teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,17 +1,17 @@
|
|
|
1
|
-
teradataml/LICENSE-3RD-PARTY.pdf,sha256=
|
|
2
|
-
teradataml/LICENSE.pdf,sha256=
|
|
3
|
-
teradataml/README.md,sha256=
|
|
4
|
-
teradataml/__init__.py,sha256=
|
|
5
|
-
teradataml/_version.py,sha256=
|
|
6
|
-
teradataml/libaed_0_1.dylib,sha256=
|
|
7
|
-
teradataml/libaed_0_1.so,sha256=
|
|
8
|
-
teradataml/analytics/Transformations.py,sha256=
|
|
9
|
-
teradataml/analytics/__init__.py,sha256=
|
|
10
|
-
teradataml/analytics/analytic_function_executor.py,sha256=
|
|
1
|
+
teradataml/LICENSE-3RD-PARTY.pdf,sha256=8g05OMHrGp7X287akUppOQ7p5an8_SiIxkaUct6fF0g,302023
|
|
2
|
+
teradataml/LICENSE.pdf,sha256=AUAuscoFVLRLEPFRm7afwgOm_mjl1RES-tfLa8QxV0A,66677
|
|
3
|
+
teradataml/README.md,sha256=YVDqrWwD3u1tSIfRqPp1jvrDk9y3NbWeE1XH42wnBDY,102196
|
|
4
|
+
teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
|
|
5
|
+
teradataml/_version.py,sha256=gGqRPNae_BqTFfodlSXmm8Occ6ZclYcLSAUwlazPgJ4,364
|
|
6
|
+
teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
7
|
+
teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
8
|
+
teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
|
|
9
|
+
teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
|
|
10
|
+
teradataml/analytics/analytic_function_executor.py,sha256=jOEBRZBlCIJjCzN1WdkGIRb6qIDRsagMV3y3d8NlFE4,91166
|
|
11
11
|
teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
|
|
12
12
|
teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
|
|
13
|
-
teradataml/analytics/utils.py,sha256=
|
|
14
|
-
teradataml/analytics/valib.py,sha256=
|
|
13
|
+
teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
|
|
14
|
+
teradataml/analytics/valib.py,sha256=7iyoxf-zK4-kM7RkCMXuOviZSSoVo1GDIaR8b1J4WWo,73589
|
|
15
15
|
teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
|
|
16
16
|
teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
|
|
17
17
|
teradataml/analytics/byom/__init__.py,sha256=ViV7E_6d0RkbPcKQQ62Ar11-dMUwxf2Eg68TdYmCM6c,810
|
|
@@ -19,328 +19,53 @@ teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9
|
|
|
19
19
|
teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
|
|
20
20
|
teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
|
|
21
21
|
teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
|
|
22
|
-
teradataml/analytics/json_parser/utils.py,sha256=
|
|
23
|
-
teradataml/analytics/
|
|
24
|
-
teradataml/analytics/
|
|
25
|
-
teradataml/analytics/
|
|
26
|
-
teradataml/analytics/mle/Arima.py,sha256=JXgklcw569sotPm7HEnsoBO15v7d5hc1q2EnlDOmWkw,31992
|
|
27
|
-
teradataml/analytics/mle/ArimaPredict.py,sha256=DiiXBMuU4pK29RbrFICUceD-wLNLhlsJna3pU5vwmEo,23765
|
|
28
|
-
teradataml/analytics/mle/Attribution.py,sha256=XxrQKRugI32ZxGfKp1ucFnDZ-GMavuYOLEezWm7yUlw,62048
|
|
29
|
-
teradataml/analytics/mle/Betweenness.py,sha256=qFlDm-F3XRolVJBmLFAy4K3vhpzk1w5miWRsq0h7Jzg,35720
|
|
30
|
-
teradataml/analytics/mle/Burst.py,sha256=yrtRgUCCPyRmenEGv-NXPU9Wta4FzTmEssMpq0I4ROE,36348
|
|
31
|
-
teradataml/analytics/mle/CCM.py,sha256=VAXZcX1W6WJCkFVmf98e-rV4Oq7uAwEt2uYeA08SkLQ,28886
|
|
32
|
-
teradataml/analytics/mle/CCMPrepare.py,sha256=EmDB4ZEEhJP9VFkUwoTDLDN-J-orgPpyFETV_o5A090,14048
|
|
33
|
-
teradataml/analytics/mle/CFilter.py,sha256=wLHiXR2IVzPdCX6XUczWbILEOeIv18mx5v50NftBlmA,21805
|
|
34
|
-
teradataml/analytics/mle/ChangePointDetection.py,sha256=G6xsdHjMrnEj5a3A0btQy9vYmxhjD3xzHQLKhTijk8g,28166
|
|
35
|
-
teradataml/analytics/mle/ChangePointDetectionRT.py,sha256=R1pUhSoi_2_bhcgxwgo46bmXECuLdJcySjgW5BohbII,23272
|
|
36
|
-
teradataml/analytics/mle/Closeness.py,sha256=GX0WG9NU3fSPrCn-JK_HMVwtffphrzr2NFuiq35OpXE,39741
|
|
37
|
-
teradataml/analytics/mle/ConfusionMatrix.py,sha256=jK_W784wdm506cG0q8CPFtrvojkJ-G4cpyUSe3p8j2M,20811
|
|
38
|
-
teradataml/analytics/mle/Correlation.py,sha256=yUxVCOzawNzY2IB1DVosa-5_FVpsrgAYVQndGczomJg,23210
|
|
39
|
-
teradataml/analytics/mle/Correlation2.py,sha256=r6_USV5J7yU1F3VDtKv1SYcu63hJenpjBPwV_267QEs,29791
|
|
40
|
-
teradataml/analytics/mle/CoxHazardRatio.py,sha256=Rd7jPVSGtrL0HnOZk0u4vGfC-Igqzpk_CbmsuAnWafg,36233
|
|
41
|
-
teradataml/analytics/mle/CoxPH.py,sha256=NeWgrVeUbC9giuwi1xwq9V1S2Vr5uHSEsWmYiLMxhkk,28585
|
|
42
|
-
teradataml/analytics/mle/CoxSurvival.py,sha256=X1gP7TX3QGJmOHKjDLhUMtUTd4GuKfo5kTuq1skaufc,24884
|
|
43
|
-
teradataml/analytics/mle/CumulativeMovAvg.py,sha256=66SpFWGbaGmm-UZ8axwFZglqGuRjAhUXmtISWmUId74,16525
|
|
44
|
-
teradataml/analytics/mle/DTW.py,sha256=WqLoIx7rnvPlTaIUMlCBx2jnf4BwZa-vdmOZJ4HJRTQ,32608
|
|
45
|
-
teradataml/analytics/mle/DWT.py,sha256=Flfbu6ptBa5hx5YmYH-7Ew20dIj8bhGMUWZCNfVW6bs,29604
|
|
46
|
-
teradataml/analytics/mle/DWT2D.py,sha256=20yE1tXBkm3X4cKW0a0ms4R_lw3G84HOruSTIeYSwBI,31608
|
|
47
|
-
teradataml/analytics/mle/DecisionForest.py,sha256=Wp2zT1wvvvHrrPg8fYBAc8kNtNpNIv1dIN5hO3ftjm0,36672
|
|
48
|
-
teradataml/analytics/mle/DecisionForestEvaluator.py,sha256=bPU2jZHeC5s5BgEn_H5FR7MveVvSCrARsluqQzVLwEA,16448
|
|
49
|
-
teradataml/analytics/mle/DecisionForestPredict.py,sha256=aexUC-sOsjziP06EjkyBcfchhMItaD2trwIT5wdXEQk,28086
|
|
50
|
-
teradataml/analytics/mle/DecisionTree.py,sha256=XClKrWqTP9lrC7GctBIeCsUHV_GGVtgbzr6WbaziITw,46228
|
|
51
|
-
teradataml/analytics/mle/DecisionTreePredict.py,sha256=1Ko_sAgGwMBr3WYZ2THYxjx2nPv0uo0yzTjU_LjGDlM,27230
|
|
52
|
-
teradataml/analytics/mle/ExponentialMovAvg.py,sha256=DJatwfs0voePJy-L7f5EJatOXserOIVj-4qwLCCj8KQ,19477
|
|
53
|
-
teradataml/analytics/mle/FMeasure.py,sha256=1t6WQ2l4RKdSSTZ8kIKC6x6ADzUlY4xSL5qWoV1e_2Y,18288
|
|
54
|
-
teradataml/analytics/mle/FPGrowth.py,sha256=gPTuJiELMDCwG5R0WCrEHWYP73KqDgui3uEzTUemQHQ,39243
|
|
55
|
-
teradataml/analytics/mle/FrequentPaths.py,sha256=XaKUZBSmM1vAf4jm6XBc_NSXUF_PMKtMqNhcjf1Hg7M,38408
|
|
56
|
-
teradataml/analytics/mle/GLM.py,sha256=tQEwqv02rXIZ9k74flJFLe5lahS8b9MpuFWIZWLYHFA,27040
|
|
57
|
-
teradataml/analytics/mle/GLML1L2.py,sha256=7ipmFlfP2QmpX3L_zMyxV0wmH-wb8jvLx7GETaiYNMU,26861
|
|
58
|
-
teradataml/analytics/mle/GLML1L2Predict.py,sha256=NgvGTI6dshI4zuBy-FNCI0-cKjreLrOFYE0FhJVaRBc,25563
|
|
59
|
-
teradataml/analytics/mle/GLMPredict.py,sha256=MNZW0ZtCNvCOSLjiLyDV_3-WKfS9upiRk9dbG-ZW7is,26377
|
|
60
|
-
teradataml/analytics/mle/HMMDecoder.py,sha256=Aqb9ctuWk-aq4YSAbjJRMO0TH8fk738-zZZ5S8FAHJc,55393
|
|
61
|
-
teradataml/analytics/mle/HMMEvaluator.py,sha256=l1KvqGVkxdkFW5KqO8pDVxWL_76-D2PIK8QAeRbrzUA,52305
|
|
62
|
-
teradataml/analytics/mle/HMMSupervised.py,sha256=idM2imz60cvUpY8XMQ8Lx_sK3mjirh3E0pm01xDiE-A,28302
|
|
63
|
-
teradataml/analytics/mle/HMMUnsupervised.py,sha256=tuPSTGl1Gmdp7vJbbazaN72Dw8pHCXtArd2kL1f-gcw,31570
|
|
64
|
-
teradataml/analytics/mle/Histogram.py,sha256=GSjhgFfJX4TmsHgbEz5RoRuWVzq0Px9dcVLgc7b9A1I,27785
|
|
65
|
-
teradataml/analytics/mle/IDWT.py,sha256=x08229KFxGmEsF4lYwRDrERKey47iUaXPHBwFFq1z9c,23729
|
|
66
|
-
teradataml/analytics/mle/IDWT2D.py,sha256=J0OpfsuI3aews5BHsUb0DS110-t5Ep0wQMcAWtia_0w,24803
|
|
67
|
-
teradataml/analytics/mle/IdentityMatch.py,sha256=HveIDx6UTD_B_ZRDONlhbDy0jD-l95J5fGevWxjyHmI,45713
|
|
68
|
-
teradataml/analytics/mle/Interpolator.py,sha256=dT81iT1jNvi7CxunGy4WtRN8XZJuNyvAk40V4FlUFYk,49801
|
|
69
|
-
teradataml/analytics/mle/KMeans.py,sha256=fUlhJsF6uksMDWZyHT0jUOfpjao2Pw89VyGKe6eO25U,24507
|
|
70
|
-
teradataml/analytics/mle/KNN.py,sha256=yvLnnWc-aGDp8keYQtbQmnbyb8FxiNMkDplG_Dus3IA,32564
|
|
71
|
-
teradataml/analytics/mle/KNNRecommender.py,sha256=3MFcu8Ef53Kjgz3zKBtaisJD7R3oQOLTXwu-g60BO5w,24931
|
|
72
|
-
teradataml/analytics/mle/KNNRecommenderPredict.py,sha256=08sDVR4ZZAfkkbCreMPhYKv6n8zKOCsjUOcabXzopGI,30088
|
|
73
|
-
teradataml/analytics/mle/LAR.py,sha256=axpLc78I_rHUo9TkWaiKGnEhA9R3edJFjWNk5pHRU7c,20400
|
|
74
|
-
teradataml/analytics/mle/LARPredict.py,sha256=j1IdOlB6ExpHkWYdyp8_k60u1TjZmvBjAEatoeFcDSo,22992
|
|
75
|
-
teradataml/analytics/mle/LDA.py,sha256=fnJvTbZR1_Fu5PEp2hNICG09ibuuRVmPlKDlFbpWq4M,27478
|
|
76
|
-
teradataml/analytics/mle/LDAInference.py,sha256=WoxIJmivC2shcs9E3o2xJXa3r0edAwiXAfHeMQvurpc,24307
|
|
77
|
-
teradataml/analytics/mle/LDATopicSummary.py,sha256=bgInAgZ1UROPj7FEuPskzriqhlHY6xNBrx4kJ7fObVs,21263
|
|
78
|
-
teradataml/analytics/mle/LevenshteinDistance.py,sha256=HOJX31nxb1C7b0_PCdvo64NwLxm6t53Pw1_fo080fTI,21240
|
|
79
|
-
teradataml/analytics/mle/LinReg.py,sha256=wgOGzFs7Bh6pGkQbyqB0ZuMx2RePUbHGRdTXGm80m88,20366
|
|
80
|
-
teradataml/analytics/mle/LinRegPredict.py,sha256=SZ_CjUw4-Qvtbi2J4K5NV_kuZR2o5hmC-M8O6PWDnQA,20733
|
|
81
|
-
teradataml/analytics/mle/MinHash.py,sha256=EAUY0vwyZXH_jw1RIDMOiB5TeL_cCVUPOl8DJ-dBrGI,26930
|
|
82
|
-
teradataml/analytics/mle/Modularity.py,sha256=qIErKTP2JTrHUIH3wQLgAElb9YDK4hRSE0EOwR0H90Q,32152
|
|
83
|
-
teradataml/analytics/mle/NEREvaluator.py,sha256=Hv2zrqcj1qparKaTuuC4MTDlnReAx1yj69IUf4X2yy0,18591
|
|
84
|
-
teradataml/analytics/mle/NERExtractor.py,sha256=UU6aMDfHJv2Jak0BPS3wbf2IcIXNnvpn9MJ6f-CEuNw,29570
|
|
85
|
-
teradataml/analytics/mle/NERTrainer.py,sha256=PPYSnvZjfT2xac4NDiza4ttZAjpu6PKrIUe0tgYGFh4,21265
|
|
86
|
-
teradataml/analytics/mle/NGrams.py,sha256=1ZdhrpFzQL5NZ23KFHTQcx3eNn6lUYRH0-smMQdakbA,27764
|
|
87
|
-
teradataml/analytics/mle/NPath.py,sha256=vs_4di70pUPX3yM-FyG2HrKBpNFzCAmAYxnVptYipCA,32559
|
|
88
|
-
teradataml/analytics/mle/NTree.py,sha256=bm_EoNG-OTLT-gHdSfUlf6yb4qtMz1rauvRZw3ABnCs,25907
|
|
89
|
-
teradataml/analytics/mle/NaiveBayes.py,sha256=CPLoKCIP1sQVKOV1fGVAczfGgiXP0JTjHkF-yzrsYBI,21720
|
|
90
|
-
teradataml/analytics/mle/NaiveBayesPredict.py,sha256=HrE8MGTdtHwPEGCTUq3n6lj5dauktdhb-CGczHkNrCg,25300
|
|
91
|
-
teradataml/analytics/mle/NaiveBayesTextClassifier.py,sha256=mQRGtfNixMvcLFGEFY42TWct02R8TVM2pvB50TvEuZ8,30739
|
|
92
|
-
