teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/DTW.py
DELETED
|
@@ -1,623 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.9
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class DTW:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
template_data = None,
|
|
35
|
-
mapping_data = None,
|
|
36
|
-
input_columns = None,
|
|
37
|
-
template_columns = None,
|
|
38
|
-
timeseries_id = None,
|
|
39
|
-
template_id = None,
|
|
40
|
-
radius = 10,
|
|
41
|
-
dist_method = "EuclideanDistance",
|
|
42
|
-
warp_path = False,
|
|
43
|
-
data_sequence_column = None,
|
|
44
|
-
template_data_sequence_column = None,
|
|
45
|
-
mapping_data_sequence_column = None,
|
|
46
|
-
data_partition_column = None,
|
|
47
|
-
mapping_data_partition_column = None,
|
|
48
|
-
data_order_column = None,
|
|
49
|
-
template_data_order_column = None,
|
|
50
|
-
mapping_data_order_column = None):
|
|
51
|
-
"""
|
|
52
|
-
DESCRIPTION:
|
|
53
|
-
The DTW function performs dynamic time warping (DTW), which
|
|
54
|
-
measures the similarity (warp distance) between two time series
|
|
55
|
-
that vary in time or speed. You can use DTW to analyze any data
|
|
56
|
-
that can be represented linearly - for example, video, audio, and
|
|
57
|
-
graphics.
|
|
58
|
-
For example:
|
|
59
|
-
• In two videos, DTW can detect similarities in walking
|
|
60
|
-
patterns, even if in one video the person is walking slowly
|
|
61
|
-
and in another, the same person is walking fast.
|
|
62
|
-
• In audio, DTW can detect similarities in different speech
|
|
63
|
-
speeds (and is therefore very useful in speech recognition
|
|
64
|
-
applications).
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
PARAMETERS:
|
|
68
|
-
data:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the teradataml DataFrame that contains the time
|
|
71
|
-
series information.
|
|
72
|
-
|
|
73
|
-
data_partition_column:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies Partition By columns for "data".
|
|
76
|
-
Values to this argument can be provided as list, if multiple
|
|
77
|
-
columns are used for partition.
|
|
78
|
-
Note: When teradataml is connected to Vantage 1.3 or later
|
|
79
|
-
versions, this argument accepts only one column which
|
|
80
|
-
is specified using the "timeseries_id" argument.
|
|
81
|
-
Types: str OR list of Strings (str)
|
|
82
|
-
|
|
83
|
-
data_order_column:
|
|
84
|
-
Required Argument.
|
|
85
|
-
Specifies Order By columns for "data".
|
|
86
|
-
Values to this argument can be provided as list, if multiple
|
|
87
|
-
columns are used for ordering.
|
|
88
|
-
Note: When teradataml is connected to Vantage 1.3 or later
|
|
89
|
-
versions, this argument accepts only one column containing
|
|
90
|
-
timestamp values in the "data" teradataml DataFrame.
|
|
91
|
-
Types: str OR list of Strings (str)
|
|
92
|
-
|
|
93
|
-
template_data:
|
|
94
|
-
Required Argument.
|
|
95
|
-
Specifies the teradataml DataFrame that contains the template
|
|
96
|
-
information.
|
|
97
|
-
|
|
98
|
-
template_data_order_column:
|
|
99
|
-
Required Argument.
|
|
100
|
-
Specifies Order By columns for "template_data".
|
|
101
|
-
Values to this argument can be provided as list, if multiple
|
|
102
|
-
columns are used for ordering.
|
|
103
|
-
Note: When teradataml is connected to Vantage 1.3 or later
|
|
104
|
-
versions, this argument must include the column specified
|
|
105
|
-
using the "template_id" argument following the name of the
|
|
106
|
-
column containing timestamp values in "template_data".
|
|
107
|
-
Types: str OR list of Strings (str)
|
|
108
|
-
|
|
109
|
-
mapping_data:
|
|
110
|
-
Optional Argument. Required if teradataml is connected to Vantage 1.1.1
|
|
111
|
-
or earlier versions.
|
|
112
|
-
Specifies the teradataml DataFrame that contains the mapping
|
|
113
|
-
between the rows in "data" teradataml DataFrame and the rows in
|
|
114
|
-
the "template_data" teradataml DataFrame.
