
-
|
|
8
|
+
|
|
9
9
|
PARAMETERS:
|
|
10
10
|
data:
|
|
11
11
|
Required Argument.
|
|
@@ -99,4 +99,4 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
|
|
|
99
99
|
|
|
100
100
|
# Print the result DataFrame.
|
|
101
101
|
print(obj.result)
|
|
102
|
-
"""
|
|
102
|
+
"""
|
|
@@ -4,6 +4,7 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
|
|
|
4
4
|
RowNormalizeTransform() function normalizes input columns row-wise, using
|
|
5
5
|
RowNormalizeFit() function output.
|
|
6
6
|
|
|
7
|
+
|
|
7
8
|
PARAMETERS:
|
|
8
9
|
data:
|
|
9
10
|
Required Argument.
|
|
@@ -95,4 +96,4 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
|
|
|
95
96
|
|
|
96
97
|
# Print the result DataFrame.
|
|
97
98
|
print(obj.result)
|
|
98
|
-
"""
|
|
99
|
+
"""
|
|
@@ -4,6 +4,7 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
|
|
|
4
4
|
The Transform() function applies numeric transformations to input columns,
|
|
5
5
|
using Fit() output.
|
|
6
6
|
|
|
7
|
+
|
|
7
8
|
PARAMETERS:
|
|
8
9
|
data:
|
|
9
10
|
Required Argument.
|
|
@@ -101,4 +102,4 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
|
|
|
101
102
|
# Print the result DataFrame.
|
|
102
103
|
print(transform_result.result)
|
|
103
104
|
|
|
104
|
-
"""
|
|
105
|
+
"""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
def BincodeFit(data
|
|
2
|
-
nbins
|
|
3
|
-
minvalue_column
|
|
1
|
+
def BincodeFit(data=None, fit_data=None, target_columns=None, method_type=None,
|
|
2
|
+
nbins=None, label_prefix=None, target_colnames=None,
|
|
3
|
+
minvalue_column=None, maxvalue_column=None, label_column=None,
|
|
4
4
|
**generic_arguments):
|
|
5
5
|
"""
|
|
6
6
|
DESCRIPTION:
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
def BincodeTransform(data
|
|
1
|
+
def BincodeTransform(data=None, object=None, accumulate=None,
|
|
2
2
|
**generic_arguments):
|
|
3
3
|
"""
|
|
4
4
|
DESCRIPTION:
|
|
@@ -10,6 +10,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
10
10
|
data.
|
|
11
11
|
2. Output of BincodeFit() function which contains the binning data.
|
|
12
12
|
|
|
13
|
+
|
|
13
14
|
PARAMETERS:
|
|
14
15
|
data:
|
|
15
16
|
Required Argument.
|
|
@@ -109,7 +110,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
109
110
|
object=bin_code_1.output,
|
|
110
111
|
object_order_column="TD_MinValue_BINFIT",
|
|
111
112
|
accumulate=['passenger', 'ticket']
|
|
112
|
-
|
|
113
|
+
)
|
|
113
114
|
|
|
114
115
|
# Print the result DataFrame.
|
|
115
116
|
print(obj.result)
|
|
@@ -124,15 +125,15 @@ def BincodeTransform(data = None, object = None, accumulate = None,
|
|
|
124
125
|
method_type='Equal-Width',
|
|
125
126
|
nbins=2,
|
|
126
127
|
label_prefix='label_prefix'
|
|
127
|
-
|
|
128
|
+
)
|
|
128
129
|
|
|
129
130
|
# Apply the transformation on the input data using the model generated above.
|
|
130
131
|
# Note that model is passed as instance of BincodeFit to "object".
|
|
131
132
|
obj = BincodeTransform(data=titanic_data,
|
|
132
133
|
object=bin_code_2,
|
|
133
134
|
accumulate=['passenger', 'ticket']
|
|
134
|
-
|
|
135
|
+
)
|
|
135
136
|
|
|
136
137
|
# Print the result DataFrame.
|
|
137
138
|
print(obj.result)
|
|
138
|
-
"""
|
|
139
|
+
"""
|