teradataml/analytics/mle/NaiveBayesTextClassifier2.py,sha256=C9PRgZPJAKJeU_Xfee2labIdWnMpKAkX6iI6nMZf9Fw,26599
|
|
93
|
-
teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py,sha256=x0pX8-rYV_-VoDtBFb2bR8DpUVbx8xCvA_OU9Kct7Kk,43143
|
|
94
|
-
teradataml/analytics/mle/NamedEntityFinder.py,sha256=VrpbQTnj3PNcfVfISGxceGJKfZHe_WZKwwkHAQnqS2w,27329
|
|
95
|
-
teradataml/analytics/mle/NamedEntityFinderEvaluator.py,sha256=ehwTGCbD3M_NtprcSPNOMbgZxVgAPNsx8yVfv7jG-JQ,19121
|
|
96
|
-
teradataml/analytics/mle/NamedEntityFinderTrainer.py,sha256=ksU2GjjOCFjA3ND_8xDZebcT2XiDkB4qjbyGVwBjtZA,17886
|
|
97
|
-
teradataml/analytics/mle/POSTagger.py,sha256=Z5LQk7SUyMl6AzAf6xra_9Ch5TTqMsB4vLXlQ9cNt74,19163
|
|
98
|
-
teradataml/analytics/mle/Pack.py,sha256=Qqo_tG81QvPuw2fmxscMXTYCZZEECouzyrDec1y52Gc,18706
|
|
99
|
-
teradataml/analytics/mle/PageRank.py,sha256=ffaN_ueBTd8tBlQHdo96pR17oPxzxEebS427M_hS7Gc,26408
|
|
100
|
-
teradataml/analytics/mle/PathAnalyzer.py,sha256=Yby_8icyo2WZlUdHlGUlvY5mqk8IG83D_yuws3OTSF8,20195
|
|
101
|
-
teradataml/analytics/mle/PathGenerator.py,sha256=GMmVqammA4T8EuU-wTyKoL10H-9x_QPTi6tCGOGXjTo,16205
|
|
102
|
-
teradataml/analytics/mle/PathStart.py,sha256=tMBXQDOK-qJXzku1QcsTmVlss2t2NvQYukq-1MeFXGk,22144
|
|
103
|
-
teradataml/analytics/mle/PathSummarizer.py,sha256=kg5cq3fGHf-xVDuxniKNa5Jrcg_RbiSENOK9I8ucrtI,22276
|
|
104
|
-
teradataml/analytics/mle/Pivot.py,sha256=-1Riyw03JkrG9tyTg7rnuEZsdYrX-lRSrEi04d6LrqY,22271
|
|
105
|
-
teradataml/analytics/mle/ROC.py,sha256=5DIUXoAp5fHUX4OLPs8ojClw3_ik-3WBn3czU6idm1s,20211
|
|
106
|
-
teradataml/analytics/mle/RandomSample.py,sha256=3co2O6tt7oB_jNYbnc9IU7d2D0Zm2p7PJwicKjfU9dQ,32649
|
|
107
|
-
teradataml/analytics/mle/RandomWalkSample.py,sha256=UO5jvxoycMxG2QxhevsnXk_l29jCsObeSHu_x545z70,25617
|
|
108
|
-
teradataml/analytics/mle/SAX.py,sha256=j5_uDEksbPxkHUym9eAy-WwNipbiD37INF0_TggKdqk,41808
|
|
109
|
-
teradataml/analytics/mle/SVMDense.py,sha256=rKgJR_mgXkKMpGC-jrQDCNH7MqJYutmEcMQZw-_7X6I,33524
|
|
110
|
-
teradataml/analytics/mle/SVMDensePredict.py,sha256=DK83tJzURL-f4xyZMBExUcJj3X53_OuhBOvGOcz7Fwo,27433
|
|
111
|
-
teradataml/analytics/mle/SVMDenseSummary.py,sha256=jHufXGE8ufLsU6C-SK7MrVuJKaqOqFHWemTOK8Tu_9M,20842
|
|
112
|
-
teradataml/analytics/mle/SVMSparse.py,sha256=XYoySo44Kr9juxW5ScyTSYSdnuzUqTPUSkaBfX-4l3c,27353
|
|
113
|
-
teradataml/analytics/mle/SVMSparsePredict.py,sha256=MZ22lOx66aXzzFlq9R3M-DVg2Yw1w7_9TK4bNbQD6r4,28361
|
|
114
|
-
teradataml/analytics/mle/SVMSparseSummary.py,sha256=U21AfPCQWaoZ-lD6DJCmqMAh3npXk-5Cop49WbdtfyA,20410
|
|
115
|
-
teradataml/analytics/mle/Sampling.py,sha256=LpmVVJnAMnq7EDc5pcHsoD1ejt8fWxZ9cg38yzW8XoU,27836
|
|
116
|
-
teradataml/analytics/mle/Scale.py,sha256=p9NW-Fu4ssmuIUVkX7tNuB4G0U58_i06k2q_W9R__JQ,28095
|
|
117
|
-
teradataml/analytics/mle/ScaleByPartition.py,sha256=tsS8WYAB0UF0UK_Q8Ok5BePuCSMhfsj4w5JA9uj5XhY,24243
|
|
118
|
-
teradataml/analytics/mle/ScaleMap.py,sha256=a5lOA9v0KALTYyXrUCvgvcrtywRx73HQRN8OkbJ4q38,17125
|
|
119
|
-
teradataml/analytics/mle/ScaleSummary.py,sha256=-GP16At3yax3YRfonKs7xlEUh8ac8p2MgHmnQlhTDR4,13621
|
|
120
|
-
teradataml/analytics/mle/SentenceExtractor.py,sha256=bbaRdnZqXQnO9mpHarI94s9M8nciml3qyh_X4cKBems,16304
|
|
121
|
-
teradataml/analytics/mle/SentimentEvaluator.py,sha256=HUJ8RP7t8LxoS3AYdgxYNGbMcwtJYutj5-X7W5v5kxw,20928
|
|
122
|
-
teradataml/analytics/mle/SentimentExtractor.py,sha256=dmIpjoj9Eg7HwZWw6BRPc4K6N4eBQ7VHYeaRbP7uw30,29613
|
|
123
|
-
teradataml/analytics/mle/SentimentTrainer.py,sha256=5FP6fv3jTTfEhGoSnshWhyI-D_I8GoVcYtWky9aZ_7Q,18453
|
|
124
|
-
teradataml/analytics/mle/SeriesSplitter.py,sha256=yf7sC_9Z-xq6ZwNRSzTWtVfPWyyiDNqKBDOy9pS2740,34618
|
|
125
|
-
teradataml/analytics/mle/Sessionize.py,sha256=W7hq4WmP_Qfp9qyrSKmOKuCJgZBIvCztPYD3z3rNwAw,22310
|
|
126
|
-
teradataml/analytics/mle/SimpleMovAvg.py,sha256=M5BVI89KhgTP9a-RGy5zCWIhTj7wiIy94kc1uT-NXis,18205
|
|
127
|
-
teradataml/analytics/mle/StringSimilarity.py,sha256=F8AwL_o3zmHPgUh9W_KTjldW-n_1uFmVqg38G84Xpn4,20728
|
|
128
|
-
teradataml/analytics/mle/TF.py,sha256=90akaQqjEQKXabrUXONG6tEkC6Y0rMlrBl_-ULsErls,17750
|
|
129
|
-
teradataml/analytics/mle/TFIDF.py,sha256=0lMvJmHW2uuuzrrhu3UrvNG-AP9TEJYq0b-FJ1Mlvxw,25104
|
|
130
|
-
teradataml/analytics/mle/TextChunker.py,sha256=9-4Hpss8XwM4_hvloJTtVpO2Mbx4am7e5ISDYODSWbE,19133
|
|
131
|
-
teradataml/analytics/mle/TextClassifier.py,sha256=9alMbRA1_90f8KxXohMmRDZ7deps3oUFGcK-HDsqteI,18566
|
|
132
|
-
teradataml/analytics/mle/TextClassifierEvaluator.py,sha256=jissyWVR1tTwg5NkzbsNHIvWtTlMdEgvKf8GpO8lvJk,19588
|
|
133
|
-
teradataml/analytics/mle/TextClassifierTrainer.py,sha256=KhEndmDtLnEbFlh9xCENZmK4RhTAwHgfYIZPwnd3dyM,28682
|
|
134
|
-
teradataml/analytics/mle/TextMorph.py,sha256=iChbfT1M6u8uVyZw9dK_gC58E6dU1K_BhrHWpKy38rQ,22982
|
|
135
|
-
teradataml/analytics/mle/TextParser.py,sha256=_8p1sJCpKr-sZG1_rZ9_BjWnZbpYULbpx5g-YNqVoSU,30537
|
|
136
|
-
teradataml/analytics/mle/TextTagger.py,sha256=huc5I8w7XQIs96MnPFsPwXgWJTj3SvaEroStGmyxepM,25838
|
|
137
|
-
teradataml/analytics/mle/TextTokenizer.py,sha256=clunv6SHmvmCcnXiKzmBYDocZZjNbvkccbvkQ2vDkTc,23882
|
|
138
|
-
teradataml/analytics/mle/UnivariateStatistics.py,sha256=2qxlTPgYTFHwDjdG02wkx9Ajc_CMfTn9DlL1ErDVMOk,25292
|
|
139
|
-
teradataml/analytics/mle/Unpack.py,sha256=94bxoJ0Et8Em5Jh7PgpLQKzAk5vVy3YKNe0-GuInyTo,25736
|
|
140
|
-
teradataml/analytics/mle/Unpivot.py,sha256=OETtEs_F5XgemyKOFDvUv6GxPeDbFvCRTIVjnYz7NhY,20263
|
|
141
|
-
teradataml/analytics/mle/VarMax.py,sha256=a9leHbZK84e5lY4ZNeAORGRLbxvrdT7M3s34PVfLi3E,39358
|
|
142
|
-
teradataml/analytics/mle/VectorDistance.py,sha256=mLuCevclAL2widsmKVz-giD7ZOKpDhiPBnUpyDF-6_Q,40765
|
|
143
|
-
teradataml/analytics/mle/WeightedMovAvg.py,sha256=RF-hWocxikfxPTCl8COVUo9ODRTWcSdpGYRMf2R8Vuk,18582
|
|
144
|
-
teradataml/analytics/mle/XGBoost.py,sha256=b7RKR-H8gb4CcY43YiXynOYG3xV9soW4p4FsUO_Tt6E,44182
|
|
145
|
-
teradataml/analytics/mle/XGBoostPredict.py,sha256=zkBVU7-CCrAc8yCqlkQNPsdhUnO61kEd1VvB76HilV4,32474
|
|
146
|
-
teradataml/analytics/mle/__init__.py,sha256=tY8W4kG07nfr4HXgsIUnNrz1sxRJ_SqsymfUQloOMVQ,7754
|
|
147
|
-
teradataml/analytics/mle/json/adaboost_mle.json,sha256=-5TH-DwUVfbh-X091UbHnWByn22tHxyGi2SvNjMQpUQ,3762
|
|
148
|
-
teradataml/analytics/mle/json/adaboostpredict_mle.json,sha256=VoE6fWavwmQkZYKoDJtfoNv7ooEEwAARA8YqU9eaC00,2348
|
|
149
|
-
teradataml/analytics/mle/json/antiselect_mle.json,sha256=Cj60CWuTDMPqfkvluV8VDdsbqAy70ziO_Jvo-1hEM9E,902
|
|
150
|
-
teradataml/analytics/mle/json/antiselect_mle_mle.json,sha256=Cj60CWuTDMPqfkvluV8VDdsbqAy70ziO_Jvo-1hEM9E,902
|
|
151
|
-
teradataml/analytics/mle/json/arima_mle.json,sha256=Geo4PSfES_OOE423cHvfBgjuhR_FnGtjEyYlrP0_ccc,4572
|
|
152
|
-
teradataml/analytics/mle/json/arimapredict_mle.json,sha256=AQSge3_l92HUwuyeKGpMWEiiWeqJJTx7mHT6o7F-F7M,1379
|
|
153
|
-
teradataml/analytics/mle/json/attribution_mle_mle.json,sha256=VQa-T0AsHFs3yShNPNOo2MRIdilM2cerEaY6uHRmjfM,3790
|
|
154
|
-
teradataml/analytics/mle/json/betweenness_mle.json,sha256=MjANfBoH2QPtDQDqmehlQY8wxcjLqQSjKLqiGD634NE,2578
|
|
155
|
-
teradataml/analytics/mle/json/burst_mle.json,sha256=ne9quREXObE0CEv1qReBDede0dR8nCfzw4DRcU3b-EY,3751
|
|
156
|
-
teradataml/analytics/mle/json/ccm_mle.json,sha256=2jO9FKo-lklWfBveJDBy5Ds3XeboLDTpgotbgBErCqo,3392
|
|
157
|
-
teradataml/analytics/mle/json/ccmprepare_mle.json,sha256=jn6JR2MRgBOj0rTTWJyiYqc6L_H-Fn8nB2yrPUGjTQs,382
|
|
158
|
-
teradataml/analytics/mle/json/cfilter_mle.json,sha256=DWc7o92hO1cJ1vtBdDY-VWwaKni8haGVlEmrrH1vudg,2509
|
|
159
|
-
teradataml/analytics/mle/json/changepointdetection_mle.json,sha256=g8ioMcP2_cpwH7ncdHw9mg3JXaIOI6FUZajhBbY7EqI,2496
|
|
160
|
-
teradataml/analytics/mle/json/changepointdetectionrt_mle.json,sha256=bUNbVQGI2qCuvEW3TatXS3PNlLwXN3OfxqR9gxMmxro,2139
|
|
161
|
-
teradataml/analytics/mle/json/closeness_mle.json,sha256=FpS4ZDo1KTZ67tyCzKBzY5r3MnCFjR1nY8F_aWo6PSs,2746
|
|
162
|
-
teradataml/analytics/mle/json/confusionmatrix_mle.json,sha256=AoOZRUbTnDWPXRmP7MXbzNGzJwK4D_TkdDiXjvm9des,2099
|
|
163
|
-
teradataml/analytics/mle/json/correlation_mle.json,sha256=qhumDVqwbJ5sgwX8xNvqbNRJhjSFiGhGPzg2UI2KyAg,2407
|
|
164
|
-
teradataml/analytics/mle/json/correlationreduce_mle.json,sha256=_30IMvRDYfWZIQyrDNzQVjvfs2U8TsOsC_GtO481rfU,1333
|
|
165
|
-
teradataml/analytics/mle/json/coxhazardratio_mle.json,sha256=xjIE8FyjomL09Q1b8eX-MP-XX4YoCJAahfNnilmqjC0,2448
|
|
166
|
-
teradataml/analytics/mle/json/coxph_mle.json,sha256=pHd_mFV-40xzLdFglV2ulIL_dOS-5RVFHGiDDAvuS0s,2669
|
|
167
|
-
teradataml/analytics/mle/json/coxsurvival_mle.json,sha256=DQAAyusx2Q_fTjz--sw9kMkUeQd_ZFtkjeu7bvdCvGg,2158
|
|
168
|
-
teradataml/analytics/mle/json/cumulativemovavg_mle.json,sha256=s1TW9QpSOr_e4pbFcCVkM91VoypGnlqyRGTBxMjFXKg,925
|
|
169
|
-
teradataml/analytics/mle/json/decisionforest_mle.json,sha256=0mjHxBpjXtouFO2q97pKCOS9CuxeFcmA_goFj5xH5o8,4578
|
|
170
|
-
teradataml/analytics/mle/json/decisionforestevaluator_mle.json,sha256=Kt5gtZ5uR30SZmXHi52OPJT53lQ-9cacVAaDvrLBAjA,925
|
|
171
|
-
teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json,sha256=RXnYtAYmAk0xrk755wuY0OX6LifWFChwlX9jHh89g0Q,1994
|
|
172
|
-
teradataml/analytics/mle/json/decisiontree_mle.json,sha256=Il5MEPXIRoPH_C_5ZHo_y6jboFqL7Gevkcopof-j0kE,5393
|
|
173
|
-
teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json,sha256=2beMBav7dQldM7UKvues7VCJqrbeWkx_KOu1vRdG_4Q,2419
|
|
174
|
-
teradataml/analytics/mle/json/dtw_mle.json,sha256=sq6zdNMJ9mWKlv0Uw3yFv61uXGr1cxmk0tXQDgO76uE,2543
|
|
175
|
-
teradataml/analytics/mle/json/dwt2d_mle.json,sha256=ffM1rFlcfVvidAVIQEJbiYCSldUFC80sPdKwRURM-lk,3059
|
|
176
|
-
teradataml/analytics/mle/json/dwt_mle.json,sha256=bsV8M9bpSS_sP7UDPu-bUKlS2YizqVhheRbSKZWra0k,2636