|
|
115
|
-
|
|
116
|
-
mapping_data_partition_column:
|
|
117
|
-
Optional Argument. Required when "mapping_data" is used.
|
|
118
|
-
Specifies Partition By columns for "mapping_data".
|
|
119
|
-
Values to this argument can be provided as list, if multiple
|
|
120
|
-
columns are used for partition.
|
|
121
|
-
Note: When teradataml is connected to Vantage 1.3 or later
|
|
122
|
-
versions, this argument accepts only one column containing
|
|
123
|
-
a unique ID for a time series in "mapping_data".
|
|
124
|
-
Types: str OR list of Strings (str)
|
|
125
|
-
|
|
126
|
-
mapping_data_order_column:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies Order By columns for "mapping_data".
|
|
129
|
-
Values to this argument can be provided as list, if multiple
|
|
130
|
-
columns are used for ordering.
|
|
131
|
-
Types: str OR list of Strings (str)
|
|
132
|
-
|
|
133
|
-
input_columns:
|
|
134
|
-
Required Argument.
|
|
135
|
-
Specifies the names of the "data" columns that contain the
|
|
136
|
-
values and timestamps of the time series , in that order.
|
|
137
|
-
Note: If these columns contain NaN or infinity values, then
|
|
138
|
-
those should be removed.
|
|
139
|
-
Types: list of Strings (str)
|
|
140
|
-
|
|
141
|
-
template_columns:
|
|
142
|
-
Required Argument.
|
|
143
|
-
Specifies the names of the "template_data" columns that contain
|
|
144
|
-
the values and timestamps of the time series, in that order.
|
|
145
|
-
Note: If these columns contain NaN or infinity values, then
|
|
146
|
-
those should be removed.
|
|
147
|
-
Types: list of Strings (str)
|
|
148
|
-
|
|
149
|
-
timeseries_id:
|
|
150
|
-
Required Argument.
|
|
151
|
-
Specifies the name of the column by which the "data" is
|
|
152
|
-
partitioned. This column must comprise the unique ID for a time
|
|
153
|
-
series in "data".
|
|
154
|
-
Types: str
|
|
155
|
-
|
|
156
|
-
template_id:
|
|
157
|
-
Required Argument.
|
|
158
|
-
Specifies the name of the column by which the "template_data"
|
|
159
|
-
is ordered. This column must comprise the unique ID for a time
|
|
160
|
-
series in "template_data".
|
|
161
|
-
Types: str
|
|
162
|
-
|
|
163
|
-
radius:
|
|
164
|
-
Optional Argument.
|
|
165
|
-
Specifies the integer value that determines the projected warp
|
|
166
|
-
path from a previous resolution.
|
|
167
|
-
Default Value: 10
|
|
168
|
-
Types: int
|
|
169
|
-
|
|
170
|
-
dist_method:
|
|
171
|
-
Optional Argument.
|
|
172
|
-
Specifies the metric for computing the warping distance.
|
|
173
|
-
Note: These values are case-sensitive.
|
|
174
|
-
Default Value: "EuclideanDistance"
|
|
175
|
-
Permitted Values: EuclideanDistance, BinaryDistance,
|
|
176
|
-
ManhattanDistance
|
|
177
|
-
Types: str
|
|
178
|
-
|
|
179
|
-
warp_path:
|
|
180
|
-
Optional Argument.
|
|
181
|
-
Determines whether to output the warping path.
|
|
182
|
-
Default Value: False
|
|
183
|
-
Types: bool
|
|
184
|
-
|
|
185
|
-
data_sequence_column:
|
|
186
|
-
Optional Argument.
|
|
187
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
188
|
-
row of the input argument "data". The argument is used to
|
|
189
|
-
ensure deterministic results for functions which produce
|
|
190
|
-
results that vary from run to run.
|
|
191
|
-
Types: str OR list of Strings (str)
|
|
192
|
-
|
|
193
|
-
template_data_sequence_column:
|
|
194
|
-
Optional Argument.
|
|
195
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
196
|
-
row of the input argument "template_data". The argument is used
|
|
197
|
-
to ensure deterministic results for functions which produce
|
|
198
|
-
results that vary from run to run.
