teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,17 +1,17 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=SWfkTUUrQKMpnrvtLwr4UtcX-30fP4sFYOsZj_z0fHs,283624
2
- teradataml/LICENSE.pdf,sha256=ubPWeYv_V3IppjFdauVAH3IEKZAx5W0lPRcPwoU8yLI,66370
3
- teradataml/README.md,sha256=OpGKXRKV2Bs1z8VoasL3qw7jpILisVBk-mw_vxaRxZs,82596
4
- teradataml/__init__.py,sha256=A0wI_IJwktOShTczqspSd3BmFfmXZ0KTCz3euRFpsYc,2247
5
- teradataml/_version.py,sha256=3rN-PAg9Xox0jOEng5Fzu29AL9LoSpwa51ZUI1KHrfY,364
6
- teradataml/libaed_0_1.dylib,sha256=ezMaf-7NOXiHbRrrE_5lcMd-rj4kquWY5jFrzd7NckE,1806033
7
- teradataml/libaed_0_1.so,sha256=nHwZQZYNcy6n_wyG8PrrxwsW6QOFuqxFAglOhdKCamE,1040680
8
- teradataml/analytics/Transformations.py,sha256=Nuw1OAgZBsurqRf1VXgNrFpFToJ3XGHCPP9FfN9l9eY,149400
9
- teradataml/analytics/__init__.py,sha256=8vahVNiu4OElHk8HuIpxUTWpgI1c0lwJBgZ9P4LLBqs,2963
10
- teradataml/analytics/analytic_function_executor.py,sha256=sV7nOQA2gsC6_ggfOnoU9ymYRRXRD5q9Cx9FJMTWRqg,91012
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=8g05OMHrGp7X287akUppOQ7p5an8_SiIxkaUct6fF0g,302023
2
+ teradataml/LICENSE.pdf,sha256=AUAuscoFVLRLEPFRm7afwgOm_mjl1RES-tfLa8QxV0A,66677
3
+ teradataml/README.md,sha256=YVDqrWwD3u1tSIfRqPp1jvrDk9y3NbWeE1XH42wnBDY,102196
4
+ teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
5
+ teradataml/_version.py,sha256=gGqRPNae_BqTFfodlSXmm8Occ6ZclYcLSAUwlazPgJ4,364
6
+ teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
+ teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
+ teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
+ teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
10
+ teradataml/analytics/analytic_function_executor.py,sha256=jOEBRZBlCIJjCzN1WdkGIRb6qIDRsagMV3y3d8NlFE4,91166
11
11
  teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
12
12
  teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
13
- teradataml/analytics/utils.py,sha256=BCd-GEU8Ee0B9JKYuDcRPo7mfIl0_S9hAdkrjph5WHs,27670
14
- teradataml/analytics/valib.py,sha256=wGo1aS5RNcXE7H70ydQgNr5IMDXHVZuEKeOI6xfyfKw,73463
13
+ teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
14
+ teradataml/analytics/valib.py,sha256=7iyoxf-zK4-kM7RkCMXuOviZSSoVo1GDIaR8b1J4WWo,73589
15
15
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
16
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
17
  teradataml/analytics/byom/__init__.py,sha256=ViV7E_6d0RkbPcKQQ62Ar11-dMUwxf2Eg68TdYmCM6c,810
@@ -19,328 +19,53 @@ teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9
19
19
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
20
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
21
  teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
22
- teradataml/analytics/json_parser/utils.py,sha256=rl29u5zqCP8F7hcWoA5eRkNN0BC0CuQhcMDiOIiXKvs,33761
23
- teradataml/analytics/mle/AdaBoost.py,sha256=KTGNAbHiCtrFOpJK9bAibUzp_OjhV8p30a2H9okqC30,34666
24
- teradataml/analytics/mle/AdaBoostPredict.py,sha256=3GaD5PJ91fpvbUx_PQ3oUyi9TgpSYnIpwWa2IxEjjJg,29500
25
- teradataml/analytics/mle/Antiselect.py,sha256=3EI2vCnzG4JamR_bBn1bvSqTRDNpU3Hq-sL13TZ5pJc,14762
26
- teradataml/analytics/mle/Arima.py,sha256=JXgklcw569sotPm7HEnsoBO15v7d5hc1q2EnlDOmWkw,31992
27
- teradataml/analytics/mle/ArimaPredict.py,sha256=DiiXBMuU4pK29RbrFICUceD-wLNLhlsJna3pU5vwmEo,23765
28
- teradataml/analytics/mle/Attribution.py,sha256=XxrQKRugI32ZxGfKp1ucFnDZ-GMavuYOLEezWm7yUlw,62048
29
- teradataml/analytics/mle/Betweenness.py,sha256=qFlDm-F3XRolVJBmLFAy4K3vhpzk1w5miWRsq0h7Jzg,35720
30
- teradataml/analytics/mle/Burst.py,sha256=yrtRgUCCPyRmenEGv-NXPU9Wta4FzTmEssMpq0I4ROE,36348
31
- teradataml/analytics/mle/CCM.py,sha256=VAXZcX1W6WJCkFVmf98e-rV4Oq7uAwEt2uYeA08SkLQ,28886
32
- teradataml/analytics/mle/CCMPrepare.py,sha256=EmDB4ZEEhJP9VFkUwoTDLDN-J-orgPpyFETV_o5A090,14048
33
- teradataml/analytics/mle/CFilter.py,sha256=wLHiXR2IVzPdCX6XUczWbILEOeIv18mx5v50NftBlmA,21805
34
- teradataml/analytics/mle/ChangePointDetection.py,sha256=G6xsdHjMrnEj5a3A0btQy9vYmxhjD3xzHQLKhTijk8g,28166
35
- teradataml/analytics/mle/ChangePointDetectionRT.py,sha256=R1pUhSoi_2_bhcgxwgo46bmXECuLdJcySjgW5BohbII,23272
36
- teradataml/analytics/mle/Closeness.py,sha256=GX0WG9NU3fSPrCn-JK_HMVwtffphrzr2NFuiq35OpXE,39741
37
- teradataml/analytics/mle/ConfusionMatrix.py,sha256=jK_W784wdm506cG0q8CPFtrvojkJ-G4cpyUSe3p8j2M,20811
38
- teradataml/analytics/mle/Correlation.py,sha256=yUxVCOzawNzY2IB1DVosa-5_FVpsrgAYVQndGczomJg,23210
39
- teradataml/analytics/mle/Correlation2.py,sha256=r6_USV5J7yU1F3VDtKv1SYcu63hJenpjBPwV_267QEs,29791
40
- teradataml/analytics/mle/CoxHazardRatio.py,sha256=Rd7jPVSGtrL0HnOZk0u4vGfC-Igqzpk_CbmsuAnWafg,36233
41
- teradataml/analytics/mle/CoxPH.py,sha256=NeWgrVeUbC9giuwi1xwq9V1S2Vr5uHSEsWmYiLMxhkk,28585
42
- teradataml/analytics/mle/CoxSurvival.py,sha256=X1gP7TX3QGJmOHKjDLhUMtUTd4GuKfo5kTuq1skaufc,24884
43
- teradataml/analytics/mle/CumulativeMovAvg.py,sha256=66SpFWGbaGmm-UZ8axwFZglqGuRjAhUXmtISWmUId74,16525
44
- teradataml/analytics/mle/DTW.py,sha256=WqLoIx7rnvPlTaIUMlCBx2jnf4BwZa-vdmOZJ4HJRTQ,32608
45
- teradataml/analytics/mle/DWT.py,sha256=Flfbu6ptBa5hx5YmYH-7Ew20dIj8bhGMUWZCNfVW6bs,29604
46
- teradataml/analytics/mle/DWT2D.py,sha256=20yE1tXBkm3X4cKW0a0ms4R_lw3G84HOruSTIeYSwBI,31608
47
- teradataml/analytics/mle/DecisionForest.py,sha256=Wp2zT1wvvvHrrPg8fYBAc8kNtNpNIv1dIN5hO3ftjm0,36672
48
- teradataml/analytics/mle/DecisionForestEvaluator.py,sha256=bPU2jZHeC5s5BgEn_H5FR7MveVvSCrARsluqQzVLwEA,16448
49
- teradataml/analytics/mle/DecisionForestPredict.py,sha256=aexUC-sOsjziP06EjkyBcfchhMItaD2trwIT5wdXEQk,28086
50
- teradataml/analytics/mle/DecisionTree.py,sha256=XClKrWqTP9lrC7GctBIeCsUHV_GGVtgbzr6WbaziITw,46228
51
- teradataml/analytics/mle/DecisionTreePredict.py,sha256=1Ko_sAgGwMBr3WYZ2THYxjx2nPv0uo0yzTjU_LjGDlM,27230
52
- teradataml/analytics/mle/ExponentialMovAvg.py,sha256=DJatwfs0voePJy-L7f5EJatOXserOIVj-4qwLCCj8KQ,19477
53
- teradataml/analytics/mle/FMeasure.py,sha256=1t6WQ2l4RKdSSTZ8kIKC6x6ADzUlY4xSL5qWoV1e_2Y,18288
54
- teradataml/analytics/mle/FPGrowth.py,sha256=gPTuJiELMDCwG5R0WCrEHWYP73KqDgui3uEzTUemQHQ,39243
55
- teradataml/analytics/mle/FrequentPaths.py,sha256=XaKUZBSmM1vAf4jm6XBc_NSXUF_PMKtMqNhcjf1Hg7M,38408
56
- teradataml/analytics/mle/GLM.py,sha256=tQEwqv02rXIZ9k74flJFLe5lahS8b9MpuFWIZWLYHFA,27040
57
- teradataml/analytics/mle/GLML1L2.py,sha256=7ipmFlfP2QmpX3L_zMyxV0wmH-wb8jvLx7GETaiYNMU,26861
58
- teradataml/analytics/mle/GLML1L2Predict.py,sha256=NgvGTI6dshI4zuBy-FNCI0-cKjreLrOFYE0FhJVaRBc,25563
59
- teradataml/analytics/mle/GLMPredict.py,sha256=MNZW0ZtCNvCOSLjiLyDV_3-WKfS9upiRk9dbG-ZW7is,26377
60
- teradataml/analytics/mle/HMMDecoder.py,sha256=Aqb9ctuWk-aq4YSAbjJRMO0TH8fk738-zZZ5S8FAHJc,55393
61
- teradataml/analytics/mle/HMMEvaluator.py,sha256=l1KvqGVkxdkFW5KqO8pDVxWL_76-D2PIK8QAeRbrzUA,52305
62
- teradataml/analytics/mle/HMMSupervised.py,sha256=idM2imz60cvUpY8XMQ8Lx_sK3mjirh3E0pm01xDiE-A,28302
63
- teradataml/analytics/mle/HMMUnsupervised.py,sha256=tuPSTGl1Gmdp7vJbbazaN72Dw8pHCXtArd2kL1f-gcw,31570
64
- teradataml/analytics/mle/Histogram.py,sha256=GSjhgFfJX4TmsHgbEz5RoRuWVzq0Px9dcVLgc7b9A1I,27785
65
- teradataml/analytics/mle/IDWT.py,sha256=x08229KFxGmEsF4lYwRDrERKey47iUaXPHBwFFq1z9c,23729
66
- teradataml/analytics/mle/IDWT2D.py,sha256=J0OpfsuI3aews5BHsUb0DS110-t5Ep0wQMcAWtia_0w,24803
67
- teradataml/analytics/mle/IdentityMatch.py,sha256=HveIDx6UTD_B_ZRDONlhbDy0jD-l95J5fGevWxjyHmI,45713
68
- teradataml/analytics/mle/Interpolator.py,sha256=dT81iT1jNvi7CxunGy4WtRN8XZJuNyvAk40V4FlUFYk,49801
69
- teradataml/analytics/mle/KMeans.py,sha256=fUlhJsF6uksMDWZyHT0jUOfpjao2Pw89VyGKe6eO25U,24507
70
- teradataml/analytics/mle/KNN.py,sha256=yvLnnWc-aGDp8keYQtbQmnbyb8FxiNMkDplG_Dus3IA,32564
71
- teradataml/analytics/mle/KNNRecommender.py,sha256=3MFcu8Ef53Kjgz3zKBtaisJD7R3oQOLTXwu-g60BO5w,24931
72
- teradataml/analytics/mle/KNNRecommenderPredict.py,sha256=08sDVR4ZZAfkkbCreMPhYKv6n8zKOCsjUOcabXzopGI,30088
73
- teradataml/analytics/mle/LAR.py,sha256=axpLc78I_rHUo9TkWaiKGnEhA9R3edJFjWNk5pHRU7c,20400
74
- teradataml/analytics/mle/LARPredict.py,sha256=j1IdOlB6ExpHkWYdyp8_k60u1TjZmvBjAEatoeFcDSo,22992
75
- teradataml/analytics/mle/LDA.py,sha256=fnJvTbZR1_Fu5PEp2hNICG09ibuuRVmPlKDlFbpWq4M,27478
76
- teradataml/analytics/mle/LDAInference.py,sha256=WoxIJmivC2shcs9E3o2xJXa3r0edAwiXAfHeMQvurpc,24307
77
- teradataml/analytics/mle/LDATopicSummary.py,sha256=bgInAgZ1UROPj7FEuPskzriqhlHY6xNBrx4kJ7fObVs,21263
78
- teradataml/analytics/mle/LevenshteinDistance.py,sha256=HOJX31nxb1C7b0_PCdvo64NwLxm6t53Pw1_fo080fTI,21240
79
- teradataml/analytics/mle/LinReg.py,sha256=wgOGzFs7Bh6pGkQbyqB0ZuMx2RePUbHGRdTXGm80m88,20366
80
- teradataml/analytics/mle/LinRegPredict.py,sha256=SZ_CjUw4-Qvtbi2J4K5NV_kuZR2o5hmC-M8O6PWDnQA,20733
81
- teradataml/analytics/mle/MinHash.py,sha256=EAUY0vwyZXH_jw1RIDMOiB5TeL_cCVUPOl8DJ-dBrGI,26930
82
- teradataml/analytics/mle/Modularity.py,sha256=qIErKTP2JTrHUIH3wQLgAElb9YDK4hRSE0EOwR0H90Q,32152
83
- teradataml/analytics/mle/NEREvaluator.py,sha256=Hv2zrqcj1qparKaTuuC4MTDlnReAx1yj69IUf4X2yy0,18591
84
- teradataml/analytics/mle/NERExtractor.py,sha256=UU6aMDfHJv2Jak0BPS3wbf2IcIXNnvpn9MJ6f-CEuNw,29570
85
- teradataml/analytics/mle/NERTrainer.py,sha256=PPYSnvZjfT2xac4NDiza4ttZAjpu6PKrIUe0tgYGFh4,21265
86
- teradataml/analytics/mle/NGrams.py,sha256=1ZdhrpFzQL5NZ23KFHTQcx3eNn6lUYRH0-smMQdakbA,27764
87
- teradataml/analytics/mle/NPath.py,sha256=vs_4di70pUPX3yM-FyG2HrKBpNFzCAmAYxnVptYipCA,32559
88
- teradataml/analytics/mle/NTree.py,sha256=bm_EoNG-OTLT-gHdSfUlf6yb4qtMz1rauvRZw3ABnCs,25907
89
- teradataml/analytics/mle/NaiveBayes.py,sha256=CPLoKCIP1sQVKOV1fGVAczfGgiXP0JTjHkF-yzrsYBI,21720
90
- teradataml/analytics/mle/NaiveBayesPredict.py,sha256=HrE8MGTdtHwPEGCTUq3n6lj5dauktdhb-CGczHkNrCg,25300