|
|
177
|
-
teradataml/analytics/mle/json/exponentialmovavg_mle.json,sha256=6maN76GR6alpN1iuwcBc-RZedjc_-hUfP2VgNGf8_8U,1488
|
|
178
|
-
teradataml/analytics/mle/json/fmeasure_mle.json,sha256=8tH3lUzLK9fTOalE-JFWLtD8IdkPHH-A-e1V7eLE8qE,1521
|
|
179
|
-
teradataml/analytics/mle/json/fpgrowth_mle.json,sha256=QOjNCRjA6W-fU3HTiGzJcP7LyK_yssELm1QPkhWngMg,4403
|
|
180
|
-
teradataml/analytics/mle/json/frequentpaths_mle.json,sha256=a7YP3f7r71o27V-OXo3EssT-0Qw3SExVaAa-hWzFask,3575
|
|
181
|
-
teradataml/analytics/mle/json/glm_mle.json,sha256=1iiMFUhT0BRtPqlTCFsbKwRwJN4eqAwdVVr6JCDXPAA,2907
|
|
182
|
-
teradataml/analytics/mle/json/glml1l2_mle.json,sha256=0AI3w7JPwbpZfYvlMhIrTfMaubaZrV_s3vYVQgpnDL8,2880
|
|
183
|
-
teradataml/analytics/mle/json/glml1l2predict_mle.json,sha256=-4pgFJGlVTH_i0an1kE5F9222pK-LUSTz3mC8Orgo1E,1533
|
|
184
|
-
teradataml/analytics/mle/json/glmpredict_mle_mle.json,sha256=88uSAs1iT07bvH8SbVysDAD0_L93a1Pl3rVD4Fkz3pg,1950
|
|
185
|
-
teradataml/analytics/mle/json/histogram_mle.json,sha256=b7OG682lt6LACaknYNbYaEzyRzJr7gLW4nlEMHkuIfM,2664
|
|
186
|
-
teradataml/analytics/mle/json/hmmdecoder_mle.json,sha256=IDqoAHw9xdb4ewsR_XFkGbCLLep6BSduaPozmz0fFA4,5321
|
|
187
|
-
teradataml/analytics/mle/json/hmmevaluator_mle.json,sha256=VyzbfBBEnwcjefHF_zKsf8elq89oSMO3hVaeOL74FYY,5715
|
|
188
|
-
teradataml/analytics/mle/json/hmmsupervised_mle.json,sha256=j_SOnJohvjrqHBjfOL4WEuSTh1h_JHzOSu1optxJo_8,2479
|
|
189
|
-
teradataml/analytics/mle/json/hmmunsupervised_mle.json,sha256=1JHGrOJ2a1HQH1G-tH2bRULTu8Ao9dMT8xdbHiPZBJ4,3139
|
|
190
|
-
teradataml/analytics/mle/json/identitymatch_mle.json,sha256=75sQ8z2uT-sI4vdYT0KNiaMStYnLBQ3MMP4YneoMOzs,2350
|
|
191
|
-
teradataml/analytics/mle/json/idwt2d_mle.json,sha256=sO5lWJI5XpnVTjWd88a8imqh1wjx9Xe-WQVzt6ZXelo,1947
|
|
192
|
-
teradataml/analytics/mle/json/idwt_mle.json,sha256=wfwfo8jLKdzFOU_UJsEPmwxOFF5QPhtTLhsgpB8IhwY,1743
|
|
193
|
-
teradataml/analytics/mle/json/interpolator_mle.json,sha256=KegxJWMytDhgM-rxXj5rVeTUbazlerps32ONUZuhUuU,4130
|
|
194
|
-
teradataml/analytics/mle/json/kmeans_mle.json,sha256=xIMslyEa7aHRagS7SJNgghA9GVcgZI8ktqbodsbp7LI,2530
|
|
195
|
-
teradataml/analytics/mle/json/knn_mle.json,sha256=Ckaq8vwFAOxP0R5Ol0MS8mCIONVTUXTKdlMPJeyJ9kg,3806
|
|
196
|
-
teradataml/analytics/mle/json/knnrecommender_mle.json,sha256=FsrqzMxvPr_y9n0T4MpJ4W6rOWK16E83knTVHuC5Zck,2982
|
|
197
|
-
teradataml/analytics/mle/json/knnrecommenderpredict_mle.json,sha256=6jlt0YczODG4czOAtDD5zvROoeeWgYZVvmW5_kz8ZPI,2030
|
|
198
|
-
teradataml/analytics/mle/json/lar_mle.json,sha256=82CmtMBiX8isPgV79vwAF-dxdCOp0esT0SpU5dgVJzQ,2016
|
|
199
|
-
teradataml/analytics/mle/json/larpredict_mle.json,sha256=Xw7Yl8zykQUVTzmMaYwHq70uZlDXhcf63mSWrjjZvpw,1730
|
|
200
|
-
teradataml/analytics/mle/json/lda_mle.json,sha256=sFZupuRPg3_BQjObEYwXnAgHzXgasf9QDtJjII8E6NU,3438
|
|
201
|
-
teradataml/analytics/mle/json/ldainference_mle.json,sha256=5cH-csn-9nEpUokariDw13PR8J3HH0DXp1dPteXJfAk,2092
|
|
202
|
-
teradataml/analytics/mle/json/ldatopicsummary_mle.json,sha256=q_9ZkFDOmkImU7wRJCKcBxTQWtNZdkKqhr_ptsY7fuE,1735
|
|
203
|
-
teradataml/analytics/mle/json/levenshteindistance_mle.json,sha256=2tv1So_rcJ3lDhO39SFnWgW93rW6Y7reSSsa0gmjfjY,2472
|
|
204
|
-
teradataml/analytics/mle/json/linreg_mle.json,sha256=32ngzoJFdO7vGpaUvsvDEtMKexbIxUE8WnnFiRPeIEI,1121
|
|
205
|
-
teradataml/analytics/mle/json/linregpredict_mle.json,sha256=6XLY-IZ5qX_85Tt3q5kVL9PD0Tqq0AQ7XQ-V_TrvAMI,1461
|
|
206
|
-
teradataml/analytics/mle/json/minhash_mle.json,sha256=DV3soldu3H4S5UTlYedZnfgVALbDnG4qSUntqVvEdJY,2942
|
|
207
|
-
teradataml/analytics/mle/json/modularity_mle.json,sha256=9b_nuYFb_leD048_C9z5X59Pe5fgoxJih6NZ-S5o-iY,2440
|
|
208
|
-
teradataml/analytics/mle/json/naivebayespredict_mle_mle.json,sha256=LjtEbOn1qeY90UVXas-xUPnQ6RyUjFzdMVfSNYTATHw,2319
|
|
209
|
-
teradataml/analytics/mle/json/naivebayesreduce_mle.json,sha256=YJnrXqLN00e_3PJeKZ7nqD0ME-13F2TBolLv-liutS8,1479
|
|
210
|
-
teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json,sha256=Ju0pKMB0D88XnADohQJDPOijKPoHpMai0F1CZ53ccxg,4075
|
|
211
|
-
teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json,sha256=Jt8xs6RiYK0E1e-OWvjWcbTx8YVSjbhduDzIpNJJ0SA,2970
|
|
212
|
-
teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json,sha256=yvQxnDpgav6JOrljYbu506FzI_1vIdfJG1fxHfeS-OI,2870
|
|
213
|
-
teradataml/analytics/mle/json/namedentityfinder_mle.json,sha256=QAMCmuRdKfgbMwwB09XhXmiYm7FLRoLneDLkj7NDh2s,2241
|
|
214
|
-
teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json,sha256=lfvF01hF4KXp7w_UifxywpfYdbaQxSLpAgNEJLs3H_I,1220
|
|
215
|
-
teradataml/analytics/mle/json/namedentityfindertrainer_mle.json,sha256=hshE6rjkmUyK-unYdVqVgM-DXPAIDm-6kkPnieIPhQk,1745
|
|
216
|
-
teradataml/analytics/mle/json/nerevaluator_mle.json,sha256=CHWAPibmDiGSzB8gdxNUwivmKFgcs7NkxfmZmq8k_es,1412
|
|
217
|
-
teradataml/analytics/mle/json/nerextractor_mle.json,sha256=IxNBCTAVNMSNSb_3cg4mzf6ZLeA4NBDUEDk2LoaWwm0,2251
|
|
218
|
-
teradataml/analytics/mle/json/nertrainer_mle.json,sha256=l18-vsEccK5sW77d0rWS5ybtbn-hyGJRqGJD7eEE-I8,2365
|
|
219
|
-
teradataml/analytics/mle/json/ngrams_mle.json,sha256=NrtFXdF2LikfKjhVuKDoliVIrlejNyxdhtVInkujovA,3653
|
|
220
|
-
teradataml/analytics/mle/json/ngramsplitter_mle_mle.json,sha256=NrtFXdF2LikfKjhVuKDoliVIrlejNyxdhtVInkujovA,3653
|
|
221
|
-
teradataml/analytics/mle/json/npath@coprocessor_mle.json,sha256=W4k0XYzvhB95hD8cTLKMshTQTXb-2dcvYFBkhJaMWQk,1785
|
|
222
|
-
teradataml/analytics/mle/json/ntree@coprocessor_mle.json,sha256=duPIIgBeH3YGHVviTB6efy6UrgZ-wak7dmd45kU1n7M,3073
|
|
223
|
-
teradataml/analytics/mle/json/pack_mle.json,sha256=ua5h1lD0FhTj7EVw15c__KRs5yvNxos4_63BG7eOXR4,1534
|
|
224
|
-
teradataml/analytics/mle/json/pack_mle_mle.json,sha256=ua5h1lD0FhTj7EVw15c__KRs5yvNxos4_63BG7eOXR4,1534
|
|
225
|
-
teradataml/analytics/mle/json/pagerank_mle.json,sha256=awRRzGsL8cppo1DVG_zlWX4FBWwDtNZy63Sv-tcEH34,2118
|
|
226
|
-
teradataml/analytics/mle/json/pathanalyzer_mle.json,sha256=Pky-OBf-6OKBCeLzP9JD_AbuKGbC4KrMGFtxbx2BIpw,1670
|
|
227
|
-
teradataml/analytics/mle/json/pathgenerator_mle.json,sha256=agZjy9j0bTeAY3wtW29JvZrjlhb4XufzA7ky1mXAN1E,1077
|
|
228
|
-
teradataml/analytics/mle/json/pathstart_mle.json,sha256=Dm615hPzkQwYMScBN8tU6ZNuIt84bvzYUQPMRA3bj0c,1678
|
|
229
|
-
teradataml/analytics/mle/json/pathsummarizer_mle.json,sha256=6Sqpv6CXHxEhA0y5RtZ9cv7w0UZWGnfM_77DqPWr9LI,1936
|
|
230
|
-
teradataml/analytics/mle/json/pivoting_mle.json,sha256=YEKewzPjzXJnnrXiWQmwXTc2xhkzPtu5LhwwSLJP8Qo,1931
|
|
231
|
-
teradataml/analytics/mle/json/postagger_mle.json,sha256=iY9EJjVYFT7nhNS8hfZZM0zxgS2lE2BURd-UR0Y98WM,1345
|
|
232
|
-
teradataml/analytics/mle/json/randomsample_mle.json,sha256=7iJkn9aXfqP3SETyOM9gxdUaY5q2CeIyYiqWQxOviEo,3617
|
|
233
|
-
teradataml/analytics/mle/json/randomwalksample_mle.json,sha256=faKbvslxLrXYAIqUunjjnMfFQNJEorkw0E6WT3tKh08,2283
|
|
234
|
-
teradataml/analytics/mle/json/roc_mle.json,sha256=UqaKrn06NvifBE38hSj_aS_lvbN1hLOIdgPWLPt0VFQ,1941
|
|
235
|
-
teradataml/analytics/mle/json/sampling_mle.json,sha256=3deD2r67Z5tpwkzx4hrmmCFUTmEjvw3cGjHVMyj-g2Q,1980
|
|
236
|
-
teradataml/analytics/mle/json/sax_mle.json,sha256=4O0Vpwud0rPl-z_Bi6GUj_vyTvhNfeugdOSiiRF3ktY,4070
|
|
237
|
-
teradataml/analytics/mle/json/scale_mle.json,sha256=Uj6OzWIRLZwOFqgKcbbMgFPsbDlQ2N_1DFOHC4Np52Y,2395
|
|
238
|
-
teradataml/analytics/mle/json/scalebypartition_mle.json,sha256=k7NBntJmIhM-k9DOoLle1Ju2B7dmyko8X0UcPNuR2d8,2389
|
|
239
|
-
teradataml/analytics/mle/json/scalemap_mle.json,sha256=vxIXAeOd94AWGhR54qQIY8kugyeH8FStH5ZcNjEHspw,1159
|
|
240
|
-
teradataml/analytics/mle/json/scalesummary_mle.json,sha256=roQPWNBWJOECyInhgoWX1v8zhOliX6wJN7lLifmYG9c,394
|
|
241
|
-
teradataml/analytics/mle/json/sentenceextractor_mle.json,sha256=VeZWYM2AuKmBWMcAxPJUKeYzNvM88H8tYEmeVU6iMlY,1120
|
|
242
|
-
teradataml/analytics/mle/json/sentimentevaluator_mle.json,sha256=3Oxz_nYxhL9DVWV90YH_MxSkJF9PhblZ_g2aigLiziI,1194
|
|
243
|
-
teradataml/analytics/mle/json/sentimentextractor_mle.json,sha256=L5xrka5aeVPZfeoYGo8LphOYgt4HY_0fva12BiYHRSA,2587
|
|
244
|
-
teradataml/analytics/mle/json/sentimenttrainer_mle.json,sha256=XUK563giNSNY01RC5HPLAEk1yUdGh1DN7brWjiVLTbU,1856
|
|
245
|
-
teradataml/analytics/mle/json/seriessplitter_mle.json,sha256=buV7SBkMYZNc5-PJxponf_Mggw-yGYhAR_PhOnlyyOw,3725
|
|
246
|
-
teradataml/analytics/mle/json/sessionize_mle_mle.json,sha256=oTuqQMbPYFT8v_KnSMqKLzXzCQuofSOSF0BmyaSUbiE,1656
|
|
247
|
-
teradataml/analytics/mle/json/simplemovavg_mle.json,sha256=BJOo17nGl6g1n7nBK7GM5qGEwTmKjHtZuR9EdU6czBo,1295
|
|
248
|
-
teradataml/analytics/mle/json/stringsimilarity_mle.json,sha256=b-6OwV-_Rk7r4bOENUjkleYhipYeWhjLYBgoZwatjoo,1411
|
|
249
|
-
teradataml/analytics/mle/json/stringsimilarity_mle_mle.json,sha256=b-6OwV-_Rk7r4bOENUjkleYhipYeWhjLYBgoZwatjoo,1411
|
|
250
|
-
teradataml/analytics/mle/json/svmdense_mle.json,sha256=xY2u-ZVNl3R8m0e-R1fvZ7TejQyPUsbUn7FqqfRnfhg,4372
|
|
251
|
-
teradataml/analytics/mle/json/svmdensepredict_mle.json,sha256=p0grwwuHnf8wtlApFFibzNwSeJqxaKBm5cnjTpcXXQY,2540
|
|
252
|
-
teradataml/analytics/mle/json/svmdensesummary_mle.json,sha256=Azhk_Jj1SVRv3sg22hDjQzKDezQ76n_m6zPpuqvfano,1518
|
|
253
|
-
teradataml/analytics/mle/json/svmsparse_mle.json,sha256=1iCJu6YRQyOPHdUzVopC5rCPfGN_1V-5pYi3BcspkCI,3887
|
|
254
|
-
teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json,sha256=XQWn_GsdwTAB9lVPzmuNvdb-zV58CiCDLr7_JRSD0Ag,2747
|
|
255
|
-
teradataml/analytics/mle/json/svmsparsesummary_mle.json,sha256=QzgabQx2lBz2AsDcAoAPnT2_xISxEZRkwDcHP3e3NWo,1487
|
|
256
|
-
teradataml/analytics/mle/json/textchunker_mle.json,sha256=cvtUxCGdp3wV3evQ1l_omrqCiS4NFvoQD_1htQ59KSc,1070