|
|
199
|
-
Types: str OR list of Strings (str)
|
|
200
|
-
|
|
201
|
-
mapping_data_sequence_column:
|
|
202
|
-
Optional Argument.
|
|
203
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
204
|
-
row of the input argument "mapping_data". The argument is used
|
|
205
|
-
to ensure deterministic results for functions which produce
|
|
206
|
-
results that vary from run to run.
|
|
207
|
-
Types: str OR list of Strings (str)
|
|
208
|
-
|
|
209
|
-
RETURNS:
|
|
210
|
-
Instance of DTW.
|
|
211
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
212
|
-
references, such as DTWObj.<attribute_name>.
|
|
213
|
-
Output teradataml DataFrame attribute name is:
|
|
214
|
-
result
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
RAISES:
|
|
218
|
-
TeradataMlException
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
EXAMPLES:
|
|
222
|
-
# This example compares a time series to a common template and
|
|
223
|
-
# vice-versa. Time series represents stock prices (in table
|
|
224
|
-
# 'timeseriesdata') and the template represents a series of stock
|
|
225
|
-
# index prices (in table 'templatedata'). The mapping of
|
|
226
|
-
# 'timeseriesdata' and 'templatedata' is given in table
|
|
227
|
-
# 'mappingdata'.
|
|
228
|
-
|
|
229
|
-
# Load example data.
|
|
230
|
-
load_example_data("dtw", ["timeseriesdata", "templatedata", "mappingdata"])
|
|
231
|
-
|
|
232
|
-
# Create teradataml DataFrame objects.
|
|
233
|
-
timeseriesdata = DataFrame.from_table("timeseriesdata")
|
|
234
|
-
templatedata = DataFrame.from_table("templatedata")
|
|
235
|
-
mappingdata = DataFrame.from_table("mappingdata")
|
|
236
|
-
|
|
237
|
-
# Example 1 : DTW compares "stockprice" in 'timeseriesdata'
|
|
238
|
-
# DataFrame with "indexprice" of 'templatedata'
|
|
239
|
-
# DataFrame using mapping information and generates
|
|
240
|
-
# the result DataFrame containing mapping information
|
|
241
|
-
# along with "wrap_distance" which indicates the
|
|
242
|
-
# similarity between the two columns' timeseries
|
|
243
|
-
# information.
|
|
244
|
-
|
|
245
|
-
DTW_out = DTW(data = timeseriesdata,
|
|
246
|
-
data_partition_column = ["timeseriesid"],
|
|
247
|
-
data_order_column = ["timestamp1"],
|
|
248
|
-
template_data = templatedata,
|
|
249
|
-
template_data_order_column = ["timestamp2", "templateid"],
|
|
250
|
-
mapping_data = mappingdata,
|
|
251
|
-
mapping_data_partition_column = ["timeseriesid"],
|
|
252
|
-
input_columns = ["stockprice", "timestamp1"],
|
|
253
|
-
template_columns = ["indexprice", "timestamp2"],
|
|
254
|
-
timeseries_id = "timeseriesid",
|
|
255
|
-
template_id = "templateid"
|
|
256
|
-
)
|
|
257
|
-
# Print the results
|
|
258
|
-
print(DTW_out.result)
|
|
259
|
-
|
|
260
|
-
"""
|
|
261
|
-
|
|
262
|
-
# Start the timer to get the build time
|
|
263
|
-
_start_time = time.time()
|
|
264
|
-
|
|
265
|
-
self.data = data
|
|
266
|
-
self.template_data = template_data
|
|
267
|
-
self.mapping_data = mapping_data
|
|
268
|
-
self.input_columns = input_columns
|
|
269
|
-
self.template_columns = template_columns
|
|
270
|
-
self.timeseries_id = timeseries_id
|
|
271
|
-
self.template_id = template_id
|
|
272
|
-
self.radius = radius
|
|
273
|
-
self.dist_method = dist_method
|
|
274
|
-
self.warp_path = warp_path
|
|
275
|
-
self.data_sequence_column = data_sequence_column
