snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -279,12 +278,7 @@ class MultiTaskLassoCV(BaseTransformer):
279
278
  )
280
279
  return selected_cols
281
280
 
282
- @telemetry.send_api_usage_telemetry(
283
- project=_PROJECT,
284
- subproject=_SUBPROJECT,
285
- custom_tags=dict([("autogen", True)]),
286
- )
287
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
281
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
288
282
  """Fit MultiTaskLasso model with coordinate descent
289
283
  For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.fit]
290
284
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLassoCV.html#sklearn.linear_model.MultiTaskLassoCV.fit)
@@ -311,12 +305,14 @@ class MultiTaskLassoCV(BaseTransformer):
311
305
 
312
306
  self._snowpark_cols = dataset.select(self.input_cols).columns
313
307
 
314
- # If we are already in a stored procedure, no need to kick off another one.
308
+ # If we are already in a stored procedure, no need to kick off another one.
315
309
  if SNOWML_SPROC_ENV in os.environ:
316
310
  statement_params = telemetry.get_function_usage_statement_params(
317
311
  project=_PROJECT,
318
312
  subproject=_SUBPROJECT,
319
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
313
+ function_name=telemetry.get_statement_params_full_func_name(
314
+ inspect.currentframe(), MultiTaskLassoCV.__class__.__name__
315
+ ),
320
316
  api_calls=[Session.call],
321
317
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
322
318
  )
@@ -337,7 +333,7 @@ class MultiTaskLassoCV(BaseTransformer):
337
333
  )
338
334
  self._sklearn_object = model_trainer.train()
339
335
  self._is_fitted = True
340
- self._get_model_signatures(dataset)
336
+ self._generate_model_signatures(dataset)
341
337
  return self
342
338
 
343
339
  def _batch_inference_validate_snowpark(
@@ -413,7 +409,9 @@ class MultiTaskLassoCV(BaseTransformer):
413
409
  # when it is classifier, infer the datatype from label columns
414
410
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
415
411
  # Batch inference takes a single expected output column type. Use the first columns type for now.
416
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
412
+ label_cols_signatures = [
413
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
414
+ ]
417
415
  if len(label_cols_signatures) == 0:
418
416
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
419
417
  raise exceptions.SnowflakeMLException(
@@ -421,25 +419,22 @@ class MultiTaskLassoCV(BaseTransformer):
421
419
  original_exception=ValueError(error_str),
422
420
  )
423
421
 
424
- expected_type_inferred = convert_sp_to_sf_type(
425
- label_cols_signatures[0].as_snowpark_type()
426
- )
422
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
427
423
 
428
424
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
429
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
425
+ assert isinstance(
426
+ dataset._session, Session
427
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
430
428
 
431
429
  transform_kwargs = dict(
432
- session = dataset._session,
433
- dependencies = self._deps,
434
- drop_input_cols = self._drop_input_cols,
435
- expected_output_cols_type = expected_type_inferred,
430
+ session=dataset._session,
431
+ dependencies=self._deps,
432
+ drop_input_cols=self._drop_input_cols,
433
+ expected_output_cols_type=expected_type_inferred,
436
434
  )
437
435
 
438
436
  elif isinstance(dataset, pd.DataFrame):
439
- transform_kwargs = dict(
440
- snowpark_input_cols = self._snowpark_cols,
441
- drop_input_cols = self._drop_input_cols
442
- )
437
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
443
438
 
444
439
  transform_handlers = ModelTransformerBuilder.build(
445
440
  dataset=dataset,
@@ -479,7 +474,7 @@ class MultiTaskLassoCV(BaseTransformer):
479
474
  Transformed dataset.
480
475
  """
481
476
  super()._check_dataset_type(dataset)
482
- inference_method="transform"
477
+ inference_method = "transform"
483
478
 
484
479
  # This dictionary contains optional kwargs for batch inference. These kwargs
485
480
  # are specific to the type of dataset used.
@@ -516,17 +511,14 @@ class MultiTaskLassoCV(BaseTransformer):
516
511
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
517
512
 
518
513
  transform_kwargs = dict(
519
- session = dataset._session,
520
- dependencies = self._deps,
521
- drop_input_cols = self._drop_input_cols,
522
- expected_output_cols_type = expected_dtype,
514
+ session=dataset._session,
515
+ dependencies=self._deps,
516
+ drop_input_cols=self._drop_input_cols,
517
+ expected_output_cols_type=expected_dtype,
523
518
  )
524
519
 
525
520
  elif isinstance(dataset, pd.DataFrame):
526
- transform_kwargs = dict(
527
- snowpark_input_cols = self._snowpark_cols,
528
- drop_input_cols = self._drop_input_cols
529
- )
521
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
530
522
 