|
|
257
|
-
teradataml/analytics/mle/json/textclassifier_mle.json,sha256=N7rnmZ_z4YUnOBXqt6wz2t4QeYkk4ADu8Ak89bUhPPU,1381
|
|
258
|
-
teradataml/analytics/mle/json/textclassifierevaluator_mle.json,sha256=3pk0ZKVDlJueOhwv_MhO6pn5KQd4KZsfM9Bz22ADV7k,1209
|
|
259
|
-
teradataml/analytics/mle/json/textclassifiertrainer_mle.json,sha256=hzSkaFQrdrtGNcG1ZMbrHliz_VVOeYY4l6obSMckuSQ,2875
|
|
260
|
-
teradataml/analytics/mle/json/textmorph_mle.json,sha256=vqj4GWnLO-eRuJ0s1FLqsuTUjHzGrHdm4k3ZGt27T1Q,1691
|
|
261
|
-
teradataml/analytics/mle/json/textparser_mle.json,sha256=RP9zIRHAesHqJQoY8jR190csBoYhcJ3DUn2KnMuCo8w,4425
|
|
262
|
-
teradataml/analytics/mle/json/texttagger_mle.json,sha256=zO8O1e2O0ggxuWy_uQAZgVASxqz6aZGuHPBk8R2QFIQ,2135
|
|
263
|
-
teradataml/analytics/mle/json/texttokenizer_mle.json,sha256=-jJm0q9WlnAtChNTWc8n8tOiJuyoeEqOGao-Eq0lSt0,2417
|
|
264
|
-
teradataml/analytics/mle/json/tf_mle.json,sha256=77cWzW1IBbYCbIoQTNZlO2XfKwkdk2wV3Sj9VwIFxXI,827
|
|
265
|
-
teradataml/analytics/mle/json/tfidf_mle.json,sha256=_ZubH_CeQ0cEsc6mU2vFt4cW__psf82lr5cQ-qJ3DKw,848
|
|
266
|
-
teradataml/analytics/mle/json/univariatestatistics_mle.json,sha256=ywX0RxDU97LZqqdfLHgp2kBtwT-W_yWq1EaaiBOOs2c,2262
|
|
267
|
-
teradataml/analytics/mle/json/unpack_mle.json,sha256=-vem1a6BgUfNbRcFFi_1PMAmcK6rGUUUuXXGCMd91U0,2414
|
|
268
|
-
teradataml/analytics/mle/json/unpack_mle_mle.json,sha256=-vem1a6BgUfNbRcFFi_1PMAmcK6rGUUUuXXGCMd91U0,2414
|
|
269
|
-
teradataml/analytics/mle/json/unpivoting_mle.json,sha256=0DR2dpKwdMN9kK-rnMBHM3zQAnWHKkBvYY-1EVLtlsE,1699
|
|
270
|
-
teradataml/analytics/mle/json/varmax_mle.json,sha256=dsw_sa-l55vHHy2n6-EJJJQMy3naCo9jms0VFV486Bc,4718
|
|
271
|
-
teradataml/analytics/mle/json/vectordistance_mle.json,sha256=qBYo6L952c6Z_oea3MZuFajOXR1BwMXQIpJMFIm0qkc,4842
|
|
272
|
-
teradataml/analytics/mle/json/weightedmovavg_mle.json,sha256=VfNWSFxfqWxrXHD0UQ55Bk0oTqK117p8EaVaNQSUS0Q,1303
|
|
273
|
-
teradataml/analytics/mle/json/xgboost_mle.json,sha256=hbm_ghs1vW5ZLUfhDi4DgXiy26NBagTxZrbT97X5toU,4971
|
|
274
|
-
teradataml/analytics/mle/json/xgboostpredict_mle.json,sha256=2SHlvP1bn1I54PkZu7tJy_8w8QXw-upw-o6lJ703SRE,2790
|
|
275
|
-
teradataml/analytics/sqle/Antiselect.py,sha256=hPQwQPYZxHy2i125RtchntjZ3ZvdXKPIiNFNDW6g6Zk,13459
|
|
276
|
-
teradataml/analytics/sqle/Attribution.py,sha256=mUEiJLZ-BWPppnk1Cb0aRh8wnACjqNBxJf5ZbaLJVIs,31745
|
|
277
|
-
teradataml/analytics/sqle/DecisionForestPredict.py,sha256=i8rFR19PQCsQ1-6WSW5V6iXdFqZSJ_Dl6quXz8iNIHM,18722
|
|
278
|
-
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=qh5D0m0sWvgmfRonVuJxva-np8KxyvUWSkqlstHm7fg,23468
|
|
279
|
-
teradataml/analytics/sqle/GLMPredict.py,sha256=IZlzRhYaW-XI9hMfzC0s83PANM6vEXVVvartKH4sKoE,19805
|
|
280
|
-
teradataml/analytics/sqle/MovingAverage.py,sha256=x6uI5AQE1_2IJDICDAIt9EZ1etLugX-FON2aYaSnB_M,26747
|
|
281
|
-
teradataml/analytics/sqle/NGramSplitter.py,sha256=CSDZaxyC0OWA3ECc2M82rjBB7epTP00J0g9GTDUpTTg,26411
|
|
282
|
-
teradataml/analytics/sqle/NPath.py,sha256=Jrkp5yDAsG2nddDfqSQ1rg-ht6jdI_MjY72416ScsWk,32558
|
|
283
|
-
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uHo_SnX6mYo8_LHwjo07SBj0RPCHnTVI2RwXftWNPCw,20097
|
|
284
|
-
teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py,sha256=wusGHxXARLzJOMvn4pr_5q-IownizMRpAn-kHBhgjDA,25305
|
|
285
|
-
teradataml/analytics/sqle/Pack.py,sha256=7KapwKd5YJS2fOSGJcs_K3mZLmzTEzeUVKbus9q6tUM,17450
|
|
286
|
-
teradataml/analytics/sqle/SVMSparsePredict.py,sha256=nMbSUw4xKfRPb2Uf66-c6Ol8RQeZ68CftiIvnrxWfO4,22431
|
|
287
|
-
teradataml/analytics/sqle/Sessionize.py,sha256=Mk37wjmHWR4-xbjK79GOeP4JxKct3c4hM2CicB1MFHQ,17612
|
|
288
|
-
teradataml/analytics/sqle/StringSimilarity.py,sha256=BM857lggFlmJczUlVwri2nohPBoWSRdVpsdBE_eiJg4,18930
|
|
289
|
-
teradataml/analytics/sqle/Unpack.py,sha256=2sERhisUPeECgV1WTDw_Cy9j8gHPVOxuAtu78s6mxO0,24599
|
|
290
|
-
teradataml/analytics/sqle/__init__.py,sha256=qrRPsk40chOalOe9gWO9twKl_v7ivNKcExRp6saIgJQ,4718
|
|
291
|
-
teradataml/analytics/sqle/json/antiselect_sqle.json,sha256=LIkJ6PIiRjOsjF7-Pv8f6yOS22lzmTHIcX5y2Y2SclQ,559
|
|
292
|
-
teradataml/analytics/sqle/json/attribution_sqle.json,sha256=G937wPtYAyep64ClEFycdga9v_9UMkjcVY8S30RYqzI,2337
|
|
293
|
-
teradataml/analytics/sqle/json/decisionforestpredict_sqle.json,sha256=jmPDF7XqhR_jLo3T2SGsrgmp6j-X2YJ1KzF5kop_huo,1280
|
|
22
|
+
teradataml/analytics/json_parser/utils.py,sha256=JcTAAg0HZP-wsM1vpUkBQ6z_iscoTki61FiiQleI8pQ,33896
|
|
23
|
+
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
|
|
24
|
+
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
|
|
25
|
+
teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
|
|
294
26
|
teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
|
|
295
|
-
teradataml/analytics/sqle/json/glmpredict_sqle.json,sha256=AXIfdag_G6VWcdQf2OAdWU5B6pID2yIQ-_TBULveWOs,1221
|
|
296
|
-
teradataml/analytics/sqle/json/h2opredict_sqle.json,sha256=S82QomRrlWeUFIU0OjecHkpCNGyalInHoOIzE1N_jps,1734
|
|
297
|
-
teradataml/analytics/sqle/json/movingaverage_sqle.json,sha256=2cH-Vv-OQRuOvUzsRBtOVXf9eQ0oXaMbAlsi5DuQnak,1567
|
|
298
27
|
teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
|
|
299
|
-
teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json,sha256=Ftfd05AZsDaWEFwGVzdOd-onHvov9TDk8D2nYhyMWSk,2159
|
|
300
|
-
teradataml/analytics/sqle/json/ngramsplitter_sqle.json,sha256=k7KL1-b5Ua5mD8kPQyaFkG4MLsln1cJFnpy6TzGEFwI,3377
|
|
301
|
-
teradataml/analytics/sqle/json/npath_sqle.json,sha256=Srh7twWbWVYT30XL1o24DkxX0g9q9vhGDaWYHxaPkP0,1689
|
|
302
|
-
teradataml/analytics/sqle/json/pack_sqle.json,sha256=KMlVOdhfdHDywlUf1LBQ45ISSwnh0AruDiFOxwi8F_s,1234
|
|
303
|
-
teradataml/analytics/sqle/json/pmmlpredict_sqle.json,sha256=c_bUUyH8hcYPM0G5YHfjdEOx7WeJ0uqcWmJ5DvTFQO8,1504
|
|
304
|
-
teradataml/analytics/sqle/json/sessionize_sqle.json,sha256=5aOE8XapIRMqz_rWLW6VsxbqlzInHSpSjLnaNJAIcZ4,1150
|
|
305
|
-
teradataml/analytics/sqle/json/stringsimilarity_sqle.json,sha256=5sV_iMzIZQWo9M9_PavV6iG1BdaMXAJlDUqWHv7Yi8I,1112
|
|
306
|
-
teradataml/analytics/sqle/json/svmsparsepredict_sqle.json,sha256=yBvkpHBf1zL-WdX5FQFjfIjfUcpNbRI0RnI5RiqV2Kk,1959
|
|
307
|
-
teradataml/analytics/sqle/json/unpack_sqle.json,sha256=EOdxtpIFes6AFp-uSRK0F5vrCcKY5gGwiKzuLnucph0,2115
|
|
308
28
|
teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
|
|
309
29
|
teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
|
|
310
|
-
teradataml/
|
|
311
|
-
teradataml/
|
|
312
|
-
teradataml/
|
|
313
|
-
teradataml/
|
|
314
|
-
teradataml/
|
|
30
|
+
teradataml/automl/__init__.py,sha256=cuycK8Px5u-s3OG6TJPbghFv26LPA73__H0pbA6JHZ4,77100
|
|
31
|
+
teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
|
|
32
|
+
teradataml/automl/data_preparation.py,sha256=pIxnfPDcrlLTZjQtHmg4yy94jlY9dvv1SKZ06RYeTag,43285
|
|
33
|
+
teradataml/automl/data_transformation.py,sha256=My-Pi0-CpCXjicj4S3LTNt8dENfpjHiWtEGBAa9-Auk,38520
|
|
34
|
+
teradataml/automl/feature_engineering.py,sha256=bjfBR7_LsjQtvU9ZwV_Fu8zdda2OTsJvBe8dGyaFPGw,84899
|
|
35
|
+
teradataml/automl/feature_exploration.py,sha256=DdO3xjOOBbdMFmUqnAwTuRifUvvcD8p-tPlJwl57PVs,21595
|
|
36
|
+
teradataml/automl/model_evaluation.py,sha256=efKcrHp46XpwMIVSuy-4r4u4TAYfWUvYyXhIVCtW6jA,6082
|
|
37
|
+
teradataml/automl/model_training.py,sha256=5jUqwrZNI7zPTQgxYBzD44DuESq-_0h_S5-3KtDWcpQ,38119
|
|
38
|
+
teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
|
|
39
|
+
teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
|
|
40
|
+
teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
|
|
41
|
+
teradataml/catalog/model_cataloging_utils.py,sha256=tJ96wxL7GprmlcLqBgxFuQxtdzs-F06mnjA79l2Csf0,20623
|
|
315
42
|
teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
316
43
|
teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
|
|
317
44
|
teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
|
|
318
|
-
teradataml/common/aed_utils.py,sha256=
|
|
45
|
+
teradataml/common/aed_utils.py,sha256=ZzZVZy06IpJ_TxjjlGOlo5R4sa726tU7j_6WeOU2WIg,106144
|
|
319
46
|
teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
|
|
320
|
-
teradataml/common/constants.py,sha256=
|
|
47
|
+
teradataml/common/constants.py,sha256=RiuRY9udqdL_SdjrPmQEdaamGPhzWgRXBXMb3EnJrUc,57693
|
|
48
|
+
teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
|
|
321
49
|
teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
|
|
322
50
|
teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
|
|
323
|
-
teradataml/common/garbagecollector.py,sha256=
|
|
324
|
-
teradataml/common/messagecodes.py,sha256=
|
|
325
|
-
teradataml/common/messages.py,sha256
|
|
51
|
+
teradataml/common/garbagecollector.py,sha256=3wrEUP95QcKJykyiLxViHYC6lrrna06YrbTlatDHPh4,25752
|
|
52
|
+
teradataml/common/messagecodes.py,sha256=TLwrbriTwTfCna8WKg_9eSPSgVwzkq6TfNcjRZOhryk,28204
|
|
53
|
+
teradataml/common/messages.py,sha256=0n_mpv-EWTZQXUnXtA4IZiZTmkO9yISr1pkEhGTNCZw,17540
|
|
326
54
|
teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
|
|
327
55
|
teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
|
|
328
56
|
teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
|
|
329
|
-
teradataml/common/utils.py,sha256=
|
|
57
|
+
teradataml/common/utils.py,sha256=7YCrwjF1d1krcMwJpVn1xGQDebrOr9J-HcS67LFm-VU,88784
|
|
330
58
|
teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
|
|
331
|
-
teradataml/common/wrapper_utils.py,sha256=
|
|
59
|
+
teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
|
|
332
60
|
teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
333
61
|
teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
|
|
334
62
|
