teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,623 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.9
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class DTW:
31
-
32
- def __init__(self,
33
- data = None,
34
- template_data = None,
35
- mapping_data = None,
36
- input_columns = None,
37
- template_columns = None,
38
- timeseries_id = None,
39
- template_id = None,
40
- radius = 10,
41
- dist_method = "EuclideanDistance",
42
- warp_path = False,
43
- data_sequence_column = None,
44
- template_data_sequence_column = None,
45
- mapping_data_sequence_column = None,
46
- data_partition_column = None,
47
- mapping_data_partition_column = None,
48
- data_order_column = None,
49
- template_data_order_column = None,
50
- mapping_data_order_column = None):
51
- """
52
- DESCRIPTION:
53
- The DTW function performs dynamic time warping (DTW), which
54
- measures the similarity (warp distance) between two time series
55
- that vary in time or speed. You can use DTW to analyze any data
56
- that can be represented linearly - for example, video, audio, and
57
- graphics.
58
- For example:
59
- • In two videos, DTW can detect similarities in walking
60
- patterns, even if in one video the person is walking slowly
61
- and in another, the same person is walking fast.
62
- • In audio, DTW can detect similarities in different speech
63
- speeds (and is therefore very useful in speech recognition
64
- applications).
65
-
66
-
67
- PARAMETERS:
68
- data:
69
- Required Argument.
70
- Specifies the teradataml DataFrame that contains the time
71
- series information.
72
-
73
- data_partition_column:
74
- Required Argument.
75
- Specifies Partition By columns for "data".
76
- Values to this argument can be provided as list, if multiple
77
- columns are used for partition.
78
- Note: When teradataml is connected to Vantage 1.3 or later
79
- versions, this argument accepts only one column which
80
- is specified using the "timeseries_id" argument.
81
- Types: str OR list of Strings (str)
82
-
83
- data_order_column:
84
- Required Argument.
85
- Specifies Order By columns for "data".
86
- Values to this argument can be provided as list, if multiple
87
- columns are used for ordering.
88
- Note: When teradataml is connected to Vantage 1.3 or later
89
- versions, this argument accepts only one column containing
90
- timestamp values in the "data" teradataml DataFrame.
91
- Types: str OR list of Strings (str)
92
-
93
- template_data:
94
- Required Argument.
95
- Specifies the teradataml DataFrame that contains the template
96
- information.
97
-
98
- template_data_order_column:
99
- Required Argument.
100
- Specifies Order By columns for "template_data".
101
- Values to this argument can be provided as list, if multiple
102
- columns are used for ordering.
103
- Note: When teradataml is connected to Vantage 1.3 or later
104
- versions, this argument must include the column specified
105
- using the "template_id" argument following the name of the
106
- column containing timestamp values in "template_data".
107
- Types: str OR list of Strings (str)
108
-
109
- mapping_data:
110
- Optional Argument. Required if teradataml is connected to Vantage 1.1.1
111
- or earlier versions.
112
- Specifies the teradataml DataFrame that contains the mapping
113
- between the rows in "data" teradataml DataFrame and the rows in
114
- the "template_data" teradataml DataFrame.
115
-
116
- mapping_data_partition_column:
117
- Optional Argument. Required when "mapping_data" is used.
118
- Specifies Partition By columns for "mapping_data".
119
- Values to this argument can be provided as list, if multiple
120
- columns are used for partition.
121
- Note: When teradataml is connected to Vantage 1.3 or later
122
- versions, this argument accepts only one column containing
123
- a unique ID for a time series in "mapping_data".
124
- Types: str OR list of Strings (str)
125
-
126
- mapping_data_order_column:
127
- Optional Argument.
128
- Specifies Order By columns for "mapping_data".
129
- Values to this argument can be provided as list, if multiple
130
- columns are used for ordering.
131
- Types: str OR list of Strings (str)
132
-
133
- input_columns:
134
- Required Argument.
135
- Specifies the names of the "data" columns that contain the
136
- values and timestamps of the time series , in that order.
137
- Note: If these columns contain NaN or infinity values, then
138
- those should be removed.
139
- Types: list of Strings (str)
140
-
141
- template_columns:
142
- Required Argument.
143
- Specifies the names of the "template_data" columns that contain
144
- the values and timestamps of the time series, in that order.
145
- Note: If these columns contain NaN or infinity values, then
146
- those should be removed.
147
- Types: list of Strings (str)
148
-
149
- timeseries_id:
150
- Required Argument.
151
- Specifies the name of the column by which the "data" is
152
- partitioned. This column must comprise the unique ID for a time
153
- series in "data".
154
- Types: str
155
-
156
- template_id:
157
- Required Argument.
158
- Specifies the name of the column by which the "template_data"
159
- is ordered. This column must comprise the unique ID for a time
160
- series in "template_data".
161
- Types: str
162
-
163
- radius:
164
- Optional Argument.
165
- Specifies the integer value that determines the projected warp
166
- path from a previous resolution.
167
- Default Value: 10
168
- Types: int
169
-
170
- dist_method:
171
- Optional Argument.
172
- Specifies the metric for computing the warping distance.
173
- Note: These values are case-sensitive.
174
- Default Value: "EuclideanDistance"
175
- Permitted Values: EuclideanDistance, BinaryDistance,
176
- ManhattanDistance
177
- Types: str
178
-
179
- warp_path:
180
- Optional Argument.
181
- Determines whether to output the warping path.
182
- Default Value: False
183
- Types: bool
184
-
185
- data_sequence_column:
186
- Optional Argument.
187
- Specifies the list of column(s) that uniquely identifies each
188
- row of the input argument "data". The argument is used to
189
- ensure deterministic results for functions which produce
190
- results that vary from run to run.
191
- Types: str OR list of Strings (str)
192
-
193
- template_data_sequence_column:
194
- Optional Argument.
195
- Specifies the list of column(s) that uniquely identifies each
196
- row of the input argument "template_data". The argument is used
197
- to ensure deterministic results for functions which produce
198
- results that vary from run to run.
199
- Types: str OR list of Strings (str)
200
-
201
- mapping_data_sequence_column:
202
- Optional Argument.
203
- Specifies the list of column(s) that uniquely identifies each
204
- row of the input argument "mapping_data". The argument is used
205
- to ensure deterministic results for functions which produce
206
- results that vary from run to run.
207
- Types: str OR list of Strings (str)
208
-
209
- RETURNS:
210
- Instance of DTW.
211
- Output teradataml DataFrames can be accessed using attribute
212
- references, such as DTWObj.<attribute_name>.
213
- Output teradataml DataFrame attribute name is:
214
- result
215
-
216
-
217
- RAISES:
218
- TeradataMlException
219
-
220
-
221
- EXAMPLES:
222
- # This example compares a time series to a common template and
223
- # vice-versa. Time series represents stock prices (in table
224
- # 'timeseriesdata') and the template represents a series of stock
225
- # index prices (in table 'templatedata'). The mapping of
226
- # 'timeseriesdata' and 'templatedata' is given in table
227
- # 'mappingdata'.
228
-
229
- # Load example data.
230
- load_example_data("dtw", ["timeseriesdata", "templatedata", "mappingdata"])
231
-
232
- # Create teradataml DataFrame objects.
233
- timeseriesdata = DataFrame.from_table("timeseriesdata")
234
- templatedata = DataFrame.from_table("templatedata")
235
- mappingdata = DataFrame.from_table("mappingdata")
236
-
237
- # Example 1 : DTW compares "stockprice" in 'timeseriesdata'
238
- # DataFrame with "indexprice" of 'templatedata'
239
- # DataFrame using mapping information and generates
240
- # the result DataFrame containing mapping information
241
- # along with "wrap_distance" which indicates the
242
- # similarity between the two columns' timeseries
243
- # information.