|
|
276
|
-
self.template_data_sequence_column = template_data_sequence_column
|
|
277
|
-
self.mapping_data_sequence_column = mapping_data_sequence_column
|
|
278
|
-
self.data_partition_column = data_partition_column
|
|
279
|
-
self.mapping_data_partition_column = mapping_data_partition_column
|
|
280
|
-
self.data_order_column = data_order_column
|
|
281
|
-
self.template_data_order_column = template_data_order_column
|
|
282
|
-
self.mapping_data_order_column = mapping_data_order_column
|
|
283
|
-
|
|
284
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
285
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
286
|
-
self.__aed_utils = AedUtils()
|
|
287
|
-
|
|
288
|
-
# Create argument information matrix to do parameter checking
|
|
289
|
-
self.__arg_info_matrix = []
|
|
290
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
291
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
292
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
293
|
-
self.__arg_info_matrix.append(["template_data", self.template_data, False, (DataFrame)])
|
|
294
|
-
self.__arg_info_matrix.append(["template_data_order_column", self.template_data_order_column, False, (str,list)])
|
|
295
|
-
self.__arg_info_matrix.append(["mapping_data", self.mapping_data, True, (DataFrame)])
|
|
296
|
-
self.__arg_info_matrix.append(["mapping_data_partition_column", self.mapping_data_partition_column, self.mapping_data is None, (str,list)])
|
|
297
|
-
self.__arg_info_matrix.append(["mapping_data_order_column", self.mapping_data_order_column, True, (str,list)])
|
|
298
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str, list)])
|
|
299
|
-
self.__arg_info_matrix.append(["template_columns", self.template_columns, False, (str, list)])
|
|
300
|
-
self.__arg_info_matrix.append(["timeseries_id", self.timeseries_id, False, (str)])
|
|
301
|
-
self.__arg_info_matrix.append(["template_id", self.template_id, False, (str)])
|
|
302
|
-
self.__arg_info_matrix.append(["radius", self.radius, True, (int)])
|
|
303
|
-
self.__arg_info_matrix.append(["dist_method", self.dist_method, True, (str)])
|
|
304
|
-
self.__arg_info_matrix.append(["warp_path", self.warp_path, True, (bool)])
|
|
305
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
306
|
-
self.__arg_info_matrix.append(["template_data_sequence_column", self.template_data_sequence_column, True, (str,list)])
|
|
307
|
-
self.__arg_info_matrix.append(["mapping_data_sequence_column", self.mapping_data_sequence_column, True, (str,list)])
|
|
308
|
-
|
|
309
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
310
|
-
# Perform the function validations
|
|
311
|
-
self.__validate()
|
|
312
|
-
# Generate the ML query
|
|
313
|
-
self.__form_tdml_query()
|
|
314
|
-
# Execute ML query
|
|
315
|
-
self.__execute()
|
|
316
|
-
# Get the prediction type
|
|
317
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
318
|
-
|
|
319
|
-
# End the timer to get the build time
|
|
320
|
-
_end_time = time.time()
|
|
321
|
-
|
|
322
|
-
# Calculate the build time
|
|
323
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
324
|
-
|
|
325
|
-
def __validate(self):
|
|
326
|
-
"""
|
|
327
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
328
|
-
arguments, input argument and table types. Also processes the
|
|
329
|
-
argument values.