teradataml/config/dummy_file2.cfg,sha256=3m0tBK8GnKV4jVwmwmaU9plZDGL-fI-bWTLBGvU6kpM,44
|
|
335
|
-
teradataml/config/mlengine_alias_definitions_v1.0,sha256=6WWZPTSSky9D9vS9YfUQyoyyHgKmIP9Mb5xdE8aUDH8,3192
|
|
336
|
-
teradataml/config/mlengine_alias_definitions_v1.1,sha256=W8v49mvBni9Yqjewdw53RJ6WoYL8d0e75CmtqxAYV9o,3554
|
|
337
|
-
teradataml/config/mlengine_alias_definitions_v1.3,sha256=xmf1OQtwDsRhFdYNLNd9Op46lpg8JCYh6WyV73frruY,3645
|
|
338
63
|
teradataml/config/sqlengine_alias_definitions_v1.0,sha256=jFH-HwBXPZDe2O8mG1Z5vaRyMvoMfJ-AOM6feGgeKUE,405
|
|
339
64
|
teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8MivhBxcYGia1ZzLzPST42pI90,547
|
|
340
65
|
teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
|
|
341
66
|
teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
342
67
|
teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
|
|
343
|
-
teradataml/context/context.py,sha256=
|
|
68
|
+
teradataml/context/context.py,sha256=985B6EpBdHF8gXLC976lJ7MzN5YV8ocSpWTBClbugdk,42361
|
|
344
69
|
teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
|
|
345
70
|
teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
346
71
|
teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
@@ -380,6 +105,7 @@ teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC
|
|
|
380
105
|
teradataml/data/attribution_sample_table.csv,sha256=BXE9yIn-MlSqlq9qJ5qi4YpKuwIG_9nKrOYJRhjcPR4,1070
|
|
381
106
|
teradataml/data/attribution_sample_table1.csv,sha256=xGBzinj_Z1JiaOEImhtCP4l_-UbIvDysjZTMDw0izP0,207
|
|
382
107
|
teradataml/data/attribution_sample_table2.csv,sha256=iTu9SrEEKwSPNqdgffdhWgukWF_jrS2uN33nKpeiy_w,389
|
|
108
|
+
teradataml/data/bank_churn.csv,sha256=kPZiXDG9_LDN47lMTzAE5DeV44KSHQpb5nxL1JCziBg,561600
|
|
383
109
|
teradataml/data/bank_web_clicks1.csv,sha256=mVtjtto25BiTTDOwEfSbQdjsIfaYSwAIhGn1RMakIEg,2164
|
|
384
110
|
teradataml/data/bank_web_clicks2.csv,sha256=fUBohxq4IMv25VxRiwb3Y1EimYJyv7CofQdsOcrBuQY,3810
|
|
385
111
|
teradataml/data/bank_web_url.csv,sha256=kSEx40OV3cdnRHiOZGkqPvrstyU4Fssh6KcIa122qW8,4715
|
|
@@ -395,6 +121,7 @@ teradataml/data/binary_matrix_complex_right.csv,sha256=BwBWqHSimDQQ6_BOVdtJMdpr0
|
|
|
395
121
|
teradataml/data/binary_matrix_real_left.csv,sha256=NpLCLpv0CUEZ5N36L8gHYJnKAqCDs6FBKVCeYM0UbY0,861
|
|
396
122
|
teradataml/data/binary_matrix_real_right.csv,sha256=p6BpwbkLzfFP6mlSqdE3P8yqQ-eSWEVOPKt3Bae5mnA,861
|
|
397
123
|
teradataml/data/blood2ageandweight.csv,sha256=TnIFSWXQzaOR-PjoX5qN58-G3z2x66LpbCAFnHN7yiY,506
|
|
124
|
+
teradataml/data/bmi.csv,sha256=9TvDxRlpE6PDIjvT7VNVwnB24UOJSMPxZqAqIi6bCck,8318
|
|
398
125
|
teradataml/data/boston.csv,sha256=nLO7wxYIG1xUXFBOzMEQzFyT2AGEzJm5DW8NDfVqinU,37155
|
|
399
126
|
teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
|
|
400
127
|
teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
|
|
@@ -472,6 +199,7 @@ teradataml/data/excluding_event_table.csv,sha256=127t4i5xtm2Hz5FF3WT9Bx_A12jCXqP
|
|
|
472
199
|
teradataml/data/finance_data.csv,sha256=qPcVOUI6EI4kaD0ZWqktmxOTEAjS2Y6d8mSlEP8wwzU,265
|
|
473
200
|
teradataml/data/finance_data2.csv,sha256=FywSdftZ3ZXM5At4ZwYnL0XpmoItmMSt7l8B92MCs5I,3712
|
|
474
201
|
teradataml/data/finance_data3.csv,sha256=lp_irRnY5SosrYzEVxW4VB07vP5dP1FgIEJesjkQU6A,2358
|
|
202
|
+
teradataml/data/fish.csv,sha256=ja2iyemvEDRmdnASD2eC-pUAMgzIVGEJVVSsfjqrvg4,6022
|
|
475
203
|
teradataml/data/fm_blood2ageandweight.csv,sha256=IBigbrDMap4hDdB9TiGlalN8EYRE7EKeUazHyvldxpY,495
|
|
476
204
|
teradataml/data/fmeasure_example.json,sha256=tSXRX3n-02WPiBr_iZdscslV6Bh_FHsDdoiWHRS3Dwo,298
|
|
477
205
|
teradataml/data/followers_leaders.csv,sha256=WzajVHUli0I1mYw3rJIWAUgOxWLDlleUh0pzzfRlcEQ,191
|
|
@@ -482,6 +210,7 @@ teradataml/data/fs_input.csv,sha256=RugLh7aBVyT1SUIAx1pwKzGOUEWBZ7uO_UFI5phTwlQ,
|
|
|
482
210
|
teradataml/data/fs_input1.csv,sha256=Pr-T60lcEzpb-sZpJqs_D6deTRcNFo3bgyt6AZT_urA,2297
|
|
483
211
|
teradataml/data/genData.csv,sha256=y1Lvbme5Gp9JCCRkootSCR5xS_eBQNVkzgzgQQYEb90,7917
|
|
484
212
|
teradataml/data/geodataframe_example.json,sha256=r6ENcly45GWH-Ma-5_vASZCkUlIwaX6RLe6PB_yJRCY,961
|
|
213
|
+
teradataml/data/glass_types.csv,sha256=4roe2TEESLUV5_aj9D0oQvdezYMqcSHFirjdbFV4FTo,10054
|
|
485
214
|
teradataml/data/glm_admissions_model.csv,sha256=4NjcVBiKKzb0z-v4aSrC5odT9sPf0FkrvBOTKQqmT-I,753
|
|
486
215
|
teradataml/data/glm_example.json,sha256=5Kew0xMh6Xh1kjhJBbPYVGqgl1VA2YtbFD58gNAnsXA,988
|
|
487
216
|
teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr7DXYyXo,907
|
|
@@ -514,13 +243,14 @@ teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0
|
|
|
514
243
|
teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
|
|
515
244
|
teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
|
|
516
245
|
teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
|
|
517
|
-
teradataml/data/insurance.csv,sha256=
|
|
246
|
+
teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
|
|
518
247
|
teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
|
|
519
248
|
teradataml/data/iris_altinput.csv,sha256=1XTmOumWhN5Q9ZmboJoNsMdsXTaZwRXvR8w6gjz4DYI,18290
|
|
520
249
|
teradataml/data/iris_attribute_output.csv,sha256=R5UejlCRJTceL6Ht9F3g8HJoJlLcf4CMjzXQRtGqcTo,2012
|
|
521
250
|
teradataml/data/iris_attribute_test.csv,sha256=Yl9ncbAGXHI7sbOalOM2JzRIWPCLtMsNjf_YzGhbwr4,2929
|
|
522
251
|
teradataml/data/iris_attribute_train.csv,sha256=_Jw_OccWjgllMWz9chE9KhNCQlanlMKTxntsKOpSeZk,11559
|
|
523
252
|
teradataml/data/iris_category_expect_predict.csv,sha256=5jcx1jly9YCKV1wYlRwf1WWsh12_We90PhR2HSZ500E,853
|
|
253
|
+
teradataml/data/iris_data.csv,sha256=kZTitx9xROfRkqHDj5pU8msOj3BcCSm4IlsM0QJ179E,4617
|
|
524
254
|
teradataml/data/iris_input.csv,sha256=3fJgMbq-vEBKLjh68CitThaLLe_NAXhfCHOqc42qcUM,3274
|
|
525
255
|
teradataml/data/iris_response_train.csv,sha256=7rsH5XKO4zTa6Jg2CAtUpiEdNjT4uIyFZPcScKWzxYM,2210
|
|
526
256
|
teradataml/data/iris_test.csv,sha256=zSYepP8ZX0NxbE2psLuNvw3TDCyYRAj4ETcQ-3bPruw,722
|
|
@@ -542,7 +272,7 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
|
|
|
542
272
|
teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
|
|
543
273
|
teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
|
|
544
274
|
teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
|
|
545
|
-
teradataml/data/load_example_data.py,sha256=
|
|
275
|
+
teradataml/data/load_example_data.py,sha256=A-NtbmsBPwBQNa6XwHRUSCs32_s1FkurgT9q-Tl2AN4,14272
|
|
546
276
|
teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
|
|
547
277
|
teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
|
|
548
278
|
teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
|
|
@@ -558,6 +288,8 @@ teradataml/data/modularity_example.json,sha256=07rfwqYYWYcIt1Ky4UqCbBMELsNWjRR0f
|
|
|
558
288
|
teradataml/data/movavg_example.json,sha256=gb2AcryljUpFp3_IDeMZFR_VdGd0ObMMxGv8cicuTFY,130
|
|
559
289
|
teradataml/data/mtx1.csv,sha256=9sfklyud9J4BPTxOnmvZ1x0y6bf1-LZu5Mj3LnY0b1c,115
|
|
560
290
|
teradataml/data/mtx2.csv,sha256=YyXh-UAUtAQbbQAHtgdsUC2O5D2cFuSwuvxbeTYlAZ8,201
|
|
291
|
+
teradataml/data/multi_model_classification.csv,sha256=VEIyKhWSmSXLkXZcUejTe9MjFVrBcRuAMS6LavI0jbA,40856
|
|
292
|
+
teradataml/data/multi_model_regression.csv,sha256=pJ_RMyx-_y_zeUcGOrObak_R6Lz4O0DeA0rZId5ulBs,41624
|
|
561
293
|
teradataml/data/mvdfft8.csv,sha256=Bi9J1hxbuzvNBbtzNqZETvJlx6RhZb5-_tQNoC3WMlo,238
|
|
562
294
|
teradataml/data/naivebayes_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
|
|
563
295
|
teradataml/data/naivebayespredict_example.json,sha256=yYjv-bSl7iutKbZB9FIobbIYdv0PasKlU4IUlipkNQM,521
|
|
@@ -590,6 +322,7 @@ teradataml/data/ocean_buoys.csv,sha256=IF8hMlqQSBl7xP4ELiC3CBWE33zh0vy47wWZ5DZHV
|
|
|
590
322
|
teradataml/data/ocean_buoys2.csv,sha256=5OsUz_8Q5xD9MedPi5MR81TuJg53eC2nu_1_nttq_f8,1556
|
|
591
323
|
teradataml/data/ocean_buoys_nonpti.csv,sha256=qE8fQs6VJAQJgRFk6jc4xR6Rp2U1AmlI39cGjcva3cg,1030
|
|
592
324
|
teradataml/data/ocean_buoys_seq.csv,sha256=jIU12R7mB7empv5tQhfvgOtgydeVHcVfzfmSEd78mSM,1471
|
|
325
|
+
teradataml/data/openml_example.json,sha256=HT2hzC7mh8ku4KNViRqkSJuDcRC98sB4Wz6IlRD-ops,1634
|
|
593
326
|
teradataml/data/optional_event_table.csv,sha256=FJuG4_g7lIqi3ZKLNsUb-Y4uT54oceGjlCT6dUApiOU,58
|
|
594
327
|
teradataml/data/orders1.csv,sha256=NdYv2BQ0ZGY6DMwauduuecFsiBonOne1nT9vhEyT1NU,180
|
|
595
328
|
teradataml/data/orders1_12.csv,sha256=weWu40ZXGoGrqrU0MAslXuQUXH5dUs3872gsqle6Rg4,129
|
|
@@ -682,9 +415,12 @@ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqr
|
|
|
682
415
|
teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
|
|
683
416
|
teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
|
|
684
417
|
teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
|
|
685
|
-
teradataml/data/teradataml_example.json,sha256=
|
|
418
|
+
teradataml/data/teradataml_example.json,sha256=YZG0EjiOnELm2Qbo5yoGEULpEm2STK1KulN7Fv0WBpY,39171
|
|
419
|
+
teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
|
|
686
420
|
teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
|
|
687
421
|
teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
|
|
422
|
+
teradataml/data/test_prediction.csv,sha256=rqZ3FPaeggHrDgKcCe6_kVmoU0EHh7b9OPx_6Dzap0U,9317
|
|
423
|
+
teradataml/data/test_regression.csv,sha256=RroIAmAjeaZYlP5qK6H_oIRbbcJNO5ZlRSqP1WBfqKk,9263
|
|
688
424
|
teradataml/data/test_river2.csv,sha256=6svoeqAeiI_vEspWOu1eRprCgvQoW_NOUu7jAQj5j_Q,1226
|
|
689
425
|
teradataml/data/text_inputs.csv,sha256=2uMV6hWU1ru_daIKWgKhQNYIOF_dcL3LUNCrBK6ekdw,1721
|
|
690
426
|
teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL6Uq56zd0mBs,146
|
|
@@ -706,6 +442,9 @@ teradataml/data/timeseriesdata.csv,sha256=EF_JDM1aYDhrX2Qz1kxvJwKobB-7xv9e-CjPv2
|
|
|