91
- teradataml/analytics/mle/NaiveBayesTextClassifier.py,sha256=mQRGtfNixMvcLFGEFY42TWct02R8TVM2pvB50TvEuZ8,30739
92
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py,sha256=C9PRgZPJAKJeU_Xfee2labIdWnMpKAkX6iI6nMZf9Fw,26599
93
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py,sha256=x0pX8-rYV_-VoDtBFb2bR8DpUVbx8xCvA_OU9Kct7Kk,43143
94
- teradataml/analytics/mle/NamedEntityFinder.py,sha256=VrpbQTnj3PNcfVfISGxceGJKfZHe_WZKwwkHAQnqS2w,27329
95
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py,sha256=ehwTGCbD3M_NtprcSPNOMbgZxVgAPNsx8yVfv7jG-JQ,19121
96
- teradataml/analytics/mle/NamedEntityFinderTrainer.py,sha256=ksU2GjjOCFjA3ND_8xDZebcT2XiDkB4qjbyGVwBjtZA,17886
97
- teradataml/analytics/mle/POSTagger.py,sha256=Z5LQk7SUyMl6AzAf6xra_9Ch5TTqMsB4vLXlQ9cNt74,19163
98
- teradataml/analytics/mle/Pack.py,sha256=Qqo_tG81QvPuw2fmxscMXTYCZZEECouzyrDec1y52Gc,18706
99
- teradataml/analytics/mle/PageRank.py,sha256=ffaN_ueBTd8tBlQHdo96pR17oPxzxEebS427M_hS7Gc,26408
100
- teradataml/analytics/mle/PathAnalyzer.py,sha256=Yby_8icyo2WZlUdHlGUlvY5mqk8IG83D_yuws3OTSF8,20195
101
- teradataml/analytics/mle/PathGenerator.py,sha256=GMmVqammA4T8EuU-wTyKoL10H-9x_QPTi6tCGOGXjTo,16205
102
- teradataml/analytics/mle/PathStart.py,sha256=tMBXQDOK-qJXzku1QcsTmVlss2t2NvQYukq-1MeFXGk,22144
103
- teradataml/analytics/mle/PathSummarizer.py,sha256=kg5cq3fGHf-xVDuxniKNa5Jrcg_RbiSENOK9I8ucrtI,22276
104
- teradataml/analytics/mle/Pivot.py,sha256=-1Riyw03JkrG9tyTg7rnuEZsdYrX-lRSrEi04d6LrqY,22271
105
- teradataml/analytics/mle/ROC.py,sha256=5DIUXoAp5fHUX4OLPs8ojClw3_ik-3WBn3czU6idm1s,20211
106
- teradataml/analytics/mle/RandomSample.py,sha256=3co2O6tt7oB_jNYbnc9IU7d2D0Zm2p7PJwicKjfU9dQ,32649
107
- teradataml/analytics/mle/RandomWalkSample.py,sha256=UO5jvxoycMxG2QxhevsnXk_l29jCsObeSHu_x545z70,25617
108
- teradataml/analytics/mle/SAX.py,sha256=j5_uDEksbPxkHUym9eAy-WwNipbiD37INF0_TggKdqk,41808
109
- teradataml/analytics/mle/SVMDense.py,sha256=rKgJR_mgXkKMpGC-jrQDCNH7MqJYutmEcMQZw-_7X6I,33524
110
- teradataml/analytics/mle/SVMDensePredict.py,sha256=DK83tJzURL-f4xyZMBExUcJj3X53_OuhBOvGOcz7Fwo,27433
111
- teradataml/analytics/mle/SVMDenseSummary.py,sha256=jHufXGE8ufLsU6C-SK7MrVuJKaqOqFHWemTOK8Tu_9M,20842
112
- teradataml/analytics/mle/SVMSparse.py,sha256=XYoySo44Kr9juxW5ScyTSYSdnuzUqTPUSkaBfX-4l3c,27353
113
- teradataml/analytics/mle/SVMSparsePredict.py,sha256=MZ22lOx66aXzzFlq9R3M-DVg2Yw1w7_9TK4bNbQD6r4,28361
114
- teradataml/analytics/mle/SVMSparseSummary.py,sha256=U21AfPCQWaoZ-lD6DJCmqMAh3npXk-5Cop49WbdtfyA,20410
115
- teradataml/analytics/mle/Sampling.py,sha256=LpmVVJnAMnq7EDc5pcHsoD1ejt8fWxZ9cg38yzW8XoU,27836
116
- teradataml/analytics/mle/Scale.py,sha256=p9NW-Fu4ssmuIUVkX7tNuB4G0U58_i06k2q_W9R__JQ,28095
117
- teradataml/analytics/mle/ScaleByPartition.py,sha256=tsS8WYAB0UF0UK_Q8Ok5BePuCSMhfsj4w5JA9uj5XhY,24243
118
- teradataml/analytics/mle/ScaleMap.py,sha256=a5lOA9v0KALTYyXrUCvgvcrtywRx73HQRN8OkbJ4q38,17125
119
- teradataml/analytics/mle/ScaleSummary.py,sha256=-GP16At3yax3YRfonKs7xlEUh8ac8p2MgHmnQlhTDR4,13621
120
- teradataml/analytics/mle/SentenceExtractor.py,sha256=bbaRdnZqXQnO9mpHarI94s9M8nciml3qyh_X4cKBems,16304
121
- teradataml/analytics/mle/SentimentEvaluator.py,sha256=HUJ8RP7t8LxoS3AYdgxYNGbMcwtJYutj5-X7W5v5kxw,20928
122
- teradataml/analytics/mle/SentimentExtractor.py,sha256=dmIpjoj9Eg7HwZWw6BRPc4K6N4eBQ7VHYeaRbP7uw30,29613
123
- teradataml/analytics/mle/SentimentTrainer.py,sha256=5FP6fv3jTTfEhGoSnshWhyI-D_I8GoVcYtWky9aZ_7Q,18453
124
- teradataml/analytics/mle/SeriesSplitter.py,sha256=yf7sC_9Z-xq6ZwNRSzTWtVfPWyyiDNqKBDOy9pS2740,34618
125
- teradataml/analytics/mle/Sessionize.py,sha256=W7hq4WmP_Qfp9qyrSKmOKuCJgZBIvCztPYD3z3rNwAw,22310
126
- teradataml/analytics/mle/SimpleMovAvg.py,sha256=M5BVI89KhgTP9a-RGy5zCWIhTj7wiIy94kc1uT-NXis,18205
127
- teradataml/analytics/mle/StringSimilarity.py,sha256=F8AwL_o3zmHPgUh9W_KTjldW-n_1uFmVqg38G84Xpn4,20728
128
- teradataml/analytics/mle/TF.py,sha256=90akaQqjEQKXabrUXONG6tEkC6Y0rMlrBl_-ULsErls,17750
129
- teradataml/analytics/mle/TFIDF.py,sha256=0lMvJmHW2uuuzrrhu3UrvNG-AP9TEJYq0b-FJ1Mlvxw,25104
130
- teradataml/analytics/mle/TextChunker.py,sha256=9-4Hpss8XwM4_hvloJTtVpO2Mbx4am7e5ISDYODSWbE,19133
131
- teradataml/analytics/mle/TextClassifier.py,sha256=9alMbRA1_90f8KxXohMmRDZ7deps3oUFGcK-HDsqteI,18566
132
- teradataml/analytics/mle/TextClassifierEvaluator.py,sha256=jissyWVR1tTwg5NkzbsNHIvWtTlMdEgvKf8GpO8lvJk,19588
133
- teradataml/analytics/mle/TextClassifierTrainer.py,sha256=KhEndmDtLnEbFlh9xCENZmK4RhTAwHgfYIZPwnd3dyM,28682
134
- teradataml/analytics/mle/TextMorph.py,sha256=iChbfT1M6u8uVyZw9dK_gC58E6dU1K_BhrHWpKy38rQ,22982
135
- teradataml/analytics/mle/TextParser.py,sha256=_8p1sJCpKr-sZG1_rZ9_BjWnZbpYULbpx5g-YNqVoSU,30537
136
- teradataml/analytics/mle/TextTagger.py,sha256=huc5I8w7XQIs96MnPFsPwXgWJTj3SvaEroStGmyxepM,25838
137
- teradataml/analytics/mle/TextTokenizer.py,sha256=clunv6SHmvmCcnXiKzmBYDocZZjNbvkccbvkQ2vDkTc,23882
138
- teradataml/analytics/mle/UnivariateStatistics.py,sha256=2qxlTPgYTFHwDjdG02wkx9Ajc_CMfTn9DlL1ErDVMOk,25292
139
- teradataml/analytics/mle/Unpack.py,sha256=94bxoJ0Et8Em5Jh7PgpLQKzAk5vVy3YKNe0-GuInyTo,25736
140
- teradataml/analytics/mle/Unpivot.py,sha256=OETtEs_F5XgemyKOFDvUv6GxPeDbFvCRTIVjnYz7NhY,20263
141
- teradataml/analytics/mle/VarMax.py,sha256=a9leHbZK84e5lY4ZNeAORGRLbxvrdT7M3s34PVfLi3E,39358
142
- teradataml/analytics/mle/VectorDistance.py,sha256=mLuCevclAL2widsmKVz-giD7ZOKpDhiPBnUpyDF-6_Q,40765
143
- teradataml/analytics/mle/WeightedMovAvg.py,sha256=RF-hWocxikfxPTCl8COVUo9ODRTWcSdpGYRMf2R8Vuk,18582
144
- teradataml/analytics/mle/XGBoost.py,sha256=b7RKR-H8gb4CcY43YiXynOYG3xV9soW4p4FsUO_Tt6E,44182
145
- teradataml/analytics/mle/XGBoostPredict.py,sha256=zkBVU7-CCrAc8yCqlkQNPsdhUnO61kEd1VvB76HilV4,32474
146
- teradataml/analytics/mle/__init__.py,sha256=tY8W4kG07nfr4HXgsIUnNrz1sxRJ_SqsymfUQloOMVQ,7754
147
- teradataml/analytics/mle/json/adaboost_mle.json,sha256=-5TH-DwUVfbh-X091UbHnWByn22tHxyGi2SvNjMQpUQ,3762
148
- teradataml/analytics/mle/json/adaboostpredict_mle.json,sha256=VoE6fWavwmQkZYKoDJtfoNv7ooEEwAARA8YqU9eaC00,2348
149
- teradataml/analytics/mle/json/antiselect_mle.json,sha256=Cj60CWuTDMPqfkvluV8VDdsbqAy70ziO_Jvo-1hEM9E,902
150
- teradataml/analytics/mle/json/antiselect_mle_mle.json,sha256=Cj60CWuTDMPqfkvluV8VDdsbqAy70ziO_Jvo-1hEM9E,902
151
- teradataml/analytics/mle/json/arima_mle.json,sha256=Geo4PSfES_OOE423cHvfBgjuhR_FnGtjEyYlrP0_ccc,4572
152
- teradataml/analytics/mle/json/arimapredict_mle.json,sha256=AQSge3_l92HUwuyeKGpMWEiiWeqJJTx7mHT6o7F-F7M,1379
153
- teradataml/analytics/mle/json/attribution_mle_mle.json,sha256=VQa-T0AsHFs3yShNPNOo2MRIdilM2cerEaY6uHRmjfM,3790
154
- teradataml/analytics/mle/json/betweenness_mle.json,sha256=MjANfBoH2QPtDQDqmehlQY8wxcjLqQSjKLqiGD634NE,2578
155
- teradataml/analytics/mle/json/burst_mle.json,sha256=ne9quREXObE0CEv1qReBDede0dR8nCfzw4DRcU3b-EY,3751
156
- teradataml/analytics/mle/json/ccm_mle.json,sha256=2jO9FKo-lklWfBveJDBy5Ds3XeboLDTpgotbgBErCqo,3392
157
- teradataml/analytics/mle/json/ccmprepare_mle.json,sha256=jn6JR2MRgBOj0rTTWJyiYqc6L_H-Fn8nB2yrPUGjTQs,382
158
- teradataml/analytics/mle/json/cfilter_mle.json,sha256=DWc7o92hO1cJ1vtBdDY-VWwaKni8haGVlEmrrH1vudg,2509
159
- teradataml/analytics/mle/json/changepointdetection_mle.json,sha256=g8ioMcP2_cpwH7ncdHw9mg3JXaIOI6FUZajhBbY7EqI,2496
160
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json,sha256=bUNbVQGI2qCuvEW3TatXS3PNlLwXN3OfxqR9gxMmxro,2139
161
- teradataml/analytics/mle/json/closeness_mle.json,sha256=FpS4ZDo1KTZ67tyCzKBzY5r3MnCFjR1nY8F_aWo6PSs,2746
162
- teradataml/analytics/mle/json/confusionmatrix_mle.json,sha256=AoOZRUbTnDWPXRmP7MXbzNGzJwK4D_TkdDiXjvm9des,2099
163
- teradataml/analytics/mle/json/correlation_mle.json,sha256=qhumDVqwbJ5sgwX8xNvqbNRJhjSFiGhGPzg2UI2KyAg,2407
164
- teradataml/analytics/mle/json/correlationreduce_mle.json,sha256=_30IMvRDYfWZIQyrDNzQVjvfs2U8TsOsC_GtO481rfU,1333
165
- teradataml/analytics/mle/json/coxhazardratio_mle.json,sha256=xjIE8FyjomL09Q1b8eX-MP-XX4YoCJAahfNnilmqjC0,2448
166
- teradataml/analytics/mle/json/coxph_mle.json,sha256=pHd_mFV-40xzLdFglV2ulIL_dOS-5RVFHGiDDAvuS0s,2669
167
- teradataml/analytics/mle/json/coxsurvival_mle.json,sha256=DQAAyusx2Q_fTjz--sw9kMkUeQd_ZFtkjeu7bvdCvGg,2158
168
- teradataml/analytics/mle/json/cumulativemovavg_mle.json,sha256=s1TW9QpSOr_e4pbFcCVkM91VoypGnlqyRGTBxMjFXKg,925
169
- teradataml/analytics/mle/json/decisionforest_mle.json,sha256=0mjHxBpjXtouFO2q97pKCOS9CuxeFcmA_goFj5xH5o8,4578
170
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json,sha256=Kt5gtZ5uR30SZmXHi52OPJT53lQ-9cacVAaDvrLBAjA,925
171
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json,sha256=RXnYtAYmAk0xrk755wuY0OX6LifWFChwlX9jHh89g0Q,1994
172
- teradataml/analytics/mle/json/decisiontree_mle.json,sha256=Il5MEPXIRoPH_C_5ZHo_y6jboFqL7Gevkcopof-j0kE,5393
173
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json,sha256=2beMBav7dQldM7UKvues7VCJqrbeWkx_KOu1vRdG_4Q,2419
174
- teradataml/analytics/mle/json/dtw_mle.json,sha256=sq6zdNMJ9mWKlv0Uw3yFv61uXGr1cxmk0tXQDgO76uE,2543
175
- teradataml/analytics/mle/json/dwt2d_mle.json,sha256=ffM1rFlcfVvidAVIQEJbiYCSldUFC80sPdKwRURM-lk,3059
176
- teradataml/analytics/mle/json/dwt_mle.json,sha256=bsV8M9bpSS_sP7UDPu-bUKlS2YizqVhheRbSKZWra0k,2636
177
- teradataml/analytics/mle/json/exponentialmovavg_mle.json,sha256=6maN76GR6alpN1iuwcBc-RZedjc_-hUfP2VgNGf8_8U,1488
178
- teradataml/analytics/mle/json/fmeasure_mle.json,sha256=8tH3lUzLK9fTOalE-JFWLtD8IdkPHH-A-e1V7eLE8qE,1521
179
- teradataml/analytics/mle/json/fpgrowth_mle.json,sha256=QOjNCRjA6W-fU3HTiGzJcP7LyK_yssELm1QPkhWngMg,4403
180
- teradataml/analytics/mle/json/frequentpaths_mle.json,sha256=a7YP3f7r71o27V-OXo3EssT-0Qw3SExVaAa-hWzFask,3575
