teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,501 @@
1
+ gender,height,weight,bmi
2
+ Male,174,96,4
3
+ Male,189,87,2
4
+ Female,185,110,4
5
+ Female,195,104,3
6
+ Male,149,61,3
7
+ Male,189,104,3
8
+ Male,147,92,5
9
+ Male,154,111,5
10
+ Male,174,90,3
11
+ Female,169,103,4
12
+ Male,195,81,2
13
+ Female,159,80,4
14
+ Female,192,101,3
15
+ Male,155,51,2
16
+ Male,191,79,2
17
+ Female,153,107,5
18
+ Female,157,110,5
19
+ Male,140,129,5
20
+ Male,144,145,5
21
+ Male,172,139,5
22
+ Male,157,110,5
23
+ Female,153,149,5
24
+ Female,169,97,4
25
+ Male,185,139,5
26
+ Female,172,67,2
27
+ Female,151,64,3
28
+ Male,190,95,3
29
+ Male,187,62,1
30
+ Female,163,159,5
31
+ Male,179,152,5
32
+ Male,153,121,5
33
+ Male,178,52,1
34
+ Female,195,65,1
35
+ Female,160,131,5
36
+ Female,157,153,5
37
+ Female,189,132,4
38
+ Female,197,114,3
39
+ Male,144,80,4
40
+ Female,171,152,5
41
+ Female,185,81,2
42
+ Female,175,120,4
43
+ Female,149,108,5
44
+ Male,157,56,2
45
+ Male,161,118,5
46
+ Female,182,126,4
47
+ Male,185,76,2
48
+ Female,188,122,4
49
+ Male,181,111,4
50
+ Male,161,72,3
51
+ Male,140,152,5
52
+ Female,168,135,5
53
+ Female,176,54,1
54
+ Male,163,110,5
55
+ Male,172,105,4
56
+ Male,196,116,4
57
+ Female,187,89,3
58
+ Male,172,92,4
59
+ Male,178,127,5
60
+ Female,164,70,3
61
+ Male,143,88,5
62
+ Female,191,54,0
63
+ Female,141,143,5
64
+ Male,193,54,0
65
+ Male,190,83,2
66
+ Male,175,135,5
67
+ Female,179,158,5
68
+ Female,172,96,4
69
+ Female,168,59,2
70
+ Female,164,82,4
71
+ Female,194,136,4
72
+ Female,153,51,2
73
+ Male,178,117,4
74
+ Male,141,80,5
75
+ Male,180,75,2
76
+ Female,185,100,3
77
+ Female,197,154,4
78
+ Male,165,104,4
79
+ Female,168,90,4
80
+ Female,176,122,4
81
+ Male,181,51,0
82
+ Male,164,75,3
83
+ Female,166,140,5
84
+ Female,190,105,3
85
+ Male,186,118,4
86
+ Male,168,123,5
87
+ Male,198,50,0
88
+ Female,175,141,5
89
+ Male,145,117,5
90
+ Female,159,104,5
91
+ Female,185,140,5
92
+ Female,178,154,5
93
+ Female,183,96,3
94
+ Female,194,111,3
95
+ Male,177,61,2
96
+ Male,197,119,4
97
+ Female,170,156,5
98
+ Male,142,69,4
99
+ Male,160,139,5
100
+ Male,195,69,1
101
+ Female,190,50,0
102
+ Male,199,156,4
103
+ Male,154,105,5
104
+ Male,161,155,5
105
+ Female,198,145,4
106
+ Female,192,140,4
107
+ Male,195,126,4
108
+ Male,166,160,5
109
+ Male,159,154,5
110
+ Female,181,106,4
111
+ Male,149,66,3
112
+ Female,150,70,4
113
+ Female,146,157,5
114
+ Male,190,135,4
115
+ Female,192,90,2
116
+ Female,177,96,4
117
+ Male,148,60,3
118
+ Female,165,57,2
119
+ Female,146,104,5
120
+ Male,144,108,5
121
+ Female,176,156,5
122
+ Female,168,87,4
123
+ Male,187,122,4
124
+ Male,187,138,4
125
+ Female,184,160,5
126
+ Female,158,149,5
127
+ Male,158,96,4
128
+ Male,194,115,4
129
+ Female,145,79,4
130
+ Male,182,151,5
131
+ Male,154,54,2
132
+ Female,168,139,5
133
+ Female,187,70,2
134
+ Female,158,153,5
135
+ Female,167,110,4
136
+ Female,171,155,5
137
+ Female,183,150,5