706
442
|
teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6P6ey_uXuCMg,2824
|
|
707
443
|
teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
|
|
708
444
|
teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
|
|
445
|
+
teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
|
|
446
|
+
teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
|
|
447
|
+
teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
|
|
709
448
|
teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
|
|
710
449
|
teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
|
|
711
450
|
teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
|
|
@@ -729,6 +468,7 @@ teradataml/data/waveletTable.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H
|
|
|
729
468
|
teradataml/data/waveletTable2.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
|
|
730
469
|
teradataml/data/weightedmovavg_example.json,sha256=Gc592H0CHcq9f-2we_9RvrBJ9E9A8_HD5f3mHnm4n3o,153
|
|
731
470
|
teradataml/data/wft_testing.csv,sha256=2g56ogivANGHMrle1MMfY5OGQeHwxnox1inRl88dPlI,422
|
|
471
|
+
teradataml/data/wine_data.csv,sha256=ttv5ymiLcNmi678dPxMSvKd73ZuQ-vwkzXEkktzjfQ0,89796
|
|
732
472
|
teradataml/data/word_embed_input_table1.csv,sha256=47fOsMTC4GC0-t5QQDeYqnx2kwNkxL73HEuXf7ZB08U,220
|
|
733
473
|
teradataml/data/word_embed_input_table2.csv,sha256=y3OxXnCf75fVchZ5FpSyzymmvk8HJeodcwupOqc4JIk,95
|
|
734
474
|
teradataml/data/word_embed_model.csv,sha256=ZBg8elkSawGAv-nVnKJa-OOFfVNXCXB09c9ZZM3HsL4,913
|
|
@@ -748,8 +488,8 @@ teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5
|
|
|
748
488
|
teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
749
489
|
teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
|
|
750
490
|
teradataml/data/docs/sqle/docs_17_10/Attribution.py,sha256=JXxWA7OZDfoW4UBR_XMLlG1EWJYhFqImF6iZd7qTziI,9264
|
|
751
|
-
teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=
|
|
752
|
-
teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=
|
|
491
|
+
teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=xdWdXR93nScfnliztnY2PbI7SbH6YA7Xykk2dwRdkvg,7373
|
|
492
|
+
teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=_WaKiivgjiEnEWl63bmhdlOS_weTg55-3iekpePH9qs,6001
|
|
753
493
|
teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py,sha256=RWFcrFV0FV239esV-4Od-9jXqTOu6ei2R1EZ3EArcJc,3666
|
|
754
494
|
teradataml/data/docs/sqle/docs_17_10/ChiSq.py,sha256=5RQrZn-myg3bk7yqu73HAVilH2Z2d1SOAD__DK82kEY,3804
|
|
755
495
|
teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py,sha256=a6FTwGVUbu7xNjT46oqqQntOn0Nv5dvBH4HKIBHSwEM,3684
|
|
@@ -758,7 +498,7 @@ teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py,sha256=knge57LxBNm
|
|
|
758
498
|
teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py,sha256=xW4JDM32ec0rfOOYAcw-O50cS89L32gxVB5l9g6J9fQ,7606
|
|
759
499
|
teradataml/data/docs/sqle/docs_17_10/FTest.py,sha256=QXlDLZP4HQSGC-GoyfgPbV8yZGxEMvSWyKav0y8BjNU,6963
|
|
760
500
|
teradataml/data/docs/sqle/docs_17_10/FillRowId.py,sha256=m1tj7kN3b9vOJcUKNlCDU0gWFWGwHNaUuLmi0h33udY,3526
|
|
761
|
-
teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=
|
|
501
|
+
teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=xDB-nDgSorsApjZNp8Cm6EG0LVDscy5WvupmwYEVhqI,3815
|
|
762
502
|
teradataml/data/docs/sqle/docs_17_10/GLMPredict.py,sha256=KYdlaYjdnTXP8mXbvbS7brdIi_OAwmp0FIpUq53ZXh0,6398
|
|
763
503
|
teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=eCDp5XGqkdLidfac_RhER5IhyONENfCpdlqps6za2Gg,3732
|
|
764
504
|
teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=yAn5Hmb5389Mj-Tpz0O5B8_kLdC8TncwJN225U9GNyg,3603
|
|
@@ -770,25 +510,25 @@ teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2
|
|
|
770
510
|
teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
|
|
771
511
|
teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=SvKyxAyXSxRLHgS5E8KHCHACikPJqq2kLq1qoz5Iy3o,6327
|
|
772
512
|
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=dAffOqeG5RS71va2Pxpf4Rr9eeqC4c4fOXwTDxjw4UI,6023
|
|
773
|
-
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=
|
|
513
|
+
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=suiB4t0xNt_5B0eyUrJnY9LNYqdCaYYXBf_f0OImq-I,4509
|
|
774
514
|
teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=ttKL0YXjGXMpnxjwHPG0b3THC3qD1oscjKxh7n3wR-4,7419
|
|
775
|
-
teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=
|
|
515
|
+
teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=q8LsJk8xZC0eOvEt_dkyBDGqywEUCcNIpkKJ3YBjegE,4558
|
|
776
516
|
teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=VqHpY8CnKUMXP1glJWaKOtFUYLQfc4c5Kv38v-dPYto,5368
|
|
777
517
|
teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=kvYnoL910OM1HKLW6eUjiMe9jgx0JgUexhzj4aziQs0,4927
|
|
778
|
-
teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=
|
|
518
|
+
teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=OCez0bsR99XeLyAx7vMSa79BWmpb4nmYdZFXVbCL0ps,4507
|
|
779
519
|
teradataml/data/docs/sqle/docs_17_10/QQNorm.py,sha256=iXuDih1qdLFnI862wmV3IIe8NLQS4jkJfVbxBJAnyx4,4685
|
|
780
520
|
teradataml/data/docs/sqle/docs_17_10/RoundColumns.py,sha256=TCwxB8o9raq0stWWpicdZXV1LTpLP7Qly8h2reb5mVA,4951
|
|
781
521
|
teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py,sha256=HvvcknxaOmyW13ZPsxMCT-ioM6_Zukc3lQ5SXo_8szY,5330
|
|
782
|
-
teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=
|
|
522
|
+
teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=bzvgZvInUMu8I9NQP0VwesIQhYid-5Vd8e7puXriwk0,4426
|
|
783
523
|
teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py,sha256=nhuVXk_MSTKL8lKjmoxtYxMOVpFSIcQl663kK9TbjBo,7095
|
|
784
524
|
teradataml/data/docs/sqle/docs_17_10/ScaleFit.py,sha256=H8iVb0P-edPVHi8ngj1H87QwINO3TQeS4U7r5UAiH70,11137
|
|
785
|
-
teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=
|
|
525
|
+
teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=Q-ejBeC58PUggIgYGRkLGSxRMwIzHn9AcVVu6fOVCqc,4241
|
|
786
526
|
teradataml/data/docs/sqle/docs_17_10/Sessionize.py,sha256=ZydqfkCVmgz6aTobDk4U1Ce6hc3R27kCrJ7O8zRLWOk,4888
|
|
787
527
|
teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py,sha256=CQLIsvFwb8reneh0Qda1VN9HfuQk547dbpWUJ2JF7ak,4874
|
|
788
|
-
teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=
|
|
528
|
+
teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=D0nlEGC8zyaDQNDXQyEE1-60PwtXpGi66dRp74q61zo,4148
|
|
789
529
|
teradataml/data/docs/sqle/docs_17_10/StrApply.py,sha256=9N8sCtBxNMzC5_imEZpeZNvlu0k2RBxMsR90-A82jTE,7243
|
|
790
530
|
teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py,sha256=AfWA0H1j-DxyVOVKqK0orV3jPEWqWXZBDut3Mydl5XI,7569
|
|
791
|
-
teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=
|
|
531
|
+
teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=7UQCTF27g23QprlAqsu8IqhGwucFD_V8fiBEaiD1K70,4669
|
|
792
532
|
teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
|
|
793
533
|
teradataml/data/docs/sqle/docs_17_10/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
|
|
794
534
|
teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=mvdTMss1ydf09kzO-FoHB2yTYsA-7lRTeXVA8fX7EWA,3448
|
|
@@ -798,8 +538,8 @@ teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeu
|
|
|
798
538
|
teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l7TsweBXh3-Ok0EGggvxZasDrNpNHA5hMRMVjuKg528,5280
|
|
799
539
|
teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
|
|
800
540
|
teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
|
|
801
|
-
teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=
|
|
802
|
-
teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=
|
|
541
|
+
teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
|
|
542
|
+
teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
|
|
803
543
|
teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTGdc4uwJsFoZiDkCXfqvkgWIGwhGoOs,3673
|
|
804
544
|
teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
|
|
805
545
|
teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
|
|
@@ -811,66 +551,66 @@ teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=oK7pP1wVKog
|
|
|
811
551
|
teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=y0grw0Kkg85y38COidwsu9do4HxLxhrTzDNjvd_pCao,6454
|
|
812
552
|
teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=R-fMp0ABfkzut3I0jw8uOXBTU6Erxctg-Wrfn5ASTaQ,6970
|
|
813
553
|
teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=pNMOlZe5dow7NxglD_Vq6UOJXJihUHqOxtOhVT6R_zM,3533
|
|
814
|
-
teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=
|
|
815
|
-
teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=
|
|
554
|
+
teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=icqA35RoP_pY-qJwv0MUpQDDtdMh6rYsvPQaIXXPMvE,3822
|
|
555
|
+
teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=IOZN2_MeJd1zXEkjhXdLk6vX0o9rnzSKhtrvwPW5mFA,18168
|
|
816
556
|
teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=ezplov5qzdp1BiC4GP_SWeFD20a5bi29sPW6WJowhHc,21000
|
|
817
557
|
teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=piOwuf40UFDnpUOaFp09z4ebWQXcoc3ei4V1svCd8yM,6405
|
|
818
|
-
teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=
|
|
558
|
+
teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=g7SX2d3BMOdW1j43Qiw6OZvrZ9ojpzWRI10CP8mMpOo,12103
|
|
819
559
|
teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=ZGTcD0sVkaAL3fLp7qXq9CEd70f7I8WiXRbLUulJ9r4,5577
|
|
820
560
|
teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=b2lJtNqaf3nF47YOEDCnkWJ2bedtQ0zttwcEKy-RFZc,4968
|
|
821
561
|
teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=fpSBZOSNCrpDK7VLlhFdr77is9fH5dQzfd7WaJo8tOY,4799
|
|
822
562
|
teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=VdWTGkD3k4FSOHbrS4x5Vv7xLhjxZfPBUcx9O0zmbjk,10563