181
- teradataml/analytics/mle/json/glm_mle.json,sha256=1iiMFUhT0BRtPqlTCFsbKwRwJN4eqAwdVVr6JCDXPAA,2907
182
- teradataml/analytics/mle/json/glml1l2_mle.json,sha256=0AI3w7JPwbpZfYvlMhIrTfMaubaZrV_s3vYVQgpnDL8,2880
183
- teradataml/analytics/mle/json/glml1l2predict_mle.json,sha256=-4pgFJGlVTH_i0an1kE5F9222pK-LUSTz3mC8Orgo1E,1533
184
- teradataml/analytics/mle/json/glmpredict_mle_mle.json,sha256=88uSAs1iT07bvH8SbVysDAD0_L93a1Pl3rVD4Fkz3pg,1950
185
- teradataml/analytics/mle/json/histogram_mle.json,sha256=b7OG682lt6LACaknYNbYaEzyRzJr7gLW4nlEMHkuIfM,2664
186
- teradataml/analytics/mle/json/hmmdecoder_mle.json,sha256=IDqoAHw9xdb4ewsR_XFkGbCLLep6BSduaPozmz0fFA4,5321
187
- teradataml/analytics/mle/json/hmmevaluator_mle.json,sha256=VyzbfBBEnwcjefHF_zKsf8elq89oSMO3hVaeOL74FYY,5715
188
- teradataml/analytics/mle/json/hmmsupervised_mle.json,sha256=j_SOnJohvjrqHBjfOL4WEuSTh1h_JHzOSu1optxJo_8,2479
189
- teradataml/analytics/mle/json/hmmunsupervised_mle.json,sha256=1JHGrOJ2a1HQH1G-tH2bRULTu8Ao9dMT8xdbHiPZBJ4,3139
190
- teradataml/analytics/mle/json/identitymatch_mle.json,sha256=75sQ8z2uT-sI4vdYT0KNiaMStYnLBQ3MMP4YneoMOzs,2350
191
- teradataml/analytics/mle/json/idwt2d_mle.json,sha256=sO5lWJI5XpnVTjWd88a8imqh1wjx9Xe-WQVzt6ZXelo,1947
192
- teradataml/analytics/mle/json/idwt_mle.json,sha256=wfwfo8jLKdzFOU_UJsEPmwxOFF5QPhtTLhsgpB8IhwY,1743
193
- teradataml/analytics/mle/json/interpolator_mle.json,sha256=KegxJWMytDhgM-rxXj5rVeTUbazlerps32ONUZuhUuU,4130
194
- teradataml/analytics/mle/json/kmeans_mle.json,sha256=xIMslyEa7aHRagS7SJNgghA9GVcgZI8ktqbodsbp7LI,2530
195
- teradataml/analytics/mle/json/knn_mle.json,sha256=Ckaq8vwFAOxP0R5Ol0MS8mCIONVTUXTKdlMPJeyJ9kg,3806
196
- teradataml/analytics/mle/json/knnrecommender_mle.json,sha256=FsrqzMxvPr_y9n0T4MpJ4W6rOWK16E83knTVHuC5Zck,2982
197
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json,sha256=6jlt0YczODG4czOAtDD5zvROoeeWgYZVvmW5_kz8ZPI,2030
198
- teradataml/analytics/mle/json/lar_mle.json,sha256=82CmtMBiX8isPgV79vwAF-dxdCOp0esT0SpU5dgVJzQ,2016
199
- teradataml/analytics/mle/json/larpredict_mle.json,sha256=Xw7Yl8zykQUVTzmMaYwHq70uZlDXhcf63mSWrjjZvpw,1730
200
- teradataml/analytics/mle/json/lda_mle.json,sha256=sFZupuRPg3_BQjObEYwXnAgHzXgasf9QDtJjII8E6NU,3438
201
- teradataml/analytics/mle/json/ldainference_mle.json,sha256=5cH-csn-9nEpUokariDw13PR8J3HH0DXp1dPteXJfAk,2092
202
- teradataml/analytics/mle/json/ldatopicsummary_mle.json,sha256=q_9ZkFDOmkImU7wRJCKcBxTQWtNZdkKqhr_ptsY7fuE,1735
203
- teradataml/analytics/mle/json/levenshteindistance_mle.json,sha256=2tv1So_rcJ3lDhO39SFnWgW93rW6Y7reSSsa0gmjfjY,2472
204
- teradataml/analytics/mle/json/linreg_mle.json,sha256=32ngzoJFdO7vGpaUvsvDEtMKexbIxUE8WnnFiRPeIEI,1121
205
- teradataml/analytics/mle/json/linregpredict_mle.json,sha256=6XLY-IZ5qX_85Tt3q5kVL9PD0Tqq0AQ7XQ-V_TrvAMI,1461
206
- teradataml/analytics/mle/json/minhash_mle.json,sha256=DV3soldu3H4S5UTlYedZnfgVALbDnG4qSUntqVvEdJY,2942
207
- teradataml/analytics/mle/json/modularity_mle.json,sha256=9b_nuYFb_leD048_C9z5X59Pe5fgoxJih6NZ-S5o-iY,2440
208
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json,sha256=LjtEbOn1qeY90UVXas-xUPnQ6RyUjFzdMVfSNYTATHw,2319
209
- teradataml/analytics/mle/json/naivebayesreduce_mle.json,sha256=YJnrXqLN00e_3PJeKZ7nqD0ME-13F2TBolLv-liutS8,1479
210
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json,sha256=Ju0pKMB0D88XnADohQJDPOijKPoHpMai0F1CZ53ccxg,4075
211
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json,sha256=Jt8xs6RiYK0E1e-OWvjWcbTx8YVSjbhduDzIpNJJ0SA,2970
212
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json,sha256=yvQxnDpgav6JOrljYbu506FzI_1vIdfJG1fxHfeS-OI,2870
213
- teradataml/analytics/mle/json/namedentityfinder_mle.json,sha256=QAMCmuRdKfgbMwwB09XhXmiYm7FLRoLneDLkj7NDh2s,2241
214
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json,sha256=lfvF01hF4KXp7w_UifxywpfYdbaQxSLpAgNEJLs3H_I,1220
215
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json,sha256=hshE6rjkmUyK-unYdVqVgM-DXPAIDm-6kkPnieIPhQk,1745
216
- teradataml/analytics/mle/json/nerevaluator_mle.json,sha256=CHWAPibmDiGSzB8gdxNUwivmKFgcs7NkxfmZmq8k_es,1412
217
- teradataml/analytics/mle/json/nerextractor_mle.json,sha256=IxNBCTAVNMSNSb_3cg4mzf6ZLeA4NBDUEDk2LoaWwm0,2251
218
- teradataml/analytics/mle/json/nertrainer_mle.json,sha256=l18-vsEccK5sW77d0rWS5ybtbn-hyGJRqGJD7eEE-I8,2365
219
- teradataml/analytics/mle/json/ngrams_mle.json,sha256=NrtFXdF2LikfKjhVuKDoliVIrlejNyxdhtVInkujovA,3653
220
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json,sha256=NrtFXdF2LikfKjhVuKDoliVIrlejNyxdhtVInkujovA,3653
221
- teradataml/analytics/mle/json/npath@coprocessor_mle.json,sha256=W4k0XYzvhB95hD8cTLKMshTQTXb-2dcvYFBkhJaMWQk,1785
222
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json,sha256=duPIIgBeH3YGHVviTB6efy6UrgZ-wak7dmd45kU1n7M,3073
223
- teradataml/analytics/mle/json/pack_mle.json,sha256=ua5h1lD0FhTj7EVw15c__KRs5yvNxos4_63BG7eOXR4,1534
224
- teradataml/analytics/mle/json/pack_mle_mle.json,sha256=ua5h1lD0FhTj7EVw15c__KRs5yvNxos4_63BG7eOXR4,1534
225
- teradataml/analytics/mle/json/pagerank_mle.json,sha256=awRRzGsL8cppo1DVG_zlWX4FBWwDtNZy63Sv-tcEH34,2118
226
- teradataml/analytics/mle/json/pathanalyzer_mle.json,sha256=Pky-OBf-6OKBCeLzP9JD_AbuKGbC4KrMGFtxbx2BIpw,1670
227
- teradataml/analytics/mle/json/pathgenerator_mle.json,sha256=agZjy9j0bTeAY3wtW29JvZrjlhb4XufzA7ky1mXAN1E,1077
228
- teradataml/analytics/mle/json/pathstart_mle.json,sha256=Dm615hPzkQwYMScBN8tU6ZNuIt84bvzYUQPMRA3bj0c,1678
229
- teradataml/analytics/mle/json/pathsummarizer_mle.json,sha256=6Sqpv6CXHxEhA0y5RtZ9cv7w0UZWGnfM_77DqPWr9LI,1936
230
- teradataml/analytics/mle/json/pivoting_mle.json,sha256=YEKewzPjzXJnnrXiWQmwXTc2xhkzPtu5LhwwSLJP8Qo,1931
231
- teradataml/analytics/mle/json/postagger_mle.json,sha256=iY9EJjVYFT7nhNS8hfZZM0zxgS2lE2BURd-UR0Y98WM,1345
232
- teradataml/analytics/mle/json/randomsample_mle.json,sha256=7iJkn9aXfqP3SETyOM9gxdUaY5q2CeIyYiqWQxOviEo,3617
233
- teradataml/analytics/mle/json/randomwalksample_mle.json,sha256=faKbvslxLrXYAIqUunjjnMfFQNJEorkw0E6WT3tKh08,2283
234
- teradataml/analytics/mle/json/roc_mle.json,sha256=UqaKrn06NvifBE38hSj_aS_lvbN1hLOIdgPWLPt0VFQ,1941
235
- teradataml/analytics/mle/json/sampling_mle.json,sha256=3deD2r67Z5tpwkzx4hrmmCFUTmEjvw3cGjHVMyj-g2Q,1980
236
- teradataml/analytics/mle/json/sax_mle.json,sha256=4O0Vpwud0rPl-z_Bi6GUj_vyTvhNfeugdOSiiRF3ktY,4070
237
- teradataml/analytics/mle/json/scale_mle.json,sha256=Uj6OzWIRLZwOFqgKcbbMgFPsbDlQ2N_1DFOHC4Np52Y,2395
238
- teradataml/analytics/mle/json/scalebypartition_mle.json,sha256=k7NBntJmIhM-k9DOoLle1Ju2B7dmyko8X0UcPNuR2d8,2389
239
- teradataml/analytics/mle/json/scalemap_mle.json,sha256=vxIXAeOd94AWGhR54qQIY8kugyeH8FStH5ZcNjEHspw,1159
240
- teradataml/analytics/mle/json/scalesummary_mle.json,sha256=roQPWNBWJOECyInhgoWX1v8zhOliX6wJN7lLifmYG9c,394
241
- teradataml/analytics/mle/json/sentenceextractor_mle.json,sha256=VeZWYM2AuKmBWMcAxPJUKeYzNvM88H8tYEmeVU6iMlY,1120
242
- teradataml/analytics/mle/json/sentimentevaluator_mle.json,sha256=3Oxz_nYxhL9DVWV90YH_MxSkJF9PhblZ_g2aigLiziI,1194
243
- teradataml/analytics/mle/json/sentimentextractor_mle.json,sha256=L5xrka5aeVPZfeoYGo8LphOYgt4HY_0fva12BiYHRSA,2587
244
- teradataml/analytics/mle/json/sentimenttrainer_mle.json,sha256=XUK563giNSNY01RC5HPLAEk1yUdGh1DN7brWjiVLTbU,1856
245
- teradataml/analytics/mle/json/seriessplitter_mle.json,sha256=buV7SBkMYZNc5-PJxponf_Mggw-yGYhAR_PhOnlyyOw,3725
246
- teradataml/analytics/mle/json/sessionize_mle_mle.json,sha256=oTuqQMbPYFT8v_KnSMqKLzXzCQuofSOSF0BmyaSUbiE,1656
247
- teradataml/analytics/mle/json/simplemovavg_mle.json,sha256=BJOo17nGl6g1n7nBK7GM5qGEwTmKjHtZuR9EdU6czBo,1295
248
- teradataml/analytics/mle/json/stringsimilarity_mle.json,sha256=b-6OwV-_Rk7r4bOENUjkleYhipYeWhjLYBgoZwatjoo,1411
249
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json,sha256=b-6OwV-_Rk7r4bOENUjkleYhipYeWhjLYBgoZwatjoo,1411
250
- teradataml/analytics/mle/json/svmdense_mle.json,sha256=xY2u-ZVNl3R8m0e-R1fvZ7TejQyPUsbUn7FqqfRnfhg,4372
251
- teradataml/analytics/mle/json/svmdensepredict_mle.json,sha256=p0grwwuHnf8wtlApFFibzNwSeJqxaKBm5cnjTpcXXQY,2540
252
- teradataml/analytics/mle/json/svmdensesummary_mle.json,sha256=Azhk_Jj1SVRv3sg22hDjQzKDezQ76n_m6zPpuqvfano,1518
253
- teradataml/analytics/mle/json/svmsparse_mle.json,sha256=1iCJu6YRQyOPHdUzVopC5rCPfGN_1V-5pYi3BcspkCI,3887
254
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json,sha256=XQWn_GsdwTAB9lVPzmuNvdb-zV58CiCDLr7_JRSD0Ag,2747
255
- teradataml/analytics/mle/json/svmsparsesummary_mle.json,sha256=QzgabQx2lBz2AsDcAoAPnT2_xISxEZRkwDcHP3e3NWo,1487
256
- teradataml/analytics/mle/json/textchunker_mle.json,sha256=cvtUxCGdp3wV3evQ1l_omrqCiS4NFvoQD_1htQ59KSc,1070
257
- teradataml/analytics/mle/json/textclassifier_mle.json,sha256=N7rnmZ_z4YUnOBXqt6wz2t4QeYkk4ADu8Ak89bUhPPU,1381
258
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json,sha256=3pk0ZKVDlJueOhwv_MhO6pn5KQd4KZsfM9Bz22ADV7k,1209
259
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json,sha256=hzSkaFQrdrtGNcG1ZMbrHliz_VVOeYY4l6obSMckuSQ,2875
260
- teradataml/analytics/mle/json/textmorph_mle.json,sha256=vqj4GWnLO-eRuJ0s1FLqsuTUjHzGrHdm4k3ZGt27T1Q,1691
261
- teradataml/analytics/mle/json/textparser_mle.json,sha256=RP9zIRHAesHqJQoY8jR190csBoYhcJ3DUn2KnMuCo8w,4425
262
- teradataml/analytics/mle/json/texttagger_mle.json,sha256=zO8O1e2O0ggxuWy_uQAZgVASxqz6aZGuHPBk8R2QFIQ,2135
263
- teradataml/analytics/mle/json/texttokenizer_mle.json,sha256=-jJm0q9WlnAtChNTWc8n8tOiJuyoeEqOGao-Eq0lSt0,2417
264
- teradataml/analytics/mle/json/tf_mle.json,sha256=77cWzW1IBbYCbIoQTNZlO2XfKwkdk2wV3Sj9VwIFxXI,827
265
- teradataml/analytics/mle/json/tfidf_mle.json,sha256=_ZubH_CeQ0cEsc6mU2vFt4cW__psf82lr5cQ-qJ3DKw,848
266