138
+ Female,190,156,5
139
+ Male,194,108,3
140
+ Male,171,147,5
141
+ Male,159,124,5
142
+ Female,169,54,2
143
+ Female,167,85,4
144
+ Male,180,149,5
145
+ Male,163,123,5
146
+ Male,140,79,5
147
+ Male,197,125,4
148
+ Male,194,106,3
149
+ Female,140,146,5
150
+ Male,195,98,3
151
+ Female,168,115,3
152
+ Female,196,50,0
153
+ Male,140,52,3
154
+ Female,150,60,3
155
+ Female,168,140,5
156
+ Female,155,111,5
157
+ Female,179,103,4
158
+ Female,182,84,3
159
+ Male,168,160,5
160
+ Female,187,102,3
161
+ Male,181,105,4
162
+ Male,199,99,2
163
+ Female,184,76,2
164
+ Male,192,101,3
165
+ Female,182,143,5
166
+ Female,172,111,4
167
+ Male,181,78,2
168
+ Male,176,109,4
169
+ Female,156,106,5
170
+ Female,151,67,3
171
+ Female,188,80,2
172
+ Male,187,136,4
173
+ Male,174,138,5
174
+ Male,167,151,5
175
+ Female,196,131,4
176
+ Male,197,149,4
177
+ Female,185,119,4
178
+ Female,170,102,4
179
+ Female,181,94,3
180
+ Female,166,126,5
181
+ Male,188,100,3
182
+ Female,162,74,3
183
+ Male,177,117,4
184
+ Male,162,97,4
185
+ Male,180,73,2
186
+ Female,192,108,3
187
+ Male,165,80,3
188
+ Female,167,135,5
189
+ Female,182,84,3
190
+ Female,161,134,5
191
+ Male,158,95,4
192
+ Male,141,85,5
193
+ Male,154,100,5
194
+ Male,165,105,4
195
+ Female,142,137,5
196
+ Male,141,94,5
197
+ Male,145,108,5
198
+ Male,157,74,4
199
+ Female,177,117,4
200
+ Female,166,144,5
201
+ Male,193,151,5
202
+ Male,184,57,1
203
+ Male,179,93,3
204
+ Female,156,89,4
205
+ Male,182,104,4
206
+ Male,145,160,5
207
+ Female,150,87,4
208
+ Male,145,99,5
209
+ Female,196,122,4
210
+ Male,191,96,3
211
+ Female,148,67,4
212
+ Female,150,84,4
213
+ Male,148,155,5
214
+ Female,153,146,5
215
+ Female,196,159,5
216
+ Female,185,52,0
217
+ Female,171,131,5
218
+ Female,143,118,5
219
+ Female,142,86,5
220
+ Female,141,126,5
221
+ Male,159,109,5
222
+ Female,173,82,2
223
+ Male,183,138,5
224
+ Female,152,90,4
225
+ Male,178,140,5
226
+ Male,188,54,0
227
+ Female,155,144,5
228
+ Male,166,70,3
229
+ Male,188,123,4
230
+ Female,171,120,5
231
+ Male,179,130,5
232
+ Female,186,137,4
233
+ Female,153,78,2
234
+ Female,184,86,3
235
+ Female,177,81,3
236
+ Male,145,78,4
237
+ Male,170,81,3
238
+ Male,181,141,5
239
+ Male,165,155,5
240
+ Female,174,65,2
241
+ Female,146,110,5
242
+ Male,178,85,3
243
+ Male,166,61,2
244
+ Male,191,62,1
245
+ Female,177,155,5
246
+ Female,183,50,0
247
+ Male,151,114,5
248
+ Male,182,98,3
249
+ Female,142,159,5
250
+ Female,188,90,3
251
+ Male,161,89,4
252
+ Male,153,70,3
253
+ Male,140,143,5
254
+ Male,169,141,5
255
+ Female,162,159,5
256
+ Male,183,147,5
257
+ Female,162,58,2
258
+ Female,172,109,4
259
+ Female,150,119,5
260
+ Female,169,145,5
261
+ Female,184,132,4
262
+ Male,159,104,5
263
+ Male,163,131,5
264
+ Male,156,137,5
265
+ Female,157,52,2
266
+ Male,147,84,4
267
+ Male,141,86,5
268
+ Male,173,139,5
269
+ Male,154,145,5
270
+ Male,168,148,5
271
+ Male,168,50,1
272
+ Male,145,130,5
273
+ Male,152,103,5
274
+ Female,187,121,4
275
+ Female,163,57,0
276
+ Male,178,83,3
277
+ Female,187,94,3
278
+ Female,179,114,4
279
+ Male,190,80,2
280
+ Male,172,75,3
281
+ Male,188,57,1
282
+ Male,193,65,1
283
+ Female,147,126,5
284
+ Female,147,94,5
285
+ Male,166,107,4
286
+ Female,192,139,4
287
+ Male,181,139,4
288
+ Male,150,74,4
289
+ Male,178,160,5
290
+ Female,156,52,2
291
+ Male,149,100,5
292
+ Male,156,74,4
293
+ Male,183,105,3
294
+ Female,162,68,3
295
+ Female,165,83,4
296
+ Female,168,143,5
297
+ Male,160,156,5
298
+ Female,169,88,2
299
+ Female,140,76,4
300
+ Female,187,92,3
301
+ Male,151,82,4
302
+ Female,186,140,5
303
+ Male,182,108,4
304
+ Male,188,81,2
305
+ Male,179,110,4
306
+ Female,156,126,5
307
+ Male,188,114,4
308
+ Male,183,153,5
309
+ Male,144,88,5
310
+ Male,196,69,1
311
+ Male,171,141,5
312
+ Male,171,147,5
313
+ Female,180,156,5
314
+ Male,191,146,5
315
+ Female,179,67,2
316
+ Female,180,60,2
317
+ Female,154,132,5
318
+ Male,188,99,3
319
+ Male,142,135,5
320
+ Male,170,95,4
321
+ Male,152,141,5
322
+ Female,190,118,4
323
+ Female,181,111,4
324
+ Male,153,104,5
325
+ Male,187,140,5
326
+ Female,144,66,4
327
+ Female,148,54,2
328
+ Female,199,92,2
329
+ Female,167,85,4
330
+ Female,164,71,3
331
+ Female,185,102,3
332
+ Female,164,160,5
333
+ Male,142,71,4
334
+ Male,165,68,2
335
+ Female,172,62,2
336
+ Female,157,56,2
337
+ Male,155,57,2
338
+ Female,167,153,5
339
+ Female,164,126,5
340
+ Female,189,125,4
341
+ Female,161,145,5
342
+ Female,155,71,3
343
+ Female,171,118,4
344
+ Female,154,92,4
345
+ Male,179,83,3
346
+ Male,170,115,4
347
+ Female,184,106,4
348
+ Female,191,68,2
349
+ Male,162,58,2
350
+ Male,178,138,5
351
+ Female,157,60,2
352
+ Male,184,83,2
353
+ Male,197,88,2
354
+ Female,160,51,2
355
+ Male,184,153,5
356
+ Male,190,50,0
357
+ Male,174,90,3
358
+ Female,189,124,4
359
+ Female,186,143,5
360
+ Female,180,58,1
361
+ Female,186,148,4
362
+ Female,193,61,1
363
+ Male,161,103,4
364
+ Female,151,158,5
365
+ Female,195,147,4
366
+ Female,184,152,5
367
+ Male,141,80,5
368
+ Female,185,94,3
369
+ Female,186,127,4
370
+ Male,142,131,5
371
+ Female,147,67,4
372
+ Male,151,62,3
373
+ Female,160,124,5
374
+ Male,185,60,1
375
+ Female,163,63,2
376
+ Male,174,95,4
377
+ Female,150,144,5
378
+ Male,142,91,5
379
+ Male,178,142,5
380
+ Female,154,96,5
381
+ Male,176,87,3
382
+ Male,159,120,5
383
+ Male,191,62,1
384
+ Male,177,117,4
385
+ Male,151,154,5
386
+ Female,182,149,5
387
+ Female,197,72,2
388
+ Male,146,138,5
389
+ Female,160,83,4
390
+ Female,157,66,3
391
+ Female,150,50,2
392
+ Female,167,58,2
393
+ Female,180,70,2
394
+ Female,183,76,2
395
+ Female,183,87,3
396
+ Female,152,154,5
397
+ Female,164,71,3
398
+ Male,187,96,3
399
+ Male,169,136,5
400
+ Female,149,61,3
401
+ Male,163,137,5
402
+ Female,195,104,3
403
+ Male,174,107,4
404
+ Male,182,70,2
405
+ Male,169,110,4
406
+ Male,193,130,4
407
+ Male,148,141,5
408
+ Male,186,68,2
409
+ Male,165,143,5
410
+ Female,146,123,5
411
+ Female,166,133,5
412
+ Male,179,56,1
413
+ Female,177,101,4
414
+ Male,181,154,5
415
+ Female,161,154,5
416
+ Female,157,103,5
417
+ Female,169,98,4
418
+ Female,152,114,5
419
+ Female,162,64,2
420
+ Male,162,130,5
421
+ Female,177,61,2
422
+ Female,195,61,1
423
+ Male,140,146,5
424
+ Female,186,146,5
425
+ Female,178,107,4
426
+ Male,174,54,1
427
+ Female,180,59,1
428
+ Male,188,141,4
429
+ Female,187,130,4
430
+ Female,153,77,4
431
+ Female,165,95,4
432
+ Female,178,79,2
433
+ Female,163,154,5
434
+ Female,150,97,5
435
+ Male,179,127,4
436
+ Male,165,62,2
437
+ Male,168,158,5
438
+ Female,153,133,5
439
+ Male,184,157,5
440
+ Male,188,65,1
441
+ Female,166,153,5
442
+ Female,172,116,4
443
+ Male,182,73,2
444
+ Male,143,149,5
445
+ Male,152,146,5
446
+ Female,186,128,4
447
+ Male,159,140,5
448
+ Male,146,70,4
449
+ Female,176,121,4
450
+ Female,146,101,5
451
+ Male,159,145,5
452
+ Male,162,157,5
453
+ Female,172,90,4
454
+ Female,169,121,5
455
+ Male,182,50,0
456
+ Female,183,79,2
457
+ Male,176,77,2
458
+ Female,188,128,4
459
+ Female,175,83,2
460
+ Male,154,81,4
461
+ Female,184,147,5
462
+ Male,179,123,4
463
+ Male,152,132,5
464
+ Male,179,56,1
465
+ Female,145,141,5
466
+ Female,181,80,2
467
+ Male,158,127,5
468
+ Female,188,99,3
469
+ Male,145,142,5
470
+ Male,161,115,5
471
+ Male,198,109,3
472
+ Male,147,142,5
473
+ Male,154,112,5
474
+ Female,178,65,2
475
+ Male,195,153,5
476
+ Female,167,79,3
477
+ Male,183,131,4
478
+ Female,164,142,5
479
+ Male,167,64,2
480
+ Female,151,55,2
481
+ Female,147,107,5
482
+ Female,155,115,5
483
+ Female,172,108,4
484
+ Female,142,86,5
485
+ Male,146,85,4
486
+ Female,188,115,4
487
+ Male,173,111,4
488
+ Female,160,109,5
489
+ Male,187,80,2
490
+ Male,198,136,4
491
+ Female,179,150,5
492
+ Female,164,59,2
493
+ Female,146,147,5
494
+ Female,198,50,0
495
+ Female,170,53,1
496
+ Male,152,98,5
497
+ Female,150,153,5
498
+ Female,184,121,4
499
+ Female,141,136,5
500
+ Male,150,95,5
501
+ Male,173,131,5
@@ -1,6 +1,6 @@
1
- def BincodeFit(data = None, fit_data = None, target_columns = None, method_type = None,
2
- nbins = None, label_prefix = None, target_colnames = None,
3
- minvalue_column = None, maxvalue_column = None, label_column = None,
1
+ def BincodeFit(data=None, fit_data=None, target_columns=None, method_type=None,
2
+ nbins=None, label_prefix=None, target_colnames=None,
3
+ minvalue_column=None, maxvalue_column=None, label_column=None,
4
4
  **generic_arguments):
5
5
  """
6
6
  DESCRIPTION:
@@ -1,4 +1,4 @@
1
- def BincodeTransform(data = None, object = None, accumulate = None,
1
+ def BincodeTransform(data=None, object=None, accumulate=None,
2
2
  **generic_arguments):
3
3
  """
4
4
  DESCRIPTION:
@@ -10,6 +10,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
10
10
  data.
11
11
  2. Output of BincodeFit() function which contains the binning data.
12
12
 
13
+
13
14
  PARAMETERS:
14
15
  data:
15
16
  Required Argument.
@@ -105,7 +106,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
105
106
  object=bin_code_1.output,
106
107
  object_order_column="TD_MinValue_BINFIT",
107
108
  accumulate=['passenger', 'ticket']
108
- )
109
+ )
109
110
 
110
111
  # Print the result DataFrame.
111
112
  print(obj.result)
@@ -117,14 +118,14 @@ def BincodeTransform(data = None, object = None, accumulate = None,
117
118
  method_type='Equal-Width',
118
119
  nbins=2,
119
120
  label_prefix='label_prefix'
120
- )
121
+ )
121
122
 
122
123
  # Run BincodeTransform.
123
124
  obj = BincodeTransform(data=titanic_data,
124
125
  object=bin_code_2.output,
125
126
  accumulate=['passenger', 'ticket']
126
- )
127
+ )
127
128
 
128
129
  # Print the result DataFrame.
129
130
  print(obj.result)
130
- """
131
+ """
@@ -1,4 +1,4 @@
1
- def Fit(data = None, object = None, **generic_arguments):
1
+ def Fit(data=None, object=None, **generic_arguments):
2
2
  """
3
3
  DESCRIPTION:
4
4
  The Fit() function determines whether specified numeric transformations can be
@@ -100,4 +100,4 @@ def OneHotEncodingTransform(data=None, object=None, is_input_dense=None, **gener
100
100
 
101
101
  # Print the result DataFrame.
102
102
  print(obj.result)
103
- """
103
+ """
@@ -98,4 +98,4 @@ def OutlierFilterTransform(data=None, object=None, **generic_arguments):
98
98
 
99
99
  # Print the result DataFrame.
100
100
  print(obj.result)
101
- """
101
+ """
@@ -5,7 +5,7 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
5
5
  combinations of the feature by extracting the target column, degree, bias and interaction
6
6
  information from the output of the PolynomialFeaturesFit() function.
7
7
 
8
-
8
+
9
9
  PARAMETERS:
10
10
  data:
11
11
  Required Argument.
@@ -99,4 +99,4 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
99
99
 
100
100
  # Print the result DataFrame.
101
101
  print(obj.result)
102
- """
102
+ """
@@ -4,6 +4,7 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
4
4
  RowNormalizeTransform() function normalizes input columns row-wise, using
5
5
  RowNormalizeFit() function output.
6
6
 