244
-
245
- DTW_out = DTW(data = timeseriesdata,
246
- data_partition_column = ["timeseriesid"],
247
- data_order_column = ["timestamp1"],
248
- template_data = templatedata,
249
- template_data_order_column = ["timestamp2", "templateid"],
250
- mapping_data = mappingdata,
251
- mapping_data_partition_column = ["timeseriesid"],
252
- input_columns = ["stockprice", "timestamp1"],
253
- template_columns = ["indexprice", "timestamp2"],
254
- timeseries_id = "timeseriesid",
255
- template_id = "templateid"
256
- )
257
- # Print the results
258
- print(DTW_out.result)
259
-
260
- """
261
-
262
- # Start the timer to get the build time
263
- _start_time = time.time()
264
-
265
- self.data = data
266
- self.template_data = template_data
267
- self.mapping_data = mapping_data
268
- self.input_columns = input_columns
269
- self.template_columns = template_columns
270
- self.timeseries_id = timeseries_id
271
- self.template_id = template_id
272
- self.radius = radius
273
- self.dist_method = dist_method
274
- self.warp_path = warp_path
275
- self.data_sequence_column = data_sequence_column
276
- self.template_data_sequence_column = template_data_sequence_column
277
- self.mapping_data_sequence_column = mapping_data_sequence_column
278
- self.data_partition_column = data_partition_column
279
- self.mapping_data_partition_column = mapping_data_partition_column
280
- self.data_order_column = data_order_column
281
- self.template_data_order_column = template_data_order_column
282
- self.mapping_data_order_column = mapping_data_order_column
283
-
284
- # Create TeradataPyWrapperUtils instance which contains validation functions.
285
- self.__awu = AnalyticsWrapperUtils()
286
- self.__aed_utils = AedUtils()
287
-
288
- # Create argument information matrix to do parameter checking
289
- self.__arg_info_matrix = []
290
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
291
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
292
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
293
- self.__arg_info_matrix.append(["template_data", self.template_data, False, (DataFrame)])
294
- self.__arg_info_matrix.append(["template_data_order_column", self.template_data_order_column, False, (str,list)])
295
- self.__arg_info_matrix.append(["mapping_data", self.mapping_data, True, (DataFrame)])
296
- self.__arg_info_matrix.append(["mapping_data_partition_column", self.mapping_data_partition_column, self.mapping_data is None, (str,list)])
297
- self.__arg_info_matrix.append(["mapping_data_order_column", self.mapping_data_order_column, True, (str,list)])
298
- self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str, list)])
299
- self.__arg_info_matrix.append(["template_columns", self.template_columns, False, (str, list)])
300
- self.__arg_info_matrix.append(["timeseries_id", self.timeseries_id, False, (str)])
301
- self.__arg_info_matrix.append(["template_id", self.template_id, False, (str)])
302
- self.__arg_info_matrix.append(["radius", self.radius, True, (int)])
303
- self.__arg_info_matrix.append(["dist_method", self.dist_method, True, (str)])
304
- self.__arg_info_matrix.append(["warp_path", self.warp_path, True, (bool)])
305
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
306
- self.__arg_info_matrix.append(["template_data_sequence_column", self.template_data_sequence_column, True, (str,list)])
307
- self.__arg_info_matrix.append(["mapping_data_sequence_column", self.mapping_data_sequence_column, True, (str,list)])
308
-
309
- if inspect.stack()[1][3] != '_from_model_catalog':
310
- # Perform the function validations
311
- self.__validate()
312
- # Generate the ML query
313
- self.__form_tdml_query()
314
- # Execute ML query
315
- self.__execute()
316
- # Get the prediction type
317
- self._prediction_type = self.__awu._get_function_prediction_type(self)
318
-
319
- # End the timer to get the build time
320
- _end_time = time.time()
321
-
322
- # Calculate the build time
323
- self._build_time = (int)(_end_time - _start_time)
324
-
325
- def __validate(self):
326
- """
327
- Function to validate sqlmr function arguments, which verifies missing
328
- arguments, input argument and table types. Also processes the
329
- argument values.
330
- """
331
-
332
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
333
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
334
-
335
- # Make sure that a non-NULL value has been supplied correct type of argument
336
- self.__awu._validate_argument_types(self.__arg_info_matrix)
337
-
338
- # Check to make sure input table types are strings or data frame objects or of valid type.
339
- self.__awu._validate_input_table_datatype(self.data, "data", None)
340
- self.__awu._validate_input_table_datatype(self.template_data, "template_data", None)
341
- self.__awu._validate_input_table_datatype(self.mapping_data, "mapping_data", None)
342
-
343
- # Check for permitted values
344
- dist_method_permitted_values = ["EUCLIDEANDISTANCE", "BINARYDISTANCE", "MANHATTANDISTANCE"]
345
- self.__awu._validate_permitted_values(self.dist_method, dist_method_permitted_values, "dist_method")
346
-
347
- # Check whether the input columns passed to the argument are not empty.
348
- # Also check whether the input columns passed to the argument valid or not.
349
- self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
350
- self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
351
-
352
- self.__awu._validate_input_columns_not_empty(self.template_columns, "template_columns")
353
- self.__awu._validate_dataframe_has_argument_columns(self.template_columns, "template_columns", self.template_data, "template_data", False)
354
-
355
- self.__awu._validate_input_columns_not_empty(self.timeseries_id, "timeseries_id")
356
- self.__awu._validate_dataframe_has_argument_columns(self.timeseries_id, "timeseries_id", self.data, "data", False)
357
-
358
- self.__awu._validate_input_columns_not_empty(self.template_id, "template_id")
359
- self.__awu._validate_dataframe_has_argument_columns(self.template_id, "template_id", self.template_data, "template_data", False)
360
-
361
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
362
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
363
-
364
- self.__awu._validate_input_columns_not_empty(self.template_data_sequence_column, "template_data_sequence_column")
365
- self.__awu._validate_dataframe_has_argument_columns(self.template_data_sequence_column, "template_data_sequence_column", self.template_data, "template_data", False)
366
-
367
- self.__awu._validate_input_columns_not_empty(self.mapping_data_sequence_column, "mapping_data_sequence_column")
368
- self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_sequence_column, "mapping_data_sequence_column", self.mapping_data, "mapping_data", False)
369
-
370
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
371
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
372
-
373
- self.__awu._validate_input_columns_not_empty(self.mapping_data_partition_column, "mapping_data_partition_column")
374
- self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_partition_column, "mapping_data_partition_column", self.mapping_data, "mapping_data", True)
375
-
376
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
377
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
378
-
379
- self.__awu._validate_input_columns_not_empty(self.template_data_order_column, "template_data_order_column")
380
- self.__awu._validate_dataframe_has_argument_columns(self.template_data_order_column, "template_data_order_column", self.template_data, "template_data", False)
381
-
382
- self.__awu._validate_input_columns_not_empty(self.mapping_data_order_column, "mapping_data_order_column")
383
- self.__awu._validate_dataframe_has_argument_columns(self.mapping_data_order_column, "mapping_data_order_column", self.mapping_data, "mapping_data", False)
384
-
385
-
386
- def __form_tdml_query(self):
387
- """
388
- Function to generate the analytical function queries. The function defines
389
- variables and list of arguments required to form the query.
390
- """
391
-
392
- # Output table arguments list
393
- self.__func_output_args_sql_names = []
394
- self.__func_output_args = []
395
-
396
- # Model Cataloging related attributes.
397
- self._sql_specific_attributes = {}
398
- self._sql_formula_attribute_mapper = {}
399
- self._target_column = None
400
- self._algorithm_name = None
401
-
402
- # Generate lists for rest of the function arguments
403
- self.__func_other_arg_sql_names = []
404
- self.__func_other_args = []
405
- self.__func_other_arg_json_datatypes = []
406
-
407
- self.__func_other_arg_sql_names.append("TargetColumns")
408
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
409
- self.__func_other_arg_json_datatypes.append("COLUMNS")
410
-
411
- self.__func_other_arg_sql_names.append("TemplateColumns")
412
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.template_columns, "\""), "'"))
413
- self.__func_other_arg_json_datatypes.append("COLUMNS")
414
-
415
- self.__func_other_arg_sql_names.append("TimeseriesId")
416
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.timeseries_id, "\""), "'"))
417
- self.__func_other_arg_json_datatypes.append("COLUMNS")
418
-
419
- self.__func_other_arg_sql_names.append("TemplateId")
420
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.template_id, "\""), "'"))
421
- self.__func_other_arg_json_datatypes.append("COLUMNS")
422
-
423
- if self.radius is not None and self.radius != 10:
424
- self.__func_other_arg_sql_names.append("Radius")
425
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.radius, "'"))
426
- self.__func_other_arg_json_datatypes.append("INTEGER")
427
-
428
- if self.dist_method is not None and self.dist_method != "EuclideanDistance":
429
- self.__func_other_arg_sql_names.append("DistanceMethod")
430
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.dist_method, "'"))
431
- self.__func_other_arg_json_datatypes.append("STRING")
432
-
433
- if self.warp_path is not None and self.warp_path != False:
434
- self.__func_other_arg_sql_names.append("WarpPath")
435
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.warp_path, "'"))
436
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
437
-
438
- # Generate lists for rest of the function arguments
439
- sequence_input_by_list = []
440
- if self.data_sequence_column is not None:
441
- sequence_input_by_list.append("inputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
442
-
443
- if self.template_data_sequence_column is not None:
444
- sequence_input_by_list.append("templateTable:" + UtilFuncs._teradata_collapse_arglist(self.template_data_sequence_column, ""))
445
-
446
- if self.mapping_data_sequence_column is not None:
447
- sequence_input_by_list.append("mappingTable:" + UtilFuncs._teradata_collapse_arglist(self.mapping_data_sequence_column, ""))
448
-
449
- if len(sequence_input_by_list) > 0:
450
- self.__func_other_arg_sql_names.append("SequenceInputBy")
451
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
452
- self.__func_other_args.append(sequence_input_by_arg_value)
453
- self.__func_other_arg_json_datatypes.append("STRING")
454
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
455
-
456
-
457
- # Declare empty lists to hold input table information.
458
- self.__func_input_arg_sql_names = []
459
- self.__func_input_table_view_query = []
460
- self.__func_input_dataframe_type = []
461
- self.__func_input_distribution = []
462
- self.__func_input_partition_by_cols = []
463
- self.__func_input_order_by_cols = []
464
-
465
- # Process data
466
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
467
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
468
- self.__func_input_distribution.append("FACT")
469
- self.__func_input_arg_sql_names.append("inputTable")
470
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
471
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
472
- self.__func_input_partition_by_cols.append(self.data_partition_column)
473
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
474
-
475
- # Process template_data
476
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.template_data, False)
477
- self.__func_input_distribution.append("DIMENSION")
478
- self.__func_input_arg_sql_names.append("templateTable")
479
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
480
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
481
- self.__func_input_partition_by_cols.append("NA_character_")
482
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.template_data_order_column, "\""))
483
-
484
- # Process mapping_data
485
- if self.mapping_data is not None:
486
- self.mapping_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.mapping_data_partition_column, "\"")
487
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.mapping_data, False)
488
- self.__func_input_distribution.append("FACT")
489
- self.__func_input_arg_sql_names.append("mappingTable")
490
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
491
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
492
- self.__func_input_partition_by_cols.append(self.mapping_data_partition_column)
493
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.mapping_data_order_column, "\""))
494
-
495
- function_name = "DTW"
496
- # Create instance to generate SQLMR.
497
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
498
- self.__func_input_arg_sql_names,
499
- self.__func_input_table_view_query,
500
- self.__func_input_dataframe_type,
501
- self.__func_input_distribution,
502
- self.__func_input_partition_by_cols,
503
- self.__func_input_order_by_cols,
504
- self.__func_other_arg_sql_names,
505
- self.__func_other_args,
506
- self.__func_other_arg_json_datatypes,
507
- self.__func_output_args_sql_names,
508
- self.__func_output_args,
509
- engine="ENGINE_ML")
510
- # Invoke call to SQL-MR generation.
511
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
512
-
513
- # Print SQL-MR query if requested to do so.
514
- if display.print_sqlmr_query:
515
- print(self.sqlmr_query)
516
-
517
- # Set the algorithm name for Model Cataloging.
518
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
519
-
520
- def __execute(self):
521
- """
522
- Function to execute SQL-MR queries.
523
- Create DataFrames for the required SQL-MR outputs.
524
- """
525
- # Generate STDOUT table name and add it to the output table list.
526
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
527
- try:
528
- # Generate the output.
529
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
530
- except Exception as emsg:
531
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
532
-
533
- # Update output table data frames.
534
- self._mlresults = []
535
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
536
- self._mlresults.append(self.result)
537
-
538
- def show_query(self):
539
- """
540
- Function to return the underlying SQL query.
541
- When model object is created using retrieve_model(), then None is returned.
542
- """
543
- return self.sqlmr_query
544
-
545
- def get_prediction_type(self):
546
- """
547
- Function to return the Prediction type of the algorithm.
548
- When model object is created using retrieve_model(), then the value returned is
549
- as saved in the Model Catalog.
550
- """
551
- return self._prediction_type
552
-
553
- def get_target_column(self):
554
- """
555
- Function to return the Target Column of the algorithm.
556
- When model object is created using retrieve_model(), then the value returned is
557
- as saved in the Model Catalog.
558
- """
559
- return self._target_column
560
-
561
- def get_build_time(self):
562
- """
563
- Function to return the build time of the algorithm in seconds.
564
- When model object is created using retrieve_model(), then the value returned is
565
- as saved in the Model Catalog.
566
- """
567
- return self._build_time
568
-
569
- def _get_algorithm_name(self):
570
- """
571
- Function to return the name of the algorithm.
572
- """
573
- return self._algorithm_name
574
-
575
- def _get_sql_specific_attributes(self):
576
- """
577
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
578
- """
579
- return self._sql_specific_attributes
580
-
581
- @classmethod
582
- def _from_model_catalog(cls,
583
- result = None,
584
- **kwargs):
585
- """
586
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
587
- """
588
- kwargs.pop("result", None)
589
-
590
- # Model Cataloging related attributes.
591
- target_column = kwargs.pop("__target_column", None)
592
- prediction_type = kwargs.pop("__prediction_type", None)
593
- algorithm_name = kwargs.pop("__algorithm_name", None)
594
- build_time = kwargs.pop("__build_time", None)
595
-
596
- # Let's create an object of this class.
597
- obj = cls(**kwargs)
598
- obj.result = result
599
-
600
- # Initialize the sqlmr_query class attribute.
601
- obj.sqlmr_query = None
602
-
603
- # Initialize the SQL specific Model Cataloging attributes.
604
- obj._sql_specific_attributes = None
605
- obj._target_column = target_column
606
- obj._prediction_type = prediction_type
607
- obj._algorithm_name = algorithm_name
608
- obj._build_time = build_time
609
-
610
- # Update output table data frames.
611
- obj._mlresults = []
612
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
613
- obj._mlresults.append(obj.result)
614
- return obj
615
-
616
- def __repr__(self):
617
- """
618
- Returns the string representation for a DTW class instance.
619
- """
620
- repr_string="############ STDOUT Output ############"
621
- repr_string = "{}\n\n{}".format(repr_string,self.result)
622
- return repr_string
623
-