- teradataml/analytics/mle/json/univariatestatistics_mle.json,sha256=ywX0RxDU97LZqqdfLHgp2kBtwT-W_yWq1EaaiBOOs2c,2262
267
- teradataml/analytics/mle/json/unpack_mle.json,sha256=-vem1a6BgUfNbRcFFi_1PMAmcK6rGUUUuXXGCMd91U0,2414
268
- teradataml/analytics/mle/json/unpack_mle_mle.json,sha256=-vem1a6BgUfNbRcFFi_1PMAmcK6rGUUUuXXGCMd91U0,2414
269
- teradataml/analytics/mle/json/unpivoting_mle.json,sha256=0DR2dpKwdMN9kK-rnMBHM3zQAnWHKkBvYY-1EVLtlsE,1699
270
- teradataml/analytics/mle/json/varmax_mle.json,sha256=dsw_sa-l55vHHy2n6-EJJJQMy3naCo9jms0VFV486Bc,4718
271
- teradataml/analytics/mle/json/vectordistance_mle.json,sha256=qBYo6L952c6Z_oea3MZuFajOXR1BwMXQIpJMFIm0qkc,4842
272
- teradataml/analytics/mle/json/weightedmovavg_mle.json,sha256=VfNWSFxfqWxrXHD0UQ55Bk0oTqK117p8EaVaNQSUS0Q,1303
273
- teradataml/analytics/mle/json/xgboost_mle.json,sha256=hbm_ghs1vW5ZLUfhDi4DgXiy26NBagTxZrbT97X5toU,4971
274
- teradataml/analytics/mle/json/xgboostpredict_mle.json,sha256=2SHlvP1bn1I54PkZu7tJy_8w8QXw-upw-o6lJ703SRE,2790
275
- teradataml/analytics/sqle/Antiselect.py,sha256=hPQwQPYZxHy2i125RtchntjZ3ZvdXKPIiNFNDW6g6Zk,13459
276
- teradataml/analytics/sqle/Attribution.py,sha256=mUEiJLZ-BWPppnk1Cb0aRh8wnACjqNBxJf5ZbaLJVIs,31745
277
- teradataml/analytics/sqle/DecisionForestPredict.py,sha256=i8rFR19PQCsQ1-6WSW5V6iXdFqZSJ_Dl6quXz8iNIHM,18722
278
- teradataml/analytics/sqle/DecisionTreePredict.py,sha256=qh5D0m0sWvgmfRonVuJxva-np8KxyvUWSkqlstHm7fg,23468
279
- teradataml/analytics/sqle/GLMPredict.py,sha256=IZlzRhYaW-XI9hMfzC0s83PANM6vEXVVvartKH4sKoE,19805
280
- teradataml/analytics/sqle/MovingAverage.py,sha256=x6uI5AQE1_2IJDICDAIt9EZ1etLugX-FON2aYaSnB_M,26747
281
- teradataml/analytics/sqle/NGramSplitter.py,sha256=CSDZaxyC0OWA3ECc2M82rjBB7epTP00J0g9GTDUpTTg,26411
282
- teradataml/analytics/sqle/NPath.py,sha256=Jrkp5yDAsG2nddDfqSQ1rg-ht6jdI_MjY72416ScsWk,32558
283
- teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uHo_SnX6mYo8_LHwjo07SBj0RPCHnTVI2RwXftWNPCw,20097
284
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py,sha256=wusGHxXARLzJOMvn4pr_5q-IownizMRpAn-kHBhgjDA,25305
285
- teradataml/analytics/sqle/Pack.py,sha256=7KapwKd5YJS2fOSGJcs_K3mZLmzTEzeUVKbus9q6tUM,17450
286
- teradataml/analytics/sqle/SVMSparsePredict.py,sha256=nMbSUw4xKfRPb2Uf66-c6Ol8RQeZ68CftiIvnrxWfO4,22431
287
- teradataml/analytics/sqle/Sessionize.py,sha256=Mk37wjmHWR4-xbjK79GOeP4JxKct3c4hM2CicB1MFHQ,17612
288
- teradataml/analytics/sqle/StringSimilarity.py,sha256=BM857lggFlmJczUlVwri2nohPBoWSRdVpsdBE_eiJg4,18930
289
- teradataml/analytics/sqle/Unpack.py,sha256=2sERhisUPeECgV1WTDw_Cy9j8gHPVOxuAtu78s6mxO0,24599
290
- teradataml/analytics/sqle/__init__.py,sha256=qrRPsk40chOalOe9gWO9twKl_v7ivNKcExRp6saIgJQ,4718
291
- teradataml/analytics/sqle/json/antiselect_sqle.json,sha256=LIkJ6PIiRjOsjF7-Pv8f6yOS22lzmTHIcX5y2Y2SclQ,559
292
- teradataml/analytics/sqle/json/attribution_sqle.json,sha256=G937wPtYAyep64ClEFycdga9v_9UMkjcVY8S30RYqzI,2337
293
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json,sha256=jmPDF7XqhR_jLo3T2SGsrgmp6j-X2YJ1KzF5kop_huo,1280
22
+ teradataml/analytics/json_parser/utils.py,sha256=JcTAAg0HZP-wsM1vpUkBQ6z_iscoTki61FiiQleI8pQ,33896
23
+ teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
24
+ teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
+ teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
294
26
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
295
- teradataml/analytics/sqle/json/glmpredict_sqle.json,sha256=AXIfdag_G6VWcdQf2OAdWU5B6pID2yIQ-_TBULveWOs,1221
296
- teradataml/analytics/sqle/json/h2opredict_sqle.json,sha256=S82QomRrlWeUFIU0OjecHkpCNGyalInHoOIzE1N_jps,1734
297
- teradataml/analytics/sqle/json/movingaverage_sqle.json,sha256=2cH-Vv-OQRuOvUzsRBtOVXf9eQ0oXaMbAlsi5DuQnak,1567
298
27
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
299
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json,sha256=Ftfd05AZsDaWEFwGVzdOd-onHvov9TDk8D2nYhyMWSk,2159
300
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json,sha256=k7KL1-b5Ua5mD8kPQyaFkG4MLsln1cJFnpy6TzGEFwI,3377
301
- teradataml/analytics/sqle/json/npath_sqle.json,sha256=Srh7twWbWVYT30XL1o24DkxX0g9q9vhGDaWYHxaPkP0,1689
302
- teradataml/analytics/sqle/json/pack_sqle.json,sha256=KMlVOdhfdHDywlUf1LBQ45ISSwnh0AruDiFOxwi8F_s,1234
303
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json,sha256=c_bUUyH8hcYPM0G5YHfjdEOx7WeJ0uqcWmJ5DvTFQO8,1504
304
- teradataml/analytics/sqle/json/sessionize_sqle.json,sha256=5aOE8XapIRMqz_rWLW6VsxbqlzInHSpSjLnaNJAIcZ4,1150
305
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json,sha256=5sV_iMzIZQWo9M9_PavV6iG1BdaMXAJlDUqWHv7Yi8I,1112
306
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json,sha256=yBvkpHBf1zL-WdX5FQFjfIjfUcpNbRI0RnI5RiqV2Kk,1959
307
- teradataml/analytics/sqle/json/unpack_sqle.json,sha256=EOdxtpIFes6AFp-uSRK0F5vrCcKY5gGwiKzuLnucph0,2115
308
28
  teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
309
29
  teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
310
- teradataml/catalog/__init__.py,sha256=fBLHvN3xBfYuzeByQlLgZgmJBLS3aaKXund1BMpu_cQ,274
311
- teradataml/catalog/byom.py,sha256=a_W4d9E0ZUaxzaz6sMZrDwyMD9m6OAg6OcBvYhry5X0,97806
312
- teradataml/catalog/function_argument_mapper.py,sha256=aeSzX0L-Ds4FfVQVYViJEGxFrdlvMLoMidvd9WSh74U,40121
313
- teradataml/catalog/model_cataloging.py,sha256=neNyCuiXxdpfmKIfWWTZRBOU7T7F17LLGSXtDHBcESU,46052
314
- teradataml/catalog/model_cataloging_utils.py,sha256=cZEChkqT8aJCnQ4OmBjeTu_sZwQ0AzWYeDL6pIzLBVI,64270
30
+ teradataml/automl/__init__.py,sha256=cuycK8Px5u-s3OG6TJPbghFv26LPA73__H0pbA6JHZ4,77100
31
+ teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
32
+ teradataml/automl/data_preparation.py,sha256=pIxnfPDcrlLTZjQtHmg4yy94jlY9dvv1SKZ06RYeTag,43285
33
+ teradataml/automl/data_transformation.py,sha256=My-Pi0-CpCXjicj4S3LTNt8dENfpjHiWtEGBAa9-Auk,38520
34
+ teradataml/automl/feature_engineering.py,sha256=bjfBR7_LsjQtvU9ZwV_Fu8zdda2OTsJvBe8dGyaFPGw,84899
35
+ teradataml/automl/feature_exploration.py,sha256=DdO3xjOOBbdMFmUqnAwTuRifUvvcD8p-tPlJwl57PVs,21595
36
+ teradataml/automl/model_evaluation.py,sha256=efKcrHp46XpwMIVSuy-4r4u4TAYfWUvYyXhIVCtW6jA,6082
37
+ teradataml/automl/model_training.py,sha256=5jUqwrZNI7zPTQgxYBzD44DuESq-_0h_S5-3KtDWcpQ,38119
38
+ teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
+ teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
40
+ teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
+ teradataml/catalog/model_cataloging_utils.py,sha256=tJ96wxL7GprmlcLqBgxFuQxtdzs-F06mnjA79l2Csf0,20623
315
42
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
316
43
  teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
317
44
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
318
- teradataml/common/aed_utils.py,sha256=IB1SH8nukb6Xygchc71MJjZSMVpdOC3Q0si7nS6mu5c,105849
45
+ teradataml/common/aed_utils.py,sha256=ZzZVZy06IpJ_TxjjlGOlo5R4sa726tU7j_6WeOU2WIg,106144
319
46
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
320
- teradataml/common/constants.py,sha256=VhE3N2o7-AxSxrNytZy1xaQBrwbmrG2OzAbXVb6M9Tc,57949
47
+ teradataml/common/constants.py,sha256=RiuRY9udqdL_SdjrPmQEdaamGPhzWgRXBXMb3EnJrUc,57693
48
+ teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
321
49
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
322
50
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
323
- teradataml/common/garbagecollector.py,sha256=4RZ4SpMq42MuSz8JT7hizPunp8oT9OYsYfEmgWFk1Wo,27537
324
- teradataml/common/messagecodes.py,sha256=dFU0SfkK1KLSd-MxNe4qVXtdwHiJim2cPkzXFWmY4oM,28878
325
- teradataml/common/messages.py,sha256=-F9UHwFW1XauojLKzlOjVlHXgkW9aOrHV_pSP-au_Jg,17885
51
+ teradataml/common/garbagecollector.py,sha256=3wrEUP95QcKJykyiLxViHYC6lrrna06YrbTlatDHPh4,25752
52
+ teradataml/common/messagecodes.py,sha256=TLwrbriTwTfCna8WKg_9eSPSgVwzkq6TfNcjRZOhryk,28204
53
+ teradataml/common/messages.py,sha256=0n_mpv-EWTZQXUnXtA4IZiZTmkO9yISr1pkEhGTNCZw,17540
326
54
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
327
55
  teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
328
56
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
329
- teradataml/common/utils.py,sha256=wtlaabsK0ufJ3NN1WUz0bpp9mBzFFKwuZdM1tXmVd7U,93211
57
+ teradataml/common/utils.py,sha256=7YCrwjF1d1krcMwJpVn1xGQDebrOr9J-HcS67LFm-VU,88784
330
58
  teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
331
- teradataml/common/wrapper_utils.py,sha256=Z2mgYVByYLz4-OBRs3Tp0f9yKDecOcuV7ZK9gce3qkg,34784
59
+ teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
332
60
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
333
61
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
334
62
  teradataml/config/dummy_file2.cfg,sha256=3m0tBK8GnKV4jVwmwmaU9plZDGL-fI-bWTLBGvU6kpM,44
335
- teradataml/config/mlengine_alias_definitions_v1.0,sha256=6WWZPTSSky9D9vS9YfUQyoyyHgKmIP9Mb5xdE8aUDH8,3192
336
- teradataml/config/mlengine_alias_definitions_v1.1,sha256=W8v49mvBni9Yqjewdw53RJ6WoYL8d0e75CmtqxAYV9o,3554
337
- teradataml/config/mlengine_alias_definitions_v1.3,sha256=xmf1OQtwDsRhFdYNLNd9Op46lpg8JCYh6WyV73frruY,3645
338
63
  teradataml/config/sqlengine_alias_definitions_v1.0,sha256=jFH-HwBXPZDe2O8mG1Z5vaRyMvoMfJ-AOM6feGgeKUE,405
339
64
  teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8MivhBxcYGia1ZzLzPST42pI90,547
340
65
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
341
66
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
342
67
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
343
- teradataml/context/context.py,sha256=aGm7hiayNDeQ7J8bZATAHbwQJLCk_bfya5cHXaF0uSE,40303
68
+ teradataml/context/context.py,sha256=985B6EpBdHF8gXLC976lJ7MzN5YV8ocSpWTBClbugdk,42361
344
69
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
345
70
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
346
71
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -380,6 +105,7 @@ teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC
380
105
  teradataml/data/attribution_sample_table.csv,sha256=BXE9yIn-MlSqlq9qJ5qi4YpKuwIG_9nKrOYJRhjcPR4,1070
381
106
  teradataml/data/attribution_sample_table1.csv,sha256=xGBzinj_Z1JiaOEImhtCP4l_-UbIvDysjZTMDw0izP0,207
382
107
  teradataml/data/attribution_sample_table2.csv,sha256=iTu9SrEEKwSPNqdgffdhWgukWF_jrS2uN33nKpeiy_w,389
108
+ teradataml/data/bank_churn.csv,sha256=kPZiXDG9_LDN47lMTzAE5DeV44KSHQpb5nxL1JCziBg,561600
383
109
  teradataml/data/bank_web_clicks1.csv,sha256=mVtjtto25BiTTDOwEfSbQdjsIfaYSwAIhGn1RMakIEg,2164
384
110
  teradataml/data/bank_web_clicks2.csv,sha256=fUBohxq4IMv25VxRiwb3Y1EimYJyv7CofQdsOcrBuQY,3810
385
111
  teradataml/data/bank_web_url.csv,sha256=kSEx40OV3cdnRHiOZGkqPvrstyU4Fssh6KcIa122qW8,4715
@@ -395,6 +121,7 @@ teradataml/data/binary_matrix_complex_right.csv,sha256=BwBWqHSimDQQ6_BOVdtJMdpr0
395
121
  teradataml/data/binary_matrix_real_left.csv,sha256=NpLCLpv0CUEZ5N36L8gHYJnKAqCDs6FBKVCeYM0UbY0,861
396
122
  teradataml/data/binary_matrix_real_right.csv,sha256=p6BpwbkLzfFP6mlSqdE3P8yqQ-eSWEVOPKt3Bae5mnA,861
397
123
  teradataml/data/blood2ageandweight.csv,sha256=TnIFSWXQzaOR-PjoX5qN58-G3z2x66LpbCAFnHN7yiY,506
124
+ teradataml/data/bmi.csv,sha256=9TvDxRlpE6PDIjvT7VNVwnB24UOJSMPxZqAqIi6bCck,8318
398
125
  teradataml/data/boston.csv,sha256=nLO7wxYIG1xUXFBOzMEQzFyT2AGEzJm5DW8NDfVqinU,37155
399
126
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
400
127
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
@@ -472,6 +199,7 @@ teradataml/data/excluding_event_table.csv,sha256=127t4i5xtm2Hz5FF3WT9Bx_A12jCXqP
472
199
  teradataml/data/finance_data.csv,sha256=qPcVOUI6EI4kaD0ZWqktmxOTEAjS2Y6d8mSlEP8wwzU,265
473
200
  teradataml/data/finance_data2.csv,sha256=FywSdftZ3ZXM5At4ZwYnL0XpmoItmMSt7l8B92MCs5I,3712
474
201
  teradataml/data/finance_data3.csv,sha256=lp_irRnY5SosrYzEVxW4VB07vP5dP1FgIEJesjkQU6A,2358
202
+ teradataml/data/fish.csv,sha256=ja2iyemvEDRmdnASD2eC-pUAMgzIVGEJVVSsfjqrvg4,6022
475
203
  teradataml/data/fm_blood2ageandweight.csv,sha256=IBigbrDMap4hDdB9TiGlalN8EYRE7EKeUazHyvldxpY,495
476
204
  teradataml/data/fmeasure_example.json,sha256=tSXRX3n-02WPiBr_iZdscslV6Bh_FHsDdoiWHRS3Dwo,298
477
205
  teradataml/data/followers_leaders.csv,sha256=WzajVHUli0I1mYw3rJIWAUgOxWLDlleUh0pzzfRlcEQ,191
@@ -482,6 +210,7 @@ teradataml/data/fs_input.csv,sha256=RugLh7aBVyT1SUIAx1pwKzGOUEWBZ7uO_UFI5phTwlQ,
482
210
  teradataml/data/fs_input1.csv,sha256=Pr-T60lcEzpb-sZpJqs_D6deTRcNFo3bgyt6AZT_urA,2297
483
211
  teradataml/data/genData.csv,sha256=y1Lvbme5Gp9JCCRkootSCR5xS_eBQNVkzgzgQQYEb90,7917
484
212
  teradataml/data/geodataframe_example.json,sha256=r6ENcly45GWH-Ma-5_vASZCkUlIwaX6RLe6PB_yJRCY,961
213
+ teradataml/data/glass_types.csv,sha256=4roe2TEESLUV5_aj9D0oQvdezYMqcSHFirjdbFV4FTo,10054
485
214
  teradataml/data/glm_admissions_model.csv,sha256=4NjcVBiKKzb0z-v4aSrC5odT9sPf0FkrvBOTKQqmT-I,753
486
215
  teradataml/data/glm_example.json,sha256=5Kew0xMh6Xh1kjhJBbPYVGqgl1VA2YtbFD58gNAnsXA,988
487
216
  teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr7DXYyXo,907
@@ -514,13 +243,14 @@ teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0
514
243
  teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
515
244
  teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
516
245
  teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
517
- teradataml/data/insurance.csv,sha256=1WbGTT5bX3UdvCZAChdsS4chcIWDcqXnINZWOe2aMPM,55626
246
+ teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
518
247
  teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
519
248
  teradataml/data/iris_altinput.csv,sha256=1XTmOumWhN5Q9ZmboJoNsMdsXTaZwRXvR8w6gjz4DYI,18290
520
249
  teradataml/data/iris_attribute_output.csv,sha256=R5UejlCRJTceL6Ht9F3g8HJoJlLcf4CMjzXQRtGqcTo,2012
521
250
  teradataml/data/iris_attribute_test.csv,sha256=Yl9ncbAGXHI7sbOalOM2JzRIWPCLtMsNjf_YzGhbwr4,2929
522
251
  teradataml/data/iris_attribute_train.csv,sha256=_Jw_OccWjgllMWz9chE9KhNCQlanlMKTxntsKOpSeZk,11559
523
252
  teradataml/data/iris_category_expect_predict.csv,sha256=5jcx1jly9YCKV1wYlRwf1WWsh12_We90PhR2HSZ500E,853
253
+ teradataml/data/iris_data.csv,sha256=kZTitx9xROfRkqHDj5pU8msOj3BcCSm4IlsM0QJ179E,4617
524
254
  teradataml/data/iris_input.csv,sha256=3fJgMbq-vEBKLjh68CitThaLLe_NAXhfCHOqc42qcUM,3274
525
255
  teradataml/data/iris_response_train.csv,sha256=7rsH5XKO4zTa6Jg2CAtUpiEdNjT4uIyFZPcScKWzxYM,2210
526
256
  teradataml/data/iris_test.csv,sha256=zSYepP8ZX0NxbE2psLuNvw3TDCyYRAj4ETcQ-3bPruw,722
@@ -542,7 +272,7 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
542
272
  teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
543
273
  teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
544
274
  teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
545
- teradataml/data/load_example_data.py,sha256=JDWTCisoOm0-mEvkRJd01O1eWfSZVqrcXzMEjlf6XEI,14158
275
+ teradataml/data/load_example_data.py,sha256=A-NtbmsBPwBQNa6XwHRUSCs32_s1FkurgT9q-Tl2AN4,14272
546
276
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
547
277
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
548
278
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
@@ -558,6 +288,8 @@ teradataml/data/modularity_example.json,sha256=07rfwqYYWYcIt1Ky4UqCbBMELsNWjRR0f
558
288
  teradataml/data/movavg_example.json,sha256=gb2AcryljUpFp3_IDeMZFR_VdGd0ObMMxGv8cicuTFY,130
559
289
  teradataml/data/mtx1.csv,sha256=9sfklyud9J4BPTxOnmvZ1x0y6bf1-LZu5Mj3LnY0b1c,115
560
290
  teradataml/data/mtx2.csv,sha256=YyXh-UAUtAQbbQAHtgdsUC2O5D2cFuSwuvxbeTYlAZ8,201
291
+ teradataml/data/multi_model_classification.csv,sha256=VEIyKhWSmSXLkXZcUejTe9MjFVrBcRuAMS6LavI0jbA,40856
292
+ teradataml/data/multi_model_regression.csv,sha256=pJ_RMyx-_y_zeUcGOrObak_R6Lz4O0DeA0rZId5ulBs,41624
561
293
  teradataml/data/mvdfft8.csv,sha256=Bi9J1hxbuzvNBbtzNqZETvJlx6RhZb5-_tQNoC3WMlo,238
562
294
  teradataml/data/naivebayes_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
563
295
  teradataml/data/naivebayespredict_example.json,sha256=yYjv-bSl7iutKbZB9FIobbIYdv0PasKlU4IUlipkNQM,521
@@ -590,6 +322,7 @@ teradataml/data/ocean_buoys.csv,sha256=IF8hMlqQSBl7xP4ELiC3CBWE33zh0vy47wWZ5DZHV
590
322
  teradataml/data/ocean_buoys2.csv,sha256=5OsUz_8Q5xD9MedPi5MR81TuJg53eC2nu_1_nttq_f8,1556
591
323
  teradataml/data/ocean_buoys_nonpti.csv,sha256=qE8fQs6VJAQJgRFk6jc4xR6Rp2U1AmlI39cGjcva3cg,1030
592
324
  teradataml/data/ocean_buoys_seq.csv,sha256=jIU12R7mB7empv5tQhfvgOtgydeVHcVfzfmSEd78mSM,1471
325
+ teradataml/data/openml_example.json,sha256=HT2hzC7mh8ku4KNViRqkSJuDcRC98sB4Wz6IlRD-ops,1634
593
326
  teradataml/data/optional_event_table.csv,sha256=FJuG4_g7lIqi3ZKLNsUb-Y4uT54oceGjlCT6dUApiOU,58
594
327
  teradataml/data/orders1.csv,sha256=NdYv2BQ0ZGY6DMwauduuecFsiBonOne1nT9vhEyT1NU,180
595
328
  teradataml/data/orders1_12.csv,sha256=weWu40ZXGoGrqrU0MAslXuQUXH5dUs3872gsqle6Rg4,129
@@ -682,9 +415,12 @@ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqr
682
415
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
683
416
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
684
417
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
685
- teradataml/data/teradataml_example.json,sha256=lsa_hFr9CneEhxAozjbZQv3kZV6AowYhZxGf1Cwoen4,37555
418
+ teradataml/data/teradataml_example.json,sha256=YZG0EjiOnELm2Qbo5yoGEULpEm2STK1KulN7Fv0WBpY,39171
419
+ teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
686
420
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
687
421
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
422
+ teradataml/data/test_prediction.csv,sha256=rqZ3FPaeggHrDgKcCe6_kVmoU0EHh7b9OPx_6Dzap0U,9317
423
+ teradataml/data/test_regression.csv,sha256=RroIAmAjeaZYlP5qK6H_oIRbbcJNO5ZlRSqP1WBfqKk,9263
688
424
  teradataml/data/test_river2.csv,sha256=6svoeqAeiI_vEspWOu1eRprCgvQoW_NOUu7jAQj5j_Q,1226
689
425
  teradataml/data/text_inputs.csv,sha256=2uMV6hWU1ru_daIKWgKhQNYIOF_dcL3LUNCrBK6ekdw,1721
690
426
  teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL6Uq56zd0mBs,146
@@ -706,6 +442,9 @@ teradataml/data/timeseriesdata.csv,sha256=EF_JDM1aYDhrX2Qz1kxvJwKobB-7xv9e-CjPv2
706
442
  teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6P6ey_uXuCMg,2824
707
443
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
708
444
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
445
+ teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
446
+ teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
447
+ teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
709
448
  teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
710
449
  teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
711
450
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
@@ -729,6 +468,7 @@ teradataml/data/waveletTable.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H
729
468
  teradataml/data/waveletTable2.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
730
469
  teradataml/data/weightedmovavg_example.json,sha256=Gc592H0CHcq9f-2we_9RvrBJ9E9A8_HD5f3mHnm4n3o,153
731
470
  teradataml/data/wft_testing.csv,sha256=2g56ogivANGHMrle1MMfY5OGQeHwxnox1inRl88dPlI,422
471
+ teradataml/data/wine_data.csv,sha256=ttv5ymiLcNmi678dPxMSvKd73ZuQ-vwkzXEkktzjfQ0,89796
732
472
  teradataml/data/word_embed_input_table1.csv,sha256=47fOsMTC4GC0-t5QQDeYqnx2kwNkxL73HEuXf7ZB08U,220
733
473
  teradataml/data/word_embed_input_table2.csv,sha256=y3OxXnCf75fVchZ5FpSyzymmvk8HJeodcwupOqc4JIk,95
734
474
  teradataml/data/word_embed_model.csv,sha256=ZBg8elkSawGAv-nVnKJa-OOFfVNXCXB09c9ZZM3HsL4,913
@@ -748,8 +488,8 @@ teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5
748
488
  teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
749
489
  teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
750
490
  teradataml/data/docs/sqle/docs_17_10/Attribution.py,sha256=JXxWA7OZDfoW4UBR_XMLlG1EWJYhFqImF6iZd7qTziI,9264
751
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=VHsUd901syQcix9kfbGUX_2_q6j033PEP9WKZgzZO8g,7393
752
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=pBO4cEVqFYYkq5V_xTQ4xwFhljgKXXpSDTdjxfyMINk,6000
491
+ teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=xdWdXR93nScfnliztnY2PbI7SbH6YA7Xykk2dwRdkvg,7373
492
+ teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=_WaKiivgjiEnEWl63bmhdlOS_weTg55-3iekpePH9qs,6001
753
493
  teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py,sha256=RWFcrFV0FV239esV-4Od-9jXqTOu6ei2R1EZ3EArcJc,3666
754
494
  teradataml/data/docs/sqle/docs_17_10/ChiSq.py,sha256=5RQrZn-myg3bk7yqu73HAVilH2Z2d1SOAD__DK82kEY,3804
755
495
  teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py,sha256=a6FTwGVUbu7xNjT46oqqQntOn0Nv5dvBH4HKIBHSwEM,3684
@@ -758,7 +498,7 @@ teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py,sha256=knge57LxBNm
758
498
  teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py,sha256=xW4JDM32ec0rfOOYAcw-O50cS89L32gxVB5l9g6J9fQ,7606
759
499
  teradataml/data/docs/sqle/docs_17_10/FTest.py,sha256=QXlDLZP4HQSGC-GoyfgPbV8yZGxEMvSWyKav0y8BjNU,6963
760
500
  teradataml/data/docs/sqle/docs_17_10/FillRowId.py,sha256=m1tj7kN3b9vOJcUKNlCDU0gWFWGwHNaUuLmi0h33udY,3526
761
- teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=yX8RewRyvBLVcn0jHv-_5uKLFGs1ac77wgZXVzTGDeY,3819
501
+ teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=xDB-nDgSorsApjZNp8Cm6EG0LVDscy5WvupmwYEVhqI,3815
762
502
  teradataml/data/docs/sqle/docs_17_10/GLMPredict.py,sha256=KYdlaYjdnTXP8mXbvbS7brdIi_OAwmp0FIpUq53ZXh0,6398
763
503
  teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=eCDp5XGqkdLidfac_RhER5IhyONENfCpdlqps6za2Gg,3732
764
504
  teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=yAn5Hmb5389Mj-Tpz0O5B8_kLdC8TncwJN225U9GNyg,3603
@@ -770,25 +510,25 @@ teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2
770
510
  teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
771
511
  teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=SvKyxAyXSxRLHgS5E8KHCHACikPJqq2kLq1qoz5Iy3o,6327
772
512
  teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=dAffOqeG5RS71va2Pxpf4Rr9eeqC4c4fOXwTDxjw4UI,6023
773
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=4nlEPOXCOZbvjTRyshsSnY204GR66vEorpscWVZJiAc,4507
513
+ teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=suiB4t0xNt_5B0eyUrJnY9LNYqdCaYYXBf_f0OImq-I,4509
774
514
  teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=ttKL0YXjGXMpnxjwHPG0b3THC3qD1oscjKxh7n3wR-4,7419
775
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=xVsiYidpkJf8_slUinkZkBg6xhO8C5_rw0RIPgvgmXs,4556
515
+ teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=q8LsJk8xZC0eOvEt_dkyBDGqywEUCcNIpkKJ3YBjegE,4558
776
516
  teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=VqHpY8CnKUMXP1glJWaKOtFUYLQfc4c5Kv38v-dPYto,5368
777
517
  teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=kvYnoL910OM1HKLW6eUjiMe9jgx0JgUexhzj4aziQs0,4927
778
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=jYqtullIeXSGdwfLG2HHVMa1KXNuYpwdRlFAZo-0qk8,4509
518
+ teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=OCez0bsR99XeLyAx7vMSa79BWmpb4nmYdZFXVbCL0ps,4507
779
519
  teradataml/data/docs/sqle/docs_17_10/QQNorm.py,sha256=iXuDih1qdLFnI862wmV3IIe8NLQS4jkJfVbxBJAnyx4,4685
780
520
  teradataml/data/docs/sqle/docs_17_10/RoundColumns.py,sha256=TCwxB8o9raq0stWWpicdZXV1LTpLP7Qly8h2reb5mVA,4951
781
521
  teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py,sha256=HvvcknxaOmyW13ZPsxMCT-ioM6_Zukc3lQ5SXo_8szY,5330
782
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=eeFjNCNaJZD5cYcvqnkcgg-mpw9eW1pbwiQM-uos1SA,4422
522
+ teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=bzvgZvInUMu8I9NQP0VwesIQhYid-5Vd8e7puXriwk0,4426
783
523
  teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py,sha256=nhuVXk_MSTKL8lKjmoxtYxMOVpFSIcQl663kK9TbjBo,7095
784
524
  teradataml/data/docs/sqle/docs_17_10/ScaleFit.py,sha256=H8iVb0P-edPVHi8ngj1H87QwINO3TQeS4U7r5UAiH70,11137
785
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=pCjJQomfQ6ZBsJCbXlrSe_j5ic_TSV2-lNvoJkpU94Q,4239
525
+ teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=Q-ejBeC58PUggIgYGRkLGSxRMwIzHn9AcVVu6fOVCqc,4241
786
526
  teradataml/data/docs/sqle/docs_17_10/Sessionize.py,sha256=ZydqfkCVmgz6aTobDk4U1Ce6hc3R27kCrJ7O8zRLWOk,4888
787
527
  teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py,sha256=CQLIsvFwb8reneh0Qda1VN9HfuQk547dbpWUJ2JF7ak,4874
788
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=pNYa7P1vaFwlIvCg-rAjCx79RIhX6jQ_8JrvOlx-yH8,4146
528
+ teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=D0nlEGC8zyaDQNDXQyEE1-60PwtXpGi66dRp74q61zo,4148
789
529
  teradataml/data/docs/sqle/docs_17_10/StrApply.py,sha256=9N8sCtBxNMzC5_imEZpeZNvlu0k2RBxMsR90-A82jTE,7243
790
530
  teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py,sha256=AfWA0H1j-DxyVOVKqK0orV3jPEWqWXZBDut3Mydl5XI,7569
791
- teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=girzSyO7Cd95K8VSXd6bkmoAQTM2408NFNrTjiW5sLY,4665
531
+ teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=7UQCTF27g23QprlAqsu8IqhGwucFD_V8fiBEaiD1K70,4669
792
532
  teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
793
533
  teradataml/data/docs/sqle/docs_17_10/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
794
534
  teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=mvdTMss1ydf09kzO-FoHB2yTYsA-7lRTeXVA8fX7EWA,3448
@@ -798,8 +538,8 @@ teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeu
798
538
  teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l7TsweBXh3-Ok0EGggvxZasDrNpNHA5hMRMVjuKg528,5280
799
539
  teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
800
540
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
801
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=gNHzzzGa899NKdIr_rQSG-HB5klZY8oVhMcZGtE6gDw,7401
802
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=Ch41SEHfea-S1SBPvg3iRlfR_8sCeXGrK6ffAyq5-ns,6551
541
+ teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
542
+ teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
803
543
  teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTGdc4uwJsFoZiDkCXfqvkgWIGwhGoOs,3673
804
544
  teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
805
545
  teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
@@ -811,66 +551,66 @@ teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=oK7pP1wVKog
811
551
  teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=y0grw0Kkg85y38COidwsu9do4HxLxhrTzDNjvd_pCao,6454
812
552
  teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=R-fMp0ABfkzut3I0jw8uOXBTU6Erxctg-Wrfn5ASTaQ,6970
813
553
  teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=pNMOlZe5dow7NxglD_Vq6UOJXJihUHqOxtOhVT6R_zM,3533
814
- teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=3M9OAOtlK_3L_PDJ8GfhhZ5viZA65p7M31W9boQd0v4,3826
815
- teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=eAnc_N2kkz8M1OSe0o8d4GbEW_koGsn6BMg5wSH186o,18170
554
+ teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=icqA35RoP_pY-qJwv0MUpQDDtdMh6rYsvPQaIXXPMvE,3822
555
+ teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=IOZN2_MeJd1zXEkjhXdLk6vX0o9rnzSKhtrvwPW5mFA,18168
816
556
  teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=ezplov5qzdp1BiC4GP_SWeFD20a5bi29sPW6WJowhHc,21000
817
557
  teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=piOwuf40UFDnpUOaFp09z4ebWQXcoc3ei4V1svCd8yM,6405
818
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=wUxluDhmqfpvLBWvcIoL9dCJKV3zzHn3Fm6U1WMahjc,11793
558
+ teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=g7SX2d3BMOdW1j43Qiw6OZvrZ9ojpzWRI10CP8mMpOo,12103
819
559
  teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=ZGTcD0sVkaAL3fLp7qXq9CEd70f7I8WiXRbLUulJ9r4,5577
820
560
  teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=b2lJtNqaf3nF47YOEDCnkWJ2bedtQ0zttwcEKy-RFZc,4968
821
561
  teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=fpSBZOSNCrpDK7VLlhFdr77is9fH5dQzfd7WaJo8tOY,4799
822
562
  teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=VdWTGkD3k4FSOHbrS4x5Vv7xLhjxZfPBUcx9O0zmbjk,10563
823
563
  teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=pI1W4zRe1TBvdQVo5UXHvHIq8rc9VL3FQi9EKJarEnI,9202
824
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=XNC3_NkDxy2gQWFo-n0YOBZNgXOu-iRNlTM4bv37asU,6073
564
+ teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
825
565
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
826
566
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
827
567
  teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
828
568
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
829
569
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
830
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=ysDjtJXDFxWLSDzO8IbZjXuWrDl0QosbjRdOS_dq-Dw,8185
831
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=48-UJMuICBApMmbmiSi7oMK8BDZmjHUeS1p2BIVy8iU,5735
832
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=up9YjpFvFCI_CpTmbd_njTVndxIfeVukGp2dp3bwx4E,5184
833
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=zxg7zIhNDA0J7JNL2R-iLNNFTeNpc2rvlk0fdKdkAIg,4971
570
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
571
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
572
+ teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=PRXO_DaA1gMjFo2Ti4JyxiQAwyevUzCDUM6215oaRA0,5175
573
+ teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=7VveajQ0jMoRH-TxP-E8N_9rLLJJgwVk0gUNIwtB2a4,4889
834
574
  teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=78KeTUal1gXpfHtaHjiyTAV6VPW_ZIetS6whCpF3bkM,6334
835
575
  teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=CnYQ_YYHHL8mnTeZRxe0f88Tuq0XAs6MDQzMqX403MM,13946
836
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=JeqA5utKpsNyFz9cXFRokDy3t0EncIzp6OPywCRwd3M,8459
576
+ teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=hQsae48P4I7Yg7ockkv73CcOwISPRjmEdGd02-_ejJM,8464
837
577
  teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=kIjDSmZs9x9XNlMcrh4hKmxNO-30dR_JYJT_kkJ7drw,10910
838
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=TdqTTd5SdpghpIg7iePnlGD7CJzhVdqcv8GAyWEq2qY,5058
578
+ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=9OS5wnwtk5LBO2CeVqhDazBGkHZQjgXwyF3zqP_zCsU,5060
839
579
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
840
580
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
841
581
  teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
842
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=Xk5JFA2mcKDv2y6jhpOPYCrDKpY5TzU9OMFBOqzQe8Y,5061
582
+ teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=IWNif30agfXyuPdeLvNtwmlQm_iEfYKkWz-KM391ivQ,5465
843
583
  teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1FpgN9Au10zKeIh8,5376
844
584
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
845
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=fg-rvzMvyzLYfTxIWo-nqRuCSVOb4Tyy4gn16cSLqLQ,4952
585
+ teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
846
586
  teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
847
587
  teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=PBBHYKLW3Tl1uRVal2csyMg72neKNgMKMNi9yPLgUkA,6810
848
588
  teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=42pqcLxvr_pBARjVDD2iXprKiepluawmiNj4dQnpSnM,6692
849
589
  teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=3my_ki5WQA9U9qQiGAw10tgkHsiNcgWa8b75DdhDpqY,4813
850
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=OC9_ziBNr-vrGgXqfdz8Y_8zKeM-Ap4yFt56RDYX998,5266
590
+ teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=em1fAbW-Bry9KVwG7zFq1nTGSDTMxg1WHc2e4wsXSxA,5193
851
591
  teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcEnzS1JSnXqiFh_3zNoPHwlaZSiE7bro,10163
852
592
  teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
853
593
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
854
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=IMdO3P99CYVXGrcV4mzwLFVkO0nLVDOczDspq9rmBxM,4990
855
- teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=42eRGuIzSSf17G-Th3aFdj7aAEXXu_9Uz2CyoeE9ZTY,18484
856
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=Zjyd4Sw1yV7HeOm_181qod1F6rWgctF-6lXpq4ke8L8,8853
594
+ teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
595
+ teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
596
+ teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=5vpcUcjfKGxrDQ5cw1pnd3l2uhvKLWo-TDTQxhqeV9k,8823
857
597
  teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
858
598
  teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=qtVCAR6rLjSovVa4RXmPt7cemLuORzTgtNt_3hlylbs,11144
859
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=ASIUzhB-ra4l13KMp15x3MTA41vnTtksac9_UY_p4fM,4705
599
+ teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=x9SynimB9X22apLjgIjhZV4j156ylsymmAMbAq7Yzi0,4707
860
600
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
861
601
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
862
602
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
863
603
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
864
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=-eU7EjWhOrfL4Ry-mzAWMayd0fkAvRTH3QxBHRE5tBc,4591
604
+ teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
865
605
  teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPScarkWE-IEutR2y-yrDU,7250
866
606
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
867
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=VaM_n-8gyToDfmXW8bzU_ZknJ-JbTd9IiNZo-WTW3wc,10214
868
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=LNT3XqUBvzMxKMyoYIYaG11z_rfi7hyGmlpBqQa1Uwc,8030
607
+ teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
608
+ teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=g-xM7e8XhkvnDduBciYG28RZyyvWmL3JwLN2exbBKqA,7974
869
609
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
870
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=L_U1ANtK4XSSnu3sl9M7X32x6-m3Rnq7M6JSNWDQUak,6512
610
+ teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
871
611
  teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
872
612
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
873
- teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=S4qD2N9pK3NCk68-DGQaKucOBxRqltWC79_zy7J4Y3M,5730
613
+ teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
874
614
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
875
615
  teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
876
616
  teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_dEZzKK5rbNFcW243DK1g79f-hE,8259
@@ -878,7 +618,7 @@ teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUb
878
618
  teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
879
619
  teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=3xZ8kSch-_UvYLzM31tqgj4y1GxZgOtMlcRwTkiRADk,11212
880
620
  teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=t-Hz0jlDpfHEMYGgAnVmjtGv9_H46SPzgREBbUa71i8,17407
881
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=bSztWrSoTSJNZf5vSxTOWv8IEapJoBIioRmluTfYW58,14364
621
+ teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=VkM94spF5UG15hHf4lDrlhNURsItEMdsNzziU3KGYw8,14348
882
622
  teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=m0Nlf8IV_QqIEm3A1SFYxWRq8UtdUggA9Xyog5tkYb4,6483
883
623
  teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
884
624
  teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -1019,25 +759,25 @@ teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json,sha256=USiDLoY-JVa_4OSyrk0inf
1019
759
  teradataml/data/jsons/sqle/17.10/TD_FTest.json,sha256=24PlNpdlve0ihK9zMXRm86lBUv5ERGbllEWm3UQ3m2c,5649
1020
760
  teradataml/data/jsons/sqle/17.10/TD_FillRowID.json,sha256=p0mkXfBmLzFviESLNA7Mw4Ug-STnzov-LuZMLrnp26w,1599
1021
761
  teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
1022
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=MUpzGURNbSLF39HTLN4gDaILinKu9ZzqV9SUWE6kG5s,2378
762
+ teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
1023
763
  teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json,sha256=FuKUCl8EXWu1MUr8Egr7O6-kR_1OsIfpH4W30MQdoCI,1827
1024
764
  teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json,sha256=aa5zU-gGHEA5rxX7SB53IHQxwV-sZKWY_mCxV4I4gXQ,1839
1025
765
  teradataml/data/jsons/sqle/17.10/TD_Histogram.json,sha256=yuIJsaHRNVFHgazvJsZa2vsif2lDMekTnjSZRadTBBU,4900
1026
766
  teradataml/data/jsons/sqle/17.10/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
1027
767
  teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json,sha256=g9mDAmzkFI8vKT3cmKgNpv24sjY8sqmkN7CVqNSDZkk,7325
1028
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=9hemBRTKNDDWyqqYTts-AKWVLCqf8wBPkq-0OaG_iMA,2333
768
+ teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=FGM-k_KTJW_U4M5cQ-GkRIumY6dJmS_VeQtokvQnoLw,2389
1029
769
  teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json,sha256=xpjAkmga9X-AC9aBDztd-RJOqTN3MxLZYXMflj6dyug,7143
1030
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=3fqhRK97xmjpunqVMjYozoH0jD5AAcYrxYZYRZ3iyno,2150
770
+ teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
1031
771
  teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
1032
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=8XbtXLRpzFema8vvrSJAAOEIGtPTLf3YtCMQVxiE5ig,2467
772
+ teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
1033
773
  teradataml/data/jsons/sqle/17.10/TD_QQNorm.json,sha256=FW_r35-7vFxDrvR9CADTETYn84EUIqavMJ59LopVxvI,4158
1034
774
  teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
1035
775
  teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
1036
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=Wc4MPHAtso3FOLOnKUV4fZ8_qcafV7rvFH6H9U-f134,2428
776
+ teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
1037
777
  teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json,sha256=rEeZZImZPhUHEUZ2ZW5_LWnsz-S2zWdKm9t8PPAgab4,8444
1038
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=bMEfvzN20IJdkfBIoIqQABM3H0ZMba5-h4raJF5QElw,2353
778
+ teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=iyeANSyGKlxeg6214Rkv873wGb2BFmujkNTmGdmb7As,2398
1039
779
  teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json,sha256=QHNmCIWvH70qmO074cGBAa63gLL01g-PLNR7VfdHvxU,5020
1040
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=xvLVNW-w2zRk2_7XNPZ2DUTiNfy3IxhuxHOpIRdmaKU,1826
780
+ teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
1041
781
  teradataml/data/jsons/sqle/17.10/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
1042
782
  teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json,sha256=1DKlUuJZwznvUFbMU0JLNuwvm8uSQUFrPzfwuk-I4EY,4889
1043
783
  teradataml/data/jsons/sqle/17.10/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
@@ -1209,40 +949,57 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
1209
949
  teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
1210
950
  teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1211
951
  teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
952
+ teradataml/data/scripts/deploy_script.py,sha256=mEOXrvfOGAcTHMhAc7q4uhL23c-OqBv9F51q8WrviKQ,1768
953
+ teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
1212
954
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
1213
955
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
956
+ teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
957
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=pLGvpIoJQUd3xuU3tQPvp_PxdVx3yw1BhLCFDqmdPp8,6239
958
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=-KAyM71Ae1sNiBWe5X419dwFxs5TG58rQdo5ycaB3Gg,4955
959
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=uzKh8-cC8qvuBPNmvwpHIzt0Sq5hN3zGwHpmSlEnW68,4365
960
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=2gJThB1CPjAHD1KDkCJU8oB2pNhO-3XI2XxcrXBaF2c,5937
961
+ teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=9witRDQzKlr8cRi3Sqenr3ysoUlvQ4HZJQdefMcvgME,5943
962
+ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=Lz2xufPlB4UiFt7mdQukWrWQK4aHqHP8mWyTb5JWXNM,4518
963
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=JO8bacjaw3sgINCfiWYKXwbIRvo4qOUXg3Y_8YYtq1s,7770
964
+ teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
1214
965
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1215
- teradataml/dataframe/copy_to.py,sha256=oXi-7rQxu7Xi2Du3hZxjBOYAl3L7tlz1L80N7pbojdM,73664
1216
- teradataml/dataframe/data_transfer.py,sha256=CSBXWL0Q89S1hCebRbchO58p4dUpslWVfZSuvS22SfY,120695
1217
- teradataml/dataframe/dataframe.py,sha256=7wtQ3JO_ymnSuo4-5yyT3R6SSGsv_iF0h__raZQEtYA,900484
1218
- teradataml/dataframe/dataframe_utils.py,sha256=Db23GJXQ6734Cfp4PvqARKR0ulz3STQ_PNwdHICvLWo,81883
1219
- teradataml/dataframe/fastload.py,sha256=amEYji7x3UeJbOh8Rk9Xe9BpOf_mITn5_-bIVRIh8SU,30659
966
+ teradataml/dataframe/copy_to.py,sha256=qKRuHEsmXweSUw8t78KtErdL_7JBZlEFEDIDrFhOz0Q,76053
967
+ teradataml/dataframe/data_transfer.py,sha256=mVcZWyZrGmcY09rU6jmSoEbfRMrK9RGD4m2Vk4On8Fc,121030
968
+ teradataml/dataframe/dataframe.py,sha256=omeXW9bUzVDsFQHq1io6RP9_in8BPstLmAEsU425F7Q,929401
969
+ teradataml/dataframe/dataframe_utils.py,sha256=Xt209gKYO1IGswUXXPQRZuvT7EyrZMvr10ea-ywvxoI,86011
970
+ teradataml/dataframe/fastload.py,sha256=SwB9vojHcnlT07rWejtGckFsHjp21bZykF30ZUtA1Bc,30879
1220
971
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1221
- teradataml/dataframe/setop.py,sha256=ODyjvgsJEBlnWqbnoz5ipfDlTCAWini1aCEyh9_3MHQ,56657
1222
- teradataml/dataframe/sql.py,sha256=Ar2EnOoeE5EZ1qWAlY10XgzI6CGeKvlLQHhBBjIxUhA,289523
1223
- teradataml/dataframe/sql_function_parameters.py,sha256=1SdfzvHmA2H7f0Bqvb3Xs56A6Q3aFhWZUHqTf4BNQVM,19013
972
+ teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
973
+ teradataml/dataframe/sql.py,sha256=RndAcQlBz9xd7YLtHugOcZ3aYtJ-_o2E5ETXakKiX64,598800
974
+ teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1224
975
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1225
976
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1226
- teradataml/dataframe/vantage_function_types.py,sha256=g22kZjZdQHmBTDt7Cd0JNyA0rsOnL0Z-hw-hnOVK46I,26941
1227
- teradataml/dataframe/window.py,sha256=LTx4EayOQlBb7kFTQBu0Vhd8vXBHH7I-ucJo4w9IL1c,32361
977
+ teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
978
+ teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
1228
979
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1229
- teradataml/dbutils/dbutils.py,sha256=pY0stYXFwlKXydicbyJB01oUlsS28K_Ew1so8ThMfr4,47052
980
+ teradataml/dbutils/dbutils.py,sha256=W56DIrfayzXQ-YKbO3VkztfUnWdNpUJhPTgHaDOLxyo,47458
1230
981
  teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1231
982
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1232
983
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1233
984
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
1234
- teradataml/geospatial/geodataframe.py,sha256=xcBAcP_fpL4wX-kemrVM0C2kM4Nr3kInnv0tgp00r6Y,50861
1235
- teradataml/geospatial/geodataframecolumn.py,sha256=YlzFgmG5GJjtYNIXjqq1j4TBs6pFQmyRaqoYBXeqsnk,16024
985
+ teradataml/geospatial/geodataframe.py,sha256=cKnqjVBj1kkiAPqMw5w-PxrxLBhYXwq1ZV1SAZE4P-I,51399
986
+ teradataml/geospatial/geodataframecolumn.py,sha256=Yoe8GueOGoz6p1K1qMjwYzcg_K1hh9se4CMEq2JLrNU,16327
1236
987
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1237
988
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1238
- teradataml/hyperparameter_tuner/optimizer.py,sha256=6VuY8SWMM56jD6Ksl0lMlU65QDHNLIgRUaeL75CVir0,155181
1239
- teradataml/hyperparameter_tuner/utils.py,sha256=uZ5yszsHwikS0vfWC-iV-dYxD6DLbArZ4BgDCE1_IbU,8677
989
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
990
+ teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1240
991
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1241
- teradataml/lib/aed_0_1.dll,sha256=Eg1_QkUl9K3r3VgbO3tvYxoO_uMPP1QKht-66b69AZ4,3928304
1242
- teradataml/lib/libaed_0_1.dylib,sha256=ezMaf-7NOXiHbRrrE_5lcMd-rj4kquWY5jFrzd7NckE,1806033
1243
- teradataml/lib/libaed_0_1.so,sha256=nHwZQZYNcy6n_wyG8PrrxwsW6QOFuqxFAglOhdKCamE,1040680
1244
- teradataml/options/__init__.py,sha256=yeNP9O8azPanbjs7RUyeIvuFqj8DmZtEsXs5RvwyWvs,5487
1245
- teradataml/options/configure.py,sha256=g93L2hP9PBJllxvZxybWF9gi-oo_iz8co8R58cxrWxs,18456
992
+ teradataml/lib/aed_0_1.dll,sha256=LY_vI-UC2Ck9AQPVa3WJNlTqE-ZL03b7xrUfHaggcsY,3928816
993
+ teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
994
+ teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
995
+ teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
996
+ teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
997
+ teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
998
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=p2vfmvFgx6AUd1rrTNduhP98iPLj6xWsGUWEvIM24vI,80265
999
+ teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1000
+ teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1001
+ teradataml/options/__init__.py,sha256=-dWw6bhZIjkoOoKoHPUePF572GwNKZzWEWJG6b3yIMc,5299
1002
+ teradataml/options/configure.py,sha256=80nX6p929uTwLsTHQkWSyUh2gH29xppFcb7oSqb-ZBU,18376
1246
1003
  teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
1247
1004
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1248
1005
  teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
@@ -1251,21 +1008,20 @@ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,123
1251
1008
  teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1252
1009
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1253
1010
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1254
- teradataml/scriptmgmt/UserEnv.py,sha256=iKZ8nyXB71C0yTXhsOX35v9UHrRdUmEUmwjLqggCtSk,173440
1011
+ teradataml/scriptmgmt/UserEnv.py,sha256=euflI9J03K4gWceVPoRgKb9RutXSrHtsIkYO_9onBdM,176731
1255
1012
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1256
- teradataml/scriptmgmt/lls_utils.py,sha256=4bm_ECW95sOwkTX2jBUJG9hoAE5JTa7_b9e_PmtQmWE,65377
1013
+ teradataml/scriptmgmt/lls_utils.py,sha256=3HUailXY-sv8ghC-mmuphsIKsXKTCWWculrTPuuRiXs,69528
1257
1014
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1258
1015
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1259
1016
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1260
- teradataml/table_operators/Apply.py,sha256=25gyHbBJH9xFm7XBQNtyKE9i6XKE07TWF-k-wx0zNIc,42812
1261
- teradataml/table_operators/Script.py,sha256=8drdMGvTNvDGeJVkFFiK-s_0oxV2gwxS03w3hQBxlSA,91658
1262
- teradataml/table_operators/TableOperator.py,sha256=8chi14LrOXEGkNyCYYMJBz6OtXcQpWX_xnjyIZtjKnA,75896
1263
- teradataml/table_operators/__init__.py,sha256=8bE578cOJrRIVnKT2FJTjFKjsdjOXjjWBDkKxxYh9e8,235
1017
+ teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1018
+ teradataml/table_operators/Script.py,sha256=atd373WtOnkUzBf_RttEVRSzcuUvyehhy9CTF8IitBE,77300
1019
+ teradataml/table_operators/TableOperator.py,sha256=htjHKr0qyj-ieD8RG1P18vN1bb5DIJ4ff5zSHKXM8cg,63392
1020
+ teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1264
1021
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1265
1022
  teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1266
- teradataml/table_operators/sandbox_container_util.py,sha256=nPExBTHqWa4uD1dB4TEGqmImE5QU3HYqNp7enc2-jPA,28075
1267
1023
  teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1268
- teradataml/table_operators/table_operator_util.py,sha256=4HHhgNX0n5gx2gk8fuXSNHUrwy2Dc_h9ENkwxkysBno,28734
1024
+ teradataml/table_operators/table_operator_util.py,sha256=b9ndKX6Zz0SQuWiRzvYVKILIFpXX1HwgFtMwAIlhOcE,28404
1269
1025
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1270
1026
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1271
1027
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
@@ -1274,9 +1030,9 @@ teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26
1274
1030
  teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1275
1031
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1276
1032
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1277
- teradataml/utils/validators.py,sha256=0p4R5c-sCfKb85LQ9FAnBcMLgWyDuGuFnsk2bQ3523k,87267
1278
- teradataml-17.20.0.6.dist-info/METADATA,sha256=Egy-vFj0Nl5TFb-WCeqcADkQSrrIRSI8yPLHipl7sFk,81852
1279
- teradataml-17.20.0.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1280
- teradataml-17.20.0.6.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1281
- teradataml-17.20.0.6.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1282
- teradataml-17.20.0.6.dist-info/RECORD,,
1033
+ teradataml/utils/validators.py,sha256=ljVG9MW_639w_2f5mfWFTy3a6m36Y-wxekM0F96U1Sc,91216
1034
+ teradataml-20.0.0.0.dist-info/METADATA,sha256=e4iwyFC1BMEOm0NTpokEK1HZxazSd3x1axfeL24pRYQ,101318
1035
+ teradataml-20.0.0.0.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1036
+ teradataml-20.0.0.0.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1037
+ teradataml-20.0.0.0.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1038
+ teradataml-20.0.0.0.dist-info/RECORD,,