|
|
330
|
-
"""
|
|
331
|
-
|
|
332
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
333
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
334
|
-
|
|
335
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
336
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
337
|
-
|
|
338
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
339
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
340
|
-
self.__awu._validate_input_table_datatype(self.template_data, "template_data", None)
|
|
341
|
-
self.__awu._validate_input_table_datatype(self.mapping_data, "mapping_data", None)
|
|
342
|
-
|
|
343
|
-
# Check for permitted values
|
|
344
|
-
dist_method_permitted_values = ["EUCLIDEANDISTANCE", "BINARYDISTANCE", "MANHATTANDISTANCE"]
|
|
345
|
-
self.__awu._validate_permitted_values(self.dist_method, dist_method_permitted_values, "dist_method")
|
|
346
|
-
|
|
347
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
348
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
349
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
350
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
|
|
351
|
-
|
|
352
|
-
self.__awu._validate_input_columns_not_empty(self.template_columns, "template_columns")
|
|
353
|
-
self.__awu._validate_dataframe_has_argument_columns(self.template_columns, "template_columns", self.template_data, "template_data", False)
|
|
354
|
-
|
|
355
|
-
self.__awu._validate_input_columns_not_empty(self.timeseries_id, "timeseries_id")
|
|
356
|
-
self.__awu._validate_dataframe_has_argument_columns(self.timeseries_id, "timeseries_id", self.data, "data", False)
|
|
357
|
-
|
|
358
|
-
self.__awu._validate_input_columns_not_empty(self.template_id, "template_id")
|
|
359
|
-
self.__awu._validate_dataframe_has_argument_columns(self.template_id, "template_id", self.template_data, "template_data", False)
|
|
360
|
-
|
|
361
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
362
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
363
|
-
|
|
364
|
-
self.__awu._validate_input_columns_not_empty(self.template_data_sequence_column, "template_data_sequence_column")
|
|
365
|
-
self.__awu._validate_dataframe_has_argument_columns(self.template_data_sequence_column, "template_data_sequence_column", self.template_data, "template_data", False)
|
|
366
|
-
|
|
367
|
-
self.__awu._validate_input_columns_not_empty(self.mapping_data_sequence_column, "mapping_data_sequence_column")
|
|
368
|
-
self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_sequence_column, "mapping_data_sequence_column", self.mapping_data, "mapping_data", False)
|
|
369
|
-
|
|
370
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
371
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
372
|
-
|
|
373
|
-
self.__awu._validate_input_columns_not_empty(self.mapping_data_partition_column, "mapping_data_partition_column")
|
|
374
|
-
self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_partition_column, "mapping_data_partition_column", self.mapping_data, "mapping_data", True)
|
|
375
|
-
|
|
376
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
377
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
378
|
-
|
|
379
|
-
self.__awu._validate_input_columns_not_empty(self.template_data_order_column, "template_data_order_column")
|
|
380
|
-
self.__awu._validate_dataframe_has_argument_columns(self.template_data_order_column, "template_data_order_column", self.template_data, "template_data", False)
|
|
381
|
-
|
|
382
|
-
self.__awu._validate_input_columns_not_empty(self.mapping_data_order_column, "mapping_data_order_column")
|
|
383
|
-
self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_order_column, "mapping_data_order_column", self.mapping_data, "mapping_data", False)
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
def __form_tdml_query(self):
|
|
387
|
-
"""
|
|
388
|
-
Function to generate the analytical function queries. The function defines
|
|
389
|
-
variables and list of arguments required to form the query.
|
|
390
|
-
"""
|
|
391
|
-
|
|
392
|
-
# Output table arguments list
|
|
393
|
-
self.__func_output_args_sql_names = []
|
|
394
|
-
self.__func_output_args = []
|
|
395
|
-
|
|
396
|
-
# Model Cataloging related attributes.
|
|
397
|
-
self._sql_specific_attributes = {}
|
|
398
|
-
self._sql_formula_attribute_mapper = {}
|
|
399
|
-
self._target_column = None
|
|
400
|
-
self._algorithm_name = None
|
|
401
|
-
|
|
402
|
-
# Generate lists for rest of the function arguments
|
|
403
|
-
self.__func_other_arg_sql_names = []
|
|
404
|
-
self.__func_other_args = []
|
|
405
|
-
self.__func_other_arg_json_datatypes = []
|
|
406
|
-
|
|
407
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
408
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
409
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
410
|
-
|
|
411
|
-
self.__func_other_arg_sql_names.append("TemplateColumns")
|
|
412
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.template_columns, "\""), "'"))
|
|
413
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
414
|
-
|
|
415
|
-
self.__func_other_arg_sql_names.append("TimeseriesId")
|
|
416
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.timeseries_id, "\""), "'"))
|
|
417
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
418
|
-
|
|
419
|
-
self.__func_other_arg_sql_names.append("TemplateId")
|
|
420
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.template_id, "\""), "'"))
|
|
421
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
422
|
-
|
|
423
|
-
if self.radius is not None and self.radius != 10:
|
|
424
|
-
self.__func_other_arg_sql_names.append("Radius")
|
|
425
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.radius, "'"))
|
|
426
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
427
|
-
|
|
428
|
-
if self.dist_method is not None and self.dist_method != "EuclideanDistance":
|
|
429
|
-
self.__func_other_arg_sql_names.append("DistanceMethod")
|
|
430
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.dist_method, "'"))
|
|
431
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
432
|
-
|
|
433
|
-
if self.warp_path is not None and self.warp_path != False:
|
|
434
|
-
self.__func_other_arg_sql_names.append("WarpPath")
|
|
435
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.warp_path, "'"))
|
|
436
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
437
|
-
|
|
438
|
-
# Generate lists for rest of the function arguments
|
|
439
|
-
sequence_input_by_list = []
|
|
440
|
-
if self.data_sequence_column is not None:
|
|
441
|
-
sequence_input_by_list.append("inputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
442
|
-
|
|
443
|
-
if self.template_data_sequence_column is not None:
|
|
444
|
-
sequence_input_by_list.append("templateTable:" + UtilFuncs._teradata_collapse_arglist(self.template_data_sequence_column, ""))
|
|
445
|
-
|
|
446
|
-
if self.mapping_data_sequence_column is not None:
|
|
447
|
-
sequence_input_by_list.append("mappingTable:" + UtilFuncs._teradata_collapse_arglist(self.mapping_data_sequence_column, ""))
|
|
448
|
-
|
|
449
|
-
if len(sequence_input_by_list) > 0:
|
|
450
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
451
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
452
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
453
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
454
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
# Declare empty lists to hold input table information.
|
|
458
|
-
self.__func_input_arg_sql_names = []
|
|
459
|
-
self.__func_input_table_view_query = []
|
|
460
|
-
self.__func_input_dataframe_type = []
|
|
461
|
-
self.__func_input_distribution = []
|
|
462
|
-
self.__func_input_partition_by_cols = []
|
|
463
|
-
self.__func_input_order_by_cols = []
|
|
464
|
-
|
|
465
|
-
# Process data
|
|
466
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
467
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
468
|
-
self.__func_input_distribution.append("FACT")
|
|
469
|
-
self.__func_input_arg_sql_names.append("inputTable")
|
|
470
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
471
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
472
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
473
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
474
|
-
|
|
475
|
-
# Process template_data
|
|
476
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.template_data, False)
|
|
477
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
478
|
-
self.__func_input_arg_sql_names.append("templateTable")
|
|
479
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
480
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
481
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
482
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.template_data_order_column, "\""))
|
|
483
|
-
|
|
484
|
-
# Process mapping_data
|
|
485
|
-
if self.mapping_data is not None:
|
|
486
|
-
self.mapping_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.mapping_data_partition_column, "\"")
|
|
487
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.mapping_data, False)
|
|
488
|
-
self.__func_input_distribution.append("FACT")
|
|
489
|
-
self.__func_input_arg_sql_names.append("mappingTable")
|
|
490
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
491
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
492
|
-
self.__func_input_partition_by_cols.append(self.mapping_data_partition_column)
|
|
493
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.mapping_data_order_column, "\""))
|
|
494
|
-
|
|
495
|
-
function_name = "DTW"
|
|
496
|
-
# Create instance to generate SQLMR.
|
|
497
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
498
|
-
self.__func_input_arg_sql_names,
|
|
499
|
-
self.__func_input_table_view_query,
|
|
500
|
-
self.__func_input_dataframe_type,
|
|
501
|
-
self.__func_input_distribution,
|
|
502
|
-
self.__func_input_partition_by_cols,
|
|
503
|
-
self.__func_input_order_by_cols,
|
|
504
|
-
self.__func_other_arg_sql_names,
|
|
505
|
-
self.__func_other_args,
|
|
506
|
-
self.__func_other_arg_json_datatypes,
|
|
507
|
-
self.__func_output_args_sql_names,
|
|
508
|
-
self.__func_output_args,
|
|
509
|
-
engine="ENGINE_ML")
|
|
510
|
-
# Invoke call to SQL-MR generation.
|
|
511
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
512
|
-
|
|
513
|
-
# Print SQL-MR query if requested to do so.
|
|
514
|
-
if display.print_sqlmr_query:
|
|
515
|
-
print(self.sqlmr_query)
|
|
516
|
-
|
|
517
|
-
# Set the algorithm name for Model Cataloging.
|
|
518
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
519
|
-
|
|
520
|
-
def __execute(self):
|
|
521
|
-
"""
|
|
522
|
-
Function to execute SQL-MR queries.
|
|
523
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
524
|
-
"""
|
|
525
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
526
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
527
|
-
try:
|
|
528
|
-
# Generate the output.
|
|
529
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
530
|
-
except Exception as emsg:
|
|
531
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
532
|
-
|
|
533
|
-
# Update output table data frames.
|
|
534
|
-
self._mlresults = []
|
|
535
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
536
|
-
self._mlresults.append(self.result)
|
|
537
|
-
|
|
538
|
-
def show_query(self):
|
|
539
|
-
"""
|
|
540
|
-
Function to return the underlying SQL query.
|
|
541
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
542
|
-
"""
|
|
543
|
-
return self.sqlmr_query
|
|
544
|
-
|
|
545
|
-
def get_prediction_type(self):
|
|
546
|
-
"""
|
|
547
|
-
Function to return the Prediction type of the algorithm.
|
|
548
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
549
|
-
as saved in the Model Catalog.
|
|
550
|
-
"""
|
|
551
|
-
return self._prediction_type
|
|
552
|
-
|
|
553
|
-
def get_target_column(self):
|
|
554
|
-
"""
|
|
555
|
-
Function to return the Target Column of the algorithm.
|
|
556
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
557
|
-
as saved in the Model Catalog.
|
|
558
|
-
"""
|
|
559
|
-
return self._target_column
|
|
560
|
-
|
|
561
|
-
def get_build_time(self):
|
|
562
|
-
"""
|
|
563
|
-
Function to return the build time of the algorithm in seconds.
|
|
564
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
565
|
-
as saved in the Model Catalog.
|
|
566
|
-
"""
|
|
567
|
-
return self._build_time
|
|
568
|
-
|
|
569
|
-
def _get_algorithm_name(self):
|
|
570
|
-
"""
|
|
571
|
-
Function to return the name of the algorithm.
|
|
572
|
-
"""
|
|
573
|
-
return self._algorithm_name
|
|
574
|
-
|
|
575
|
-
def _get_sql_specific_attributes(self):
|
|
576
|
-
"""
|
|
577
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
578
|
-
"""
|
|
579
|
-
return self._sql_specific_attributes
|
|
580
|
-
|
|
581
|
-
@classmethod
|
|
582
|
-
def _from_model_catalog(cls,
|
|
583
|
-
result = None,
|
|
584
|
-
**kwargs):
|
|
585
|
-
"""
|
|
586
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
587
|
-
"""
|
|
588
|
-
kwargs.pop("result", None)
|
|
589
|
-
|
|
590
|
-
# Model Cataloging related attributes.
|
|
591
|
-
target_column = kwargs.pop("__target_column", None)
|
|
592
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
593
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
594
|
-
build_time = kwargs.pop("__build_time", None)
|
|
595
|
-
|
|
596
|
-
# Let's create an object of this class.
|
|
597
|
-
obj = cls(**kwargs)
|
|
598
|
-
obj.result = result
|
|
599
|
-
|
|
600
|
-
# Initialize the sqlmr_query class attribute.
|
|
601
|
-
obj.sqlmr_query = None
|
|
602
|
-
|
|
603
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
604
|
-
obj._sql_specific_attributes = None
|
|
605
|
-
obj._target_column = target_column
|
|
606
|
-
obj._prediction_type = prediction_type
|
|
607
|
-
obj._algorithm_name = algorithm_name
|
|
608
|
-
obj._build_time = build_time
|
|
609
|
-
|
|
610
|
-
# Update output table data frames.
|
|
611
|
-
obj._mlresults = []
|
|
612
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
613
|
-
obj._mlresults.append(obj.result)
|
|
614
|
-
return obj
|
|
615
|
-
|
|
616
|
-
def __repr__(self):
|
|
617
|
-
"""
|
|
618
|
-
Returns the string representation for a DTW class instance.
|
|
619
|
-
"""
|
|
620
|
-
repr_string="############ STDOUT Output ############"
|
|
621
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
622
|
-
return repr_string
|
|
623
|
-
|