|
|
823
563
|
teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=pI1W4zRe1TBvdQVo5UXHvHIq8rc9VL3FQi9EKJarEnI,9202
|
|
824
|
-
teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=
|
|
564
|
+
teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
|
|
825
565
|
teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
|
|
826
566
|
teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
|
|
827
567
|
teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
|
|
828
568
|
teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
|
|
829
569
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
|
|
830
|
-
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=
|
|
831
|
-
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=
|
|
832
|
-
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=
|
|
833
|
-
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=
|
|
570
|
+
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
|
|
571
|
+
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
|
|
572
|
+
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=PRXO_DaA1gMjFo2Ti4JyxiQAwyevUzCDUM6215oaRA0,5175
|
|
573
|
+
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=7VveajQ0jMoRH-TxP-E8N_9rLLJJgwVk0gUNIwtB2a4,4889
|
|
834
574
|
teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=78KeTUal1gXpfHtaHjiyTAV6VPW_ZIetS6whCpF3bkM,6334
|
|
835
575
|
teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=CnYQ_YYHHL8mnTeZRxe0f88Tuq0XAs6MDQzMqX403MM,13946
|
|
836
|
-
teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=
|
|
576
|
+
teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=hQsae48P4I7Yg7ockkv73CcOwISPRjmEdGd02-_ejJM,8464
|
|
837
577
|
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=kIjDSmZs9x9XNlMcrh4hKmxNO-30dR_JYJT_kkJ7drw,10910
|
|
838
|
-
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=
|
|
578
|
+
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=9OS5wnwtk5LBO2CeVqhDazBGkHZQjgXwyF3zqP_zCsU,5060
|
|
839
579
|
teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
|
|
840
580
|
teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
|
|
841
581
|
teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
|
|
842
|
-
teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=
|
|
582
|
+
teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=IWNif30agfXyuPdeLvNtwmlQm_iEfYKkWz-KM391ivQ,5465
|
|
843
583
|
teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1FpgN9Au10zKeIh8,5376
|
|
844
584
|
teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
|
|
845
|
-
teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=
|
|
585
|
+
teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
|
|
846
586
|
teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
|
|
847
587
|
teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=PBBHYKLW3Tl1uRVal2csyMg72neKNgMKMNi9yPLgUkA,6810
|
|
848
588
|
teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=42pqcLxvr_pBARjVDD2iXprKiepluawmiNj4dQnpSnM,6692
|
|
849
589
|
teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=3my_ki5WQA9U9qQiGAw10tgkHsiNcgWa8b75DdhDpqY,4813
|
|
850
|
-
teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=
|
|
590
|
+
teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=em1fAbW-Bry9KVwG7zFq1nTGSDTMxg1WHc2e4wsXSxA,5193
|
|
851
591
|
teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcEnzS1JSnXqiFh_3zNoPHwlaZSiE7bro,10163
|
|
852
592
|
teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
|
|
853
593
|
teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
|
|
854
|
-
teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=
|
|
855
|
-
teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=
|
|
856
|
-
teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=
|
|
594
|
+
teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
|
|
595
|
+
teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
|
|
596
|
+
teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=5vpcUcjfKGxrDQ5cw1pnd3l2uhvKLWo-TDTQxhqeV9k,8823
|
|
857
597
|
teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
|
|
858
598
|
teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=qtVCAR6rLjSovVa4RXmPt7cemLuORzTgtNt_3hlylbs,11144
|
|
859
|
-
teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=
|
|
599
|
+
teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=x9SynimB9X22apLjgIjhZV4j156ylsymmAMbAq7Yzi0,4707
|
|
860
600
|
teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
|
|
861
601
|
teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
|
|
862
602
|
teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
|
|
863
603
|
teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
|
|
864
|
-
teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256
|
|
604
|
+
teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
|
|
865
605
|
teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPScarkWE-IEutR2y-yrDU,7250
|
|
866
606
|
teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
|
|
867
|
-
teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=
|
|
868
|
-
teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=
|
|
607
|
+
teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
|
|
608
|
+
teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=g-xM7e8XhkvnDduBciYG28RZyyvWmL3JwLN2exbBKqA,7974
|
|
869
609
|
teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
|
|
870
|
-
teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=
|
|
610
|
+
teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
|
|
871
611
|
teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
|
|
872
612
|
teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
|
|
873
|
-
teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=
|
|
613
|
+
teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
|
|
874
614
|
teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
|
|
875
615
|
teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
|
|
876
616
|
teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_dEZzKK5rbNFcW243DK1g79f-hE,8259
|
|
@@ -878,7 +618,7 @@ teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUb
|
|
|
878
618
|
teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
|
|
879
619
|
teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=3xZ8kSch-_UvYLzM31tqgj4y1GxZgOtMlcRwTkiRADk,11212
|
|
880
620
|
teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=t-Hz0jlDpfHEMYGgAnVmjtGv9_H46SPzgREBbUa71i8,17407
|
|
881
|
-
teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=
|
|
621
|
+
teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=VkM94spF5UG15hHf4lDrlhNURsItEMdsNzziU3KGYw8,14348
|
|
882
622
|
teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=m0Nlf8IV_QqIEm3A1SFYxWRq8UtdUggA9Xyog5tkYb4,6483
|
|
883
623
|
teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
884
624
|
teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -1019,25 +759,25 @@ teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json,sha256=USiDLoY-JVa_4OSyrk0inf
|
|
|
1019
759
|
teradataml/data/jsons/sqle/17.10/TD_FTest.json,sha256=24PlNpdlve0ihK9zMXRm86lBUv5ERGbllEWm3UQ3m2c,5649
|
|
1020
760
|
teradataml/data/jsons/sqle/17.10/TD_FillRowID.json,sha256=p0mkXfBmLzFviESLNA7Mw4Ug-STnzov-LuZMLrnp26w,1599
|
|
1021
761
|
teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
|
|
1022
|
-
teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=
|
|
762
|
+
teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
|
|
1023
763
|
teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json,sha256=FuKUCl8EXWu1MUr8Egr7O6-kR_1OsIfpH4W30MQdoCI,1827
|
|
1024
764
|
teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json,sha256=aa5zU-gGHEA5rxX7SB53IHQxwV-sZKWY_mCxV4I4gXQ,1839
|
|
1025
765
|
teradataml/data/jsons/sqle/17.10/TD_Histogram.json,sha256=yuIJsaHRNVFHgazvJsZa2vsif2lDMekTnjSZRadTBBU,4900
|
|
1026
766
|
teradataml/data/jsons/sqle/17.10/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
|
|
1027
767
|
teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json,sha256=g9mDAmzkFI8vKT3cmKgNpv24sjY8sqmkN7CVqNSDZkk,7325
|
|
1028
|
-
teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=
|
|
768
|
+
teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=FGM-k_KTJW_U4M5cQ-GkRIumY6dJmS_VeQtokvQnoLw,2389
|
|
1029
769
|
teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json,sha256=xpjAkmga9X-AC9aBDztd-RJOqTN3MxLZYXMflj6dyug,7143
|
|
1030
|
-
teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=
|
|
770
|
+
teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
|
|
1031
771
|
teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
|
|
1032
|
-
teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=
|
|
772
|
+
teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
|
|
1033
773
|
teradataml/data/jsons/sqle/17.10/TD_QQNorm.json,sha256=FW_r35-7vFxDrvR9CADTETYn84EUIqavMJ59LopVxvI,4158
|
|
1034
774
|
teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
|
|
1035
775
|
teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
|
|
1036
|
-
teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=
|
|
776
|
+
teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
|
|
1037
777
|
teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json,sha256=rEeZZImZPhUHEUZ2ZW5_LWnsz-S2zWdKm9t8PPAgab4,8444
|
|
1038
|
-
teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=
|
|
778
|
+
teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=iyeANSyGKlxeg6214Rkv873wGb2BFmujkNTmGdmb7As,2398
|
|
1039
779
|
teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json,sha256=QHNmCIWvH70qmO074cGBAa63gLL01g-PLNR7VfdHvxU,5020
|
|
1040
|
-
teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=