7
+
7
8
  PARAMETERS:
8
9
  data:
9
10
  Required Argument.
@@ -95,4 +96,4 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
95
96
 
96
97
  # Print the result DataFrame.
97
98
  print(obj.result)
98
- """
99
+ """
@@ -3,6 +3,7 @@ def ScaleTransform(data=None, object=None, accumulate=None, **generic_arguments)
3
3
  DESCRIPTION:
4
4
  ScaleTransform() function scales specified columns in input data, using ScaleFit() function output.
5
5
 
6
+
6
7
  PARAMETERS:
7
8
  data:
8
9
  Required Argument.
@@ -95,4 +95,4 @@ def SimpleImputeTransform(data=None, object=None, **generic_arguments):
95
95
 
96
96
  # Print the result DataFrame.
97
97
  print(obj.result)
98
- """
98
+ """
@@ -4,6 +4,7 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
4
4
  The Transform() function applies numeric transformations to input columns,
5
5
  using Fit() output.
6
6
 
7
+
7
8
  PARAMETERS:
8
9
  data:
9
10
  Required Argument.
@@ -101,4 +102,4 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
101
102
  # Print the result DataFrame.
102
103
  print(transform_result.result)
103
104
 
104
- """
105
+ """
@@ -1,6 +1,6 @@
1
- def BincodeFit(data = None, fit_data = None, target_columns = None, method_type = None,
2
- nbins = None, label_prefix = None, target_colnames = None,
3
- minvalue_column = None, maxvalue_column = None, label_column = None,
1
+ def BincodeFit(data=None, fit_data=None, target_columns=None, method_type=None,
2
+ nbins=None, label_prefix=None, target_colnames=None,
3
+ minvalue_column=None, maxvalue_column=None, label_column=None,
4
4
  **generic_arguments):
5
5
  """
6
6
  DESCRIPTION:
@@ -1,4 +1,4 @@
1
- def BincodeTransform(data = None, object = None, accumulate = None,
1
+ def BincodeTransform(data=None, object=None, accumulate=None,
2
2
  **generic_arguments):
3
3
  """
4
4
  DESCRIPTION:
@@ -10,6 +10,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
10
10
  data.
11
11
  2. Output of BincodeFit() function which contains the binning data.
12
12
 
13
+
13
14
  PARAMETERS:
14
15
  data:
15
16
  Required Argument.
@@ -109,7 +110,7 @@ def BincodeTransform(data = None, object = None, accumulate = None,
109
110
  object=bin_code_1.output,
110
111
  object_order_column="TD_MinValue_BINFIT",
111
112
  accumulate=['passenger', 'ticket']
112
- )
113
+ )
113
114
 
114
115
  # Print the result DataFrame.
115
116
  print(obj.result)
@@ -124,15 +125,15 @@ def BincodeTransform(data = None, object = None, accumulate = None,
124
125
  method_type='Equal-Width',
125
126
  nbins=2,
126
127
  label_prefix='label_prefix'
127
- )
128
+ )
128
129
 
129
130
  # Apply the transformation on the input data using the model generated above.
130
131
  # Note that model is passed as instance of BincodeFit to "object".
131
132
  obj = BincodeTransform(data=titanic_data,
132
133
  object=bin_code_2,
133
134
  accumulate=['passenger', 'ticket']
134
- )
135
+ )
135
136
 
136
137
  # Print the result DataFrame.
137
138
  print(obj.result)
138
- """
139
+ """
@@ -1,4 +1,4 @@
1
- def Fit(data = None, object = None, **generic_arguments):
1
+ def Fit(data=None, object=None, **generic_arguments):
2
2
  """
3
3
  DESCRIPTION:
4
4
  The Fit() function determines whether specified numeric transformations can be
@@ -377,4 +377,4 @@ def GLM(formula=None, data=None, input_columns=None, response_column=None, famil
377
377
  # Print the result DataFrame.
378
378
  print(GLM_out_2.result)
379
379
  print(GLM_out_2.output_data)
380
- """
380
+ """