531
523
  transform_handlers = ModelTransformerBuilder.build(
532
524
  dataset=dataset,
@@ -545,7 +537,11 @@ class MultiTaskLassoCV(BaseTransformer):
545
537
  return output_df
546
538
 
547
539
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
548
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
540
+ def fit_predict(
541
+ self,
542
+ dataset: Union[DataFrame, pd.DataFrame],
543
+ output_cols_prefix: str = "fit_predict_",
544
+ ) -> Union[DataFrame, pd.DataFrame]:
549
545
  """ Method not supported for this class.
550
546
 
551
547
 
@@ -570,7 +566,9 @@ class MultiTaskLassoCV(BaseTransformer):
570
566
  )
571
567
  output_result, fitted_estimator = model_trainer.train_fit_predict(
572
568
  drop_input_cols=self._drop_input_cols,
573
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
569
+ expected_output_cols_list=(
570
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
571
+ ),
574
572
  )
575
573
  self._sklearn_object = fitted_estimator
576
574
  self._is_fitted = True
@@ -587,6 +585,62 @@ class MultiTaskLassoCV(BaseTransformer):
587
585
  assert self._sklearn_object is not None
588
586
  return self._sklearn_object.embedding_
589
587
 
588
+
589
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
590
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
591
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
592
+ """
593
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
594
+ # The following condition is introduced for kneighbors methods, and not used in other methods
595
+ if output_cols:
596
+ output_cols = [
597
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
598
+ for c in output_cols
599
+ ]
600
+ elif getattr(self._sklearn_object, "classes_", None) is None:
601
+ output_cols = [output_cols_prefix]
602
+ elif self._sklearn_object is not None:
603
+ classes = self._sklearn_object.classes_
604
+ if isinstance(classes, numpy.ndarray):
605
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
606
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
607
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
608
+ output_cols = []
609
+ for i, cl in enumerate(classes):
610
+ # For binary classification, there is only one output column for each class
611
+ # ndarray as the two classes are complementary.
612
+ if len(cl) == 2:
613
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
614
+ else:
615
+ output_cols.extend([
616
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
617
+ ])
618
+ else:
619
+ output_cols = []
620
+
621
+ # Make sure column names are valid snowflake identifiers.
622
+ assert output_cols is not None # Make MyPy happy
623
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
624
+
625
+ return rv
626
+
627
+ def _align_expected_output_names(
628
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
629
+ ) -> List[str]:
630
+ # in case the inferred output column names dimension is different
631
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
632
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
633
+ output_df_columns = list(output_df_pd.columns)
634
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
635
+ if self.sample_weight_col:
636
+ output_df_columns_set -= set(self.sample_weight_col)
637
+ # if the dimension of inferred output column names is correct; use it
638
+ if len(expected_output_cols_list) == len(output_df_columns_set):
639
+ return expected_output_cols_list
640
+ # otherwise, use the sklearn estimator's output
641
+ else:
642
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
643
+
590
644
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
591
645
  @telemetry.send_api_usage_telemetry(
592
646
  project=_PROJECT,
@@ -617,24 +671,28 @@ class MultiTaskLassoCV(BaseTransformer):
617
671
  # are specific to the type of dataset used.
618
672
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
619
673
 
674
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
675
+
620
676
  if isinstance(dataset, DataFrame):
621
677
  self._deps = self._batch_inference_validate_snowpark(
622
678
  dataset=dataset,
623
679
  inference_method=inference_method,
624
680
  )
625
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
+ assert isinstance(
682
+ dataset._session, Session
683
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
684
  transform_kwargs = dict(
627
685
  session=dataset._session,
628
686
  dependencies=self._deps,
629
- drop_input_cols = self._drop_input_cols,
687
+ drop_input_cols=self._drop_input_cols,
630
688
  expected_output_cols_type="float",
631
689
  )
690
+ expected_output_cols = self._align_expected_output_names(
691
+ inference_method, dataset, expected_output_cols, output_cols_prefix
692
+ )
632
693
 
633
694
  elif isinstance(dataset, pd.DataFrame):
634
- transform_kwargs = dict(
635
- snowpark_input_cols = self._snowpark_cols,
636
- drop_input_cols = self._drop_input_cols
637
- )
695
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
638
696
 
639
697
  transform_handlers = ModelTransformerBuilder.build(
640
698
  dataset=dataset,
@@ -646,7 +704,7 @@ class MultiTaskLassoCV(BaseTransformer):
646
704
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
647
705
  inference_method=inference_method,
648
706
  input_cols=self.input_cols,
649
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
707
+ expected_output_cols=expected_output_cols,
650
708
  **transform_kwargs
651
709
  )
652
710
  return output_df
@@ -676,7 +734,8 @@ class MultiTaskLassoCV(BaseTransformer):
676
734
  Output dataset with log probability of the sample for each class in the model.
677
735
  """
678
736
  super()._check_dataset_type(dataset)
679
- inference_method="predict_log_proba"
737
+ inference_method = "predict_log_proba"
738
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
680
739
 
681
740
  # This dictionary contains optional kwargs for batch inference. These kwargs
682
741
  # are specific to the type of dataset used.
@@ -687,18 +746,20 @@ class MultiTaskLassoCV(BaseTransformer):
687
746
  dataset=dataset,
688
747
  inference_method=inference_method,
689
748
  )
690
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
749
+ assert isinstance(
750
+ dataset._session, Session
751
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
691
752
  transform_kwargs = dict(
692
753
  session=dataset._session,
693
754
  dependencies=self._deps,
694
- drop_input_cols = self._drop_input_cols,
755
+ drop_input_cols=self._drop_input_cols,
695
756
  expected_output_cols_type="float",
696
757
  )
758
+ expected_output_cols = self._align_expected_output_names(
759
+ inference_method, dataset, expected_output_cols, output_cols_prefix
760
+ )
697
761
  elif isinstance(dataset, pd.DataFrame):
698
- transform_kwargs = dict(
699
- snowpark_input_cols = self._snowpark_cols,
700
- drop_input_cols = self._drop_input_cols
701
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
702
763
 
703
764
  transform_handlers = ModelTransformerBuilder.build(
704
765
  dataset=dataset,
@@ -711,7 +772,7 @@ class MultiTaskLassoCV(BaseTransformer):
711
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
712
773
  inference_method=inference_method,
713
774
  input_cols=self.input_cols,
714
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
715
776
  **transform_kwargs
716
777
  )
717
778
  return output_df
@@ -737,30 +798,34 @@ class MultiTaskLassoCV(BaseTransformer):
737
798
  Output dataset with results of the decision function for the samples in input dataset.
738
799
  """
739
800
  super()._check_dataset_type(dataset)
740
- inference_method="decision_function"
801
+ inference_method = "decision_function"
741
802
 
742
803
  # This dictionary contains optional kwargs for batch inference. These kwargs
743
804
  # are specific to the type of dataset used.
744
805
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
745
806
 
807
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
808
+
746
809
  if isinstance(dataset, DataFrame):
747
810
  self._deps = self._batch_inference_validate_snowpark(
748
811
  dataset=dataset,
749
812
  inference_method=inference_method,
750
813
  )
751
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
814
+ assert isinstance(
815
+ dataset._session, Session
816
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
817
  transform_kwargs = dict(
753
818
  session=dataset._session,
754
819
  dependencies=self._deps,
755
- drop_input_cols = self._drop_input_cols,
820
+ drop_input_cols=self._drop_input_cols,
756
821
  expected_output_cols_type="float",
757
822
  )
823
+ expected_output_cols = self._align_expected_output_names(
824
+ inference_method, dataset, expected_output_cols, output_cols_prefix
825
+ )
758
826
 
759
827
  elif isinstance(dataset, pd.DataFrame):
760
- transform_kwargs = dict(
761
- snowpark_input_cols = self._snowpark_cols,
762
- drop_input_cols = self._drop_input_cols
763
- )
828
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
764
829
 
765
830
  transform_handlers = ModelTransformerBuilder.build(
766
831
  dataset=dataset,
@@ -773,7 +838,7 @@ class MultiTaskLassoCV(BaseTransformer):
773
838
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
774
839
  inference_method=inference_method,
775
840
  input_cols=self.input_cols,
776
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
841
+ expected_output_cols=expected_output_cols,
777
842
  **transform_kwargs
778
843
  )
779
844
  return output_df
@@ -802,12 +867,14 @@ class MultiTaskLassoCV(BaseTransformer):
802
867
  Output dataset with probability of the sample for each class in the model.
803
868
  """
804
869
  super()._check_dataset_type(dataset)
805
- inference_method="score_samples"
870
+ inference_method = "score_samples"
806
871
 
807
872
  # This dictionary contains optional kwargs for batch inference. These kwargs
808
873
  # are specific to the type of dataset used.
809
874
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
810
875
 
876
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
877
+
811
878
  if isinstance(dataset, DataFrame):
812
879
  self._deps = self._batch_inference_validate_snowpark(
813
880
  dataset=dataset,
@@ -820,6 +887,9 @@ class MultiTaskLassoCV(BaseTransformer):
820
887
  drop_input_cols = self._drop_input_cols,
821
888
  expected_output_cols_type="float",
822
889
  )
890
+ expected_output_cols = self._align_expected_output_names(
891
+ inference_method, dataset, expected_output_cols, output_cols_prefix
892
+ )
823
893
 
824
894
  elif isinstance(dataset, pd.DataFrame):
825
895
  transform_kwargs = dict(
@@ -838,7 +908,7 @@ class MultiTaskLassoCV(BaseTransformer):
838
908
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
839
909
  inference_method=inference_method,
840
910
  input_cols=self.input_cols,
841
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
911
+ expected_output_cols=expected_output_cols,
842
912
  **transform_kwargs
843
913
  )
844
914
  return output_df
@@ -985,50 +1055,84 @@ class MultiTaskLassoCV(BaseTransformer):
985
1055
  )
986
1056
  return output_df
987
1057
 
1058
+
1059
+
1060
+ def to_sklearn(self) -> Any:
1061
+ """Get sklearn.linear_model.MultiTaskLassoCV object.
1062
+ """
1063
+ if self._sklearn_object is None:
1064
+ self._sklearn_object = self._create_sklearn_object()
1065
+ return self._sklearn_object
1066
+
1067
+ def to_xgboost(self) -> Any:
1068
+ raise exceptions.SnowflakeMLException(
1069
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1070
+ original_exception=AttributeError(
1071
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
+ "to_xgboost()",
1073
+ "to_sklearn()"
1074
+ )
1075
+ ),
1076
+ )
1077
+
1078
+ def to_lightgbm(self) -> Any:
1079
+ raise exceptions.SnowflakeMLException(
1080
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1081
+ original_exception=AttributeError(
1082
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1083
+ "to_lightgbm()",
1084
+ "to_sklearn()"
1085
+ )
1086
+ ),
1087
+ )
988
1088
 
989
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1089
+ def _get_dependencies(self) -> List[str]:
1090
+ return self._deps
1091
+
1092
+
1093
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
990
1094
  self._model_signature_dict = dict()
991
1095
 
992
1096
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
993
1097
 
994
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1098
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
995
1099
  outputs: List[BaseFeatureSpec] = []
996
1100
  if hasattr(self, "predict"):
997
1101
  # keep mypy happy
998
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1102
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
999
1103
  # For classifier, the type of predict is the same as the type of label
1000
- if self._sklearn_object._estimator_type == 'classifier':
1001
- # label columns is the desired type for output
1104
+ if self._sklearn_object._estimator_type == "classifier":
1105
+ # label columns is the desired type for output
1002
1106
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1003
1107
  # rename the output columns
1004
1108
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1005
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1006
- ([] if self._drop_input_cols else inputs)
1007
- + outputs)
1109
+ self._model_signature_dict["predict"] = ModelSignature(
1110
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1111
+ )
1008
1112
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1009
1113
  # For outlier models, returns -1 for outliers and 1 for inliers.
1010
- # Clusterer returns int64 cluster labels.
1114
+ # Clusterer returns int64 cluster labels.
1011
1115
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1012
1116
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1013
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1016
-
1117
+ self._model_signature_dict["predict"] = ModelSignature(
1118
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1119
+ )
1120
+
1017
1121
  # For regressor, the type of predict is float64
1018
- elif self._sklearn_object._estimator_type == 'regressor':
1122
+ elif self._sklearn_object._estimator_type == "regressor":
1019
1123
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1124
+ self._model_signature_dict["predict"] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1127
+
1024
1128
  for prob_func in PROB_FUNCTIONS:
1025
1129
  if hasattr(self, prob_func):
1026
1130
  output_cols_prefix: str = f"{prob_func}_"
1027
1131
  output_column_names = self._get_output_column_names(output_cols_prefix)
1028
1132
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1029
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1133
+ self._model_signature_dict[prob_func] = ModelSignature(
1134
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1135
+ )
1032
1136
 
1033
1137
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1034
1138
  items = list(self._model_signature_dict.items())
@@ -1041,10 +1145,10 @@ class MultiTaskLassoCV(BaseTransformer):
1041
1145
  """Returns model signature of current class.
1042
1146
 
1043
1147
  Raises:
1044
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1148
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1045
1149
 
1046
1150
  Returns:
1047
- Dict[str, ModelSignature]: each method and its input output signature
1151
+ Dict with each method and its input output signature
1048
1152
  """
1049
1153
  if self._model_signature_dict is None:
1050
1154
  raise exceptions.SnowflakeMLException(
@@ -1052,35 +1156,3 @@ class MultiTaskLassoCV(BaseTransformer):
1052
1156
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1053
1157
  )
1054
1158
  return self._model_signature_dict
1055
-
1056
- def to_sklearn(self) -> Any:
1057
- """Get sklearn.linear_model.MultiTaskLassoCV object.
1058
- """
1059
- if self._sklearn_object is None:
1060
- self._sklearn_object = self._create_sklearn_object()
1061
- return self._sklearn_object
1062
-
1063
- def to_xgboost(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_xgboost()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def to_lightgbm(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_lightgbm()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def _get_dependencies(self) -> List[str]:
1086
- return self._deps