|
|
780
|
+
teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
|
|
1041
781
|
teradataml/data/jsons/sqle/17.10/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
|
|
1042
782
|
teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json,sha256=1DKlUuJZwznvUFbMU0JLNuwvm8uSQUFrPzfwuk-I4EY,4889
|
|
1043
783
|
teradataml/data/jsons/sqle/17.10/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
|
|
@@ -1209,40 +949,57 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
|
|
|
1209
949
|
teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
|
|
1210
950
|
teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1211
951
|
teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
|
|
952
|
+
teradataml/data/scripts/deploy_script.py,sha256=mEOXrvfOGAcTHMhAc7q4uhL23c-OqBv9F51q8WrviKQ,1768
|
|
953
|
+
teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
|
|
1212
954
|
teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
|
|
1213
955
|
teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
|
|
956
|
+
teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
957
|
+
teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=pLGvpIoJQUd3xuU3tQPvp_PxdVx3yw1BhLCFDqmdPp8,6239
|
|
958
|
+
teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=-KAyM71Ae1sNiBWe5X419dwFxs5TG58rQdo5ycaB3Gg,4955
|
|
959
|
+
teradataml/data/scripts/sklearn/sklearn_function.template,sha256=uzKh8-cC8qvuBPNmvwpHIzt0Sq5hN3zGwHpmSlEnW68,4365
|
|
960
|
+
teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=2gJThB1CPjAHD1KDkCJU8oB2pNhO-3XI2XxcrXBaF2c,5937
|
|
961
|
+
teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=9witRDQzKlr8cRi3Sqenr3ysoUlvQ4HZJQdefMcvgME,5943
|
|
962
|
+
teradataml/data/scripts/sklearn/sklearn_score.py,sha256=Lz2xufPlB4UiFt7mdQukWrWQK4aHqHP8mWyTb5JWXNM,4518
|
|
963
|
+
teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=JO8bacjaw3sgINCfiWYKXwbIRvo4qOUXg3Y_8YYtq1s,7770
|
|
964
|
+
teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
|
|
1214
965
|
teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1215
|
-
teradataml/dataframe/copy_to.py,sha256=
|
|
1216
|
-
teradataml/dataframe/data_transfer.py,sha256=
|
|
1217
|
-
teradataml/dataframe/dataframe.py,sha256=
|
|
1218
|
-
teradataml/dataframe/dataframe_utils.py,sha256=
|
|
1219
|
-
teradataml/dataframe/fastload.py,sha256=
|
|
966
|
+
teradataml/dataframe/copy_to.py,sha256=qKRuHEsmXweSUw8t78KtErdL_7JBZlEFEDIDrFhOz0Q,76053
|
|
967
|
+
teradataml/dataframe/data_transfer.py,sha256=mVcZWyZrGmcY09rU6jmSoEbfRMrK9RGD4m2Vk4On8Fc,121030
|
|
968
|
+
teradataml/dataframe/dataframe.py,sha256=omeXW9bUzVDsFQHq1io6RP9_in8BPstLmAEsU425F7Q,929401
|
|
969
|
+
teradataml/dataframe/dataframe_utils.py,sha256=Xt209gKYO1IGswUXXPQRZuvT7EyrZMvr10ea-ywvxoI,86011
|
|
970
|
+
teradataml/dataframe/fastload.py,sha256=SwB9vojHcnlT07rWejtGckFsHjp21bZykF30ZUtA1Bc,30879
|
|
1220
971
|
teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
|
|
1221
|
-
teradataml/dataframe/setop.py,sha256=
|
|
1222
|
-
teradataml/dataframe/sql.py,sha256=
|
|
1223
|
-
teradataml/dataframe/sql_function_parameters.py,sha256=
|
|
972
|
+
teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
|
|
973
|
+
teradataml/dataframe/sql.py,sha256=RndAcQlBz9xd7YLtHugOcZ3aYtJ-_o2E5ETXakKiX64,598800
|
|
974
|
+
teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
|
|
1224
975
|
teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
|
|
1225
976
|
teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
|
|
1226
|
-
teradataml/dataframe/vantage_function_types.py,sha256=
|
|
1227
|
-
teradataml/dataframe/window.py,sha256=
|
|
977
|
+
teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
|
|
978
|
+
teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
|
|
1228
979
|
teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
|
|
1229
|
-
teradataml/dbutils/dbutils.py,sha256=
|
|
980
|
+
teradataml/dbutils/dbutils.py,sha256=W56DIrfayzXQ-YKbO3VkztfUnWdNpUJhPTgHaDOLxyo,47458
|
|
1230
981
|
teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
|
|
1231
982
|
teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
|
|
1232
983
|
teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
|
|
1233
984
|
teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
|
|
1234
|
-
teradataml/geospatial/geodataframe.py,sha256=
|
|
1235
|
-
teradataml/geospatial/geodataframecolumn.py,sha256=
|
|
985
|
+
teradataml/geospatial/geodataframe.py,sha256=cKnqjVBj1kkiAPqMw5w-PxrxLBhYXwq1ZV1SAZE4P-I,51399
|
|
986
|
+
teradataml/geospatial/geodataframecolumn.py,sha256=Yoe8GueOGoz6p1K1qMjwYzcg_K1hh9se4CMEq2JLrNU,16327
|
|
1236
987
|
teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
|
|
1237
988
|
teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
|
|
1238
|
-
teradataml/hyperparameter_tuner/optimizer.py,sha256=
|
|
1239
|
-
teradataml/hyperparameter_tuner/utils.py,sha256=
|
|
989
|
+
teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
|
|
990
|
+
teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
|
|
1240
991
|
teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1241
|
-
teradataml/lib/aed_0_1.dll,sha256=
|
|
1242
|
-
teradataml/lib/libaed_0_1.dylib,sha256=
|
|
1243
|
-
teradataml/lib/libaed_0_1.so,sha256=
|
|
1244
|
-
teradataml/
|
|
1245
|
-
teradataml/
|
|
992
|
+
teradataml/lib/aed_0_1.dll,sha256=LY_vI-UC2Ck9AQPVa3WJNlTqE-ZL03b7xrUfHaggcsY,3928816
|
|
993
|
+
teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
994
|
+
teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
995
|
+
teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
|
|
996
|
+
teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
|
|
997
|
+
teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
|
|
998
|
+
teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=p2vfmvFgx6AUd1rrTNduhP98iPLj6xWsGUWEvIM24vI,80265
|
|
999
|
+
teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
|
|
1000
|
+
teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
|
|
1001
|
+
teradataml/options/__init__.py,sha256=-dWw6bhZIjkoOoKoHPUePF572GwNKZzWEWJG6b3yIMc,5299
|
|
1002
|
+
teradataml/options/configure.py,sha256=80nX6p929uTwLsTHQkWSyUh2gH29xppFcb7oSqb-ZBU,18376
|
|
1246
1003
|
teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
|
|
1247
1004
|
teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
|
|
1248
1005
|
teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
|
|
@@ -1251,21 +1008,20 @@ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,123
|
|
|
1251
1008
|
teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
|
|
1252
1009
|
teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
|
|
1253
1010
|
teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
|
|
1254
|
-
teradataml/scriptmgmt/UserEnv.py,sha256=
|
|
1011
|
+
teradataml/scriptmgmt/UserEnv.py,sha256=euflI9J03K4gWceVPoRgKb9RutXSrHtsIkYO_9onBdM,176731
|
|
1255
1012
|
teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
|
|
1256
|
-
teradataml/scriptmgmt/lls_utils.py,sha256=
|
|
1013
|
+
teradataml/scriptmgmt/lls_utils.py,sha256=3HUailXY-sv8ghC-mmuphsIKsXKTCWWculrTPuuRiXs,69528
|
|
1257
1014
|
teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1258
1015
|
teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
|
|
1259
1016
|
teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
|
|
1260
|
-
teradataml/table_operators/Apply.py,sha256=
|
|
1261
|
-
teradataml/table_operators/Script.py,sha256=
|
|
1262
|
-
teradataml/table_operators/TableOperator.py,sha256=
|
|
1263
|
-
teradataml/table_operators/__init__.py,sha256=
|
|
1017
|
+
teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
|
|
1018
|
+
teradataml/table_operators/Script.py,sha256=atd373WtOnkUzBf_RttEVRSzcuUvyehhy9CTF8IitBE,77300
|
|
1019
|
+
teradataml/table_operators/TableOperator.py,sha256=htjHKr0qyj-ieD8RG1P18vN1bb5DIJ4ff5zSHKXM8cg,63392
|
|
1020
|
+
teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
|
|
1264
1021
|
teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
|
|
1265
1022
|
teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
|
|
1266
|
-
teradataml/table_operators/sandbox_container_util.py,sha256=nPExBTHqWa4uD1dB4TEGqmImE5QU3HYqNp7enc2-jPA,28075
|
|
1267
1023
|
teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
|
|
1268
|
-
teradataml/table_operators/table_operator_util.py,sha256=
|
|
1024
|
+
teradataml/table_operators/table_operator_util.py,sha256=b9ndKX6Zz0SQuWiRzvYVKILIFpXX1HwgFtMwAIlhOcE,28404
|
|
1269
1025
|
teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
|
|
1270
1026
|
teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
|
|
1271
1027
|
teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
|
|
@@ -1274,9 +1030,9 @@ teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26
|
|
|
1274
1030
|
teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
|
|
1275
1031
|
teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
|
|
1276
1032
|
teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
|
|
1277
|
-
teradataml/utils/validators.py,sha256=
|
|
1278
|
-
teradataml-
|
|
1279
|
-
teradataml-
|
|
1280
|
-
teradataml-
|
|
1281
|
-
teradataml-
|
|
1282
|
-
teradataml-
|
|
1033
|
+
teradataml/utils/validators.py,sha256=ljVG9MW_639w_2f5mfWFTy3a6m36Y-wxekM0F96U1Sc,91216
|
|
1034
|
+
teradataml-20.0.0.0.dist-info/METADATA,sha256=e4iwyFC1BMEOm0NTpokEK1HZxazSd3x1axfeL24pRYQ,101318
|
|
1035
|
+
teradataml-20.0.0.0.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
|
1036
|
+
teradataml-20.0.0.0.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
|
|
1037
|
+
teradataml-20.0.0.0.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
1038
|
+
teradataml-20.0.0.0.dist-info/RECORD,,
|