snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -314,12 +313,7 @@ class DictionaryLearning(BaseTransformer):
314
313
  )
315
314
  return selected_cols
316
315
 
317
- @telemetry.send_api_usage_telemetry(
318
- project=_PROJECT,
319
- subproject=_SUBPROJECT,
320
- custom_tags=dict([("autogen", True)]),
321
- )
322
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DictionaryLearning":
316
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DictionaryLearning":
323
317
  """Fit the model from data in X
324
318
  For more details on this function, see [sklearn.decomposition.DictionaryLearning.fit]
325
319
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html#sklearn.decomposition.DictionaryLearning.fit)
@@ -346,12 +340,14 @@ class DictionaryLearning(BaseTransformer):
346
340
 
347
341
  self._snowpark_cols = dataset.select(self.input_cols).columns
348
342
 
349
- # If we are already in a stored procedure, no need to kick off another one.
343
+ # If we are already in a stored procedure, no need to kick off another one.
350
344
  if SNOWML_SPROC_ENV in os.environ:
351
345
  statement_params = telemetry.get_function_usage_statement_params(
352
346
  project=_PROJECT,
353
347
  subproject=_SUBPROJECT,
354
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DictionaryLearning.__class__.__name__),
348
+ function_name=telemetry.get_statement_params_full_func_name(
349
+ inspect.currentframe(), DictionaryLearning.__class__.__name__
350
+ ),
355
351
  api_calls=[Session.call],
356
352
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
357
353
  )
@@ -372,7 +368,7 @@ class DictionaryLearning(BaseTransformer):
372
368
  )
373
369
  self._sklearn_object = model_trainer.train()
374
370
  self._is_fitted = True
375
- self._get_model_signatures(dataset)
371
+ self._generate_model_signatures(dataset)
376
372
  return self
377
373
 
378
374
  def _batch_inference_validate_snowpark(
@@ -446,7 +442,9 @@ class DictionaryLearning(BaseTransformer):
446
442
  # when it is classifier, infer the datatype from label columns
447
443
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
448
444
  # Batch inference takes a single expected output column type. Use the first columns type for now.
449
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
445
+ label_cols_signatures = [
446
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
447
+ ]
450
448
  if len(label_cols_signatures) == 0:
451
449
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
452
450
  raise exceptions.SnowflakeMLException(
@@ -454,25 +452,22 @@ class DictionaryLearning(BaseTransformer):
454
452
  original_exception=ValueError(error_str),
455
453
  )
456
454
 
457
- expected_type_inferred = convert_sp_to_sf_type(
458
- label_cols_signatures[0].as_snowpark_type()
459
- )
455
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
460
456
 
461
457
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
462
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
458
+ assert isinstance(
459
+ dataset._session, Session
460
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
463
461
 
464
462
  transform_kwargs = dict(
465
- session = dataset._session,
466
- dependencies = self._deps,
467
- drop_input_cols = self._drop_input_cols,
468
- expected_output_cols_type = expected_type_inferred,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_type_inferred,
469
467
  )
470
468
 
471
469
  elif isinstance(dataset, pd.DataFrame):
472
- transform_kwargs = dict(
473
- snowpark_input_cols = self._snowpark_cols,
474
- drop_input_cols = self._drop_input_cols
475
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
476
471
 
477
472
  transform_handlers = ModelTransformerBuilder.build(
478
473
  dataset=dataset,
@@ -514,7 +509,7 @@ class DictionaryLearning(BaseTransformer):
514
509
  Transformed dataset.
515
510
  """
516
511
  super()._check_dataset_type(dataset)
517
- inference_method="transform"
512
+ inference_method = "transform"
518
513
 
519
514
  # This dictionary contains optional kwargs for batch inference. These kwargs
520
515
  # are specific to the type of dataset used.
@@ -551,17 +546,14 @@ class DictionaryLearning(BaseTransformer):
551
546
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
552
547
 
553
548
  transform_kwargs = dict(
554
- session = dataset._session,
555
- dependencies = self._deps,
556
- drop_input_cols = self._drop_input_cols,
557
- expected_output_cols_type = expected_dtype,
549
+ session=dataset._session,
550
+ dependencies=self._deps,
551
+ drop_input_cols=self._drop_input_cols,
552
+ expected_output_cols_type=expected_dtype,
558
553
  )
559
554
 
560
555
  elif isinstance(dataset, pd.DataFrame):
561
- transform_kwargs = dict(
562
- snowpark_input_cols = self._snowpark_cols,
563
- drop_input_cols = self._drop_input_cols
564
- )
556
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
565
557
 
566
558
  transform_handlers = ModelTransformerBuilder.build(
567
559
  dataset=dataset,
@@ -580,7 +572,11 @@ class DictionaryLearning(BaseTransformer):
580
572
  return output_df
581
573
 
582
574
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
583
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
575
+ def fit_predict(
576
+ self,
577
+ dataset: Union[DataFrame, pd.DataFrame],
578
+ output_cols_prefix: str = "fit_predict_",
579
+ ) -> Union[DataFrame, pd.DataFrame]:
584
580
  """ Method not supported for this class.
585
581
 
586
582
 
@@ -605,7 +601,9 @@ class DictionaryLearning(BaseTransformer):
605
601
  )
606
602
  output_result, fitted_estimator = model_trainer.train_fit_predict(
607
603
  drop_input_cols=self._drop_input_cols,
608
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
604
+ expected_output_cols_list=(
605
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
606
+ ),
609
607
  )
610
608
  self._sklearn_object = fitted_estimator
611
609
  self._is_fitted = True
@@ -622,6 +620,62 @@ class DictionaryLearning(BaseTransformer):
622
620
  assert self._sklearn_object is not None
623
621
  return self._sklearn_object.embedding_
624
622
 
623
+
624
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
625
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
626
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
627
+ """
628
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
629
+ # The following condition is introduced for kneighbors methods, and not used in other methods
630
+ if output_cols:
631
+ output_cols = [
632
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
633
+ for c in output_cols
634
+ ]
635
+ elif getattr(self._sklearn_object, "classes_", None) is None:
636
+ output_cols = [output_cols_prefix]
637
+ elif self._sklearn_object is not None:
638
+ classes = self._sklearn_object.classes_
639
+ if isinstance(classes, numpy.ndarray):
640
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
641
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
642
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
643
+ output_cols = []
644
+ for i, cl in enumerate(classes):
645
+ # For binary classification, there is only one output column for each class
646
+ # ndarray as the two classes are complementary.
647
+ if len(cl) == 2:
648
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
649
+ else:
650
+ output_cols.extend([
651
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
652
+ ])
653
+ else:
654
+ output_cols = []
655
+
656
+ # Make sure column names are valid snowflake identifiers.
657
+ assert output_cols is not None # Make MyPy happy
658
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
659
+
660
+ return rv
661
+
662
+ def _align_expected_output_names(
663
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
664
+ ) -> List[str]:
665
+ # in case the inferred output column names dimension is different
666
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
667
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
668
+ output_df_columns = list(output_df_pd.columns)
669
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
670
+ if self.sample_weight_col:
671
+ output_df_columns_set -= set(self.sample_weight_col)
672
+ # if the dimension of inferred output column names is correct; use it
673
+ if len(expected_output_cols_list) == len(output_df_columns_set):
674
+ return expected_output_cols_list
675
+ # otherwise, use the sklearn estimator's output
676
+ else:
677
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
678
+
625
679
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
626
680
  @telemetry.send_api_usage_telemetry(
627
681
  project=_PROJECT,
@@ -652,24 +706,28 @@ class DictionaryLearning(BaseTransformer):
652
706
  # are specific to the type of dataset used.
653
707
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
654
708
 
709
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
710
+
655
711
  if isinstance(dataset, DataFrame):
656
712
  self._deps = self._batch_inference_validate_snowpark(
657
713
  dataset=dataset,
658
714
  inference_method=inference_method,
659
715
  )
660
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
+ assert isinstance(
717
+ dataset._session, Session
718
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
661
719
  transform_kwargs = dict(
662
720
  session=dataset._session,
663
721
  dependencies=self._deps,
664
- drop_input_cols = self._drop_input_cols,
722
+ drop_input_cols=self._drop_input_cols,
665
723
  expected_output_cols_type="float",
666
724
  )
725
+ expected_output_cols = self._align_expected_output_names(
726
+ inference_method, dataset, expected_output_cols, output_cols_prefix
727
+ )
667
728
 
668
729
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
730
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
731
 
674
732
  transform_handlers = ModelTransformerBuilder.build(
675
733
  dataset=dataset,
@@ -681,7 +739,7 @@ class DictionaryLearning(BaseTransformer):
681
739
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
682
740
  inference_method=inference_method,
683
741
  input_cols=self.input_cols,
684
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
742
+ expected_output_cols=expected_output_cols,
685
743
  **transform_kwargs
686
744
  )
687
745
  return output_df
@@ -711,7 +769,8 @@ class DictionaryLearning(BaseTransformer):
711
769
  Output dataset with log probability of the sample for each class in the model.
712
770
  """
713
771
  super()._check_dataset_type(dataset)
714
- inference_method="predict_log_proba"
772
+ inference_method = "predict_log_proba"
773
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
715
774
 
716
775
  # This dictionary contains optional kwargs for batch inference. These kwargs
717
776
  # are specific to the type of dataset used.
@@ -722,18 +781,20 @@ class DictionaryLearning(BaseTransformer):
722
781
  dataset=dataset,
723
782
  inference_method=inference_method,
724
783
  )
725
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
784
+ assert isinstance(
785
+ dataset._session, Session
786
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
787
  transform_kwargs = dict(
727
788
  session=dataset._session,
728
789
  dependencies=self._deps,
729
- drop_input_cols = self._drop_input_cols,
790
+ drop_input_cols=self._drop_input_cols,
730
791
  expected_output_cols_type="float",
731
792
  )
793
+ expected_output_cols = self._align_expected_output_names(
794
+ inference_method, dataset, expected_output_cols, output_cols_prefix
795
+ )
732
796
  elif isinstance(dataset, pd.DataFrame):
733
- transform_kwargs = dict(
734
- snowpark_input_cols = self._snowpark_cols,
735
- drop_input_cols = self._drop_input_cols
736
- )
797
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
737
798
 
738
799
  transform_handlers = ModelTransformerBuilder.build(
739
800
  dataset=dataset,
@@ -746,7 +807,7 @@ class DictionaryLearning(BaseTransformer):
746
807
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
747
808
  inference_method=inference_method,
748
809
  input_cols=self.input_cols,
749
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
810
+ expected_output_cols=expected_output_cols,
750
811
  **transform_kwargs
751
812
  )
752
813
  return output_df
@@ -772,30 +833,34 @@ class DictionaryLearning(BaseTransformer):
772
833
  Output dataset with results of the decision function for the samples in input dataset.
773
834
  """
774
835
  super()._check_dataset_type(dataset)
775
- inference_method="decision_function"
836
+ inference_method = "decision_function"
776
837
 
777
838
  # This dictionary contains optional kwargs for batch inference. These kwargs
778
839
  # are specific to the type of dataset used.
779
840
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
780
841
 
842
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
843
+
781
844
  if isinstance(dataset, DataFrame):
782
845
  self._deps = self._batch_inference_validate_snowpark(
783
846
  dataset=dataset,
784
847
  inference_method=inference_method,
785
848
  )
786
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
849
+ assert isinstance(
850
+ dataset._session, Session
851
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
787
852
  transform_kwargs = dict(
788
853
  session=dataset._session,
789
854
  dependencies=self._deps,
790
- drop_input_cols = self._drop_input_cols,
855
+ drop_input_cols=self._drop_input_cols,
791
856
  expected_output_cols_type="float",
792
857
  )
858
+ expected_output_cols = self._align_expected_output_names(
859
+ inference_method, dataset, expected_output_cols, output_cols_prefix
860
+ )
793
861
 
794
862
  elif isinstance(dataset, pd.DataFrame):
795
- transform_kwargs = dict(
796
- snowpark_input_cols = self._snowpark_cols,
797
- drop_input_cols = self._drop_input_cols
798
- )
863
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
799
864
 
800
865
  transform_handlers = ModelTransformerBuilder.build(
801
866
  dataset=dataset,
@@ -808,7 +873,7 @@ class DictionaryLearning(BaseTransformer):
808
873
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
874
  inference_method=inference_method,
810
875
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
876
+ expected_output_cols=expected_output_cols,
812
877
  **transform_kwargs
813
878
  )
814
879
  return output_df
@@ -837,12 +902,14 @@ class DictionaryLearning(BaseTransformer):
837
902
  Output dataset with probability of the sample for each class in the model.
838
903
  """
839
904
  super()._check_dataset_type(dataset)
840
- inference_method="score_samples"
905
+ inference_method = "score_samples"
841
906
 
842
907
  # This dictionary contains optional kwargs for batch inference. These kwargs
843
908
  # are specific to the type of dataset used.
844
909
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
845
910
 
911
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
912
+
846
913
  if isinstance(dataset, DataFrame):
847
914
  self._deps = self._batch_inference_validate_snowpark(
848
915
  dataset=dataset,
@@ -855,6 +922,9 @@ class DictionaryLearning(BaseTransformer):
855
922
  drop_input_cols = self._drop_input_cols,
856
923
  expected_output_cols_type="float",
857
924
  )
925
+ expected_output_cols = self._align_expected_output_names(
926
+ inference_method, dataset, expected_output_cols, output_cols_prefix
927
+ )
858
928
 
859
929
  elif isinstance(dataset, pd.DataFrame):
860
930
  transform_kwargs = dict(
@@ -873,7 +943,7 @@ class DictionaryLearning(BaseTransformer):
873
943
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
874
944
  inference_method=inference_method,
875
945
  input_cols=self.input_cols,
876
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
946
+ expected_output_cols=expected_output_cols,
877
947
  **transform_kwargs
878
948
  )
879
949
  return output_df
@@ -1018,50 +1088,84 @@ class DictionaryLearning(BaseTransformer):
1018
1088
  )
1019
1089
  return output_df
1020
1090
 
1091
+
1092
+
1093
+ def to_sklearn(self) -> Any:
1094
+ """Get sklearn.decomposition.DictionaryLearning object.
1095
+ """
1096
+ if self._sklearn_object is None:
1097
+ self._sklearn_object = self._create_sklearn_object()
1098
+ return self._sklearn_object
1099
+
1100
+ def to_xgboost(self) -> Any:
1101
+ raise exceptions.SnowflakeMLException(
1102
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1103
+ original_exception=AttributeError(
1104
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
+ "to_xgboost()",
1106
+ "to_sklearn()"
1107
+ )
1108
+ ),
1109
+ )
1110
+
1111
+ def to_lightgbm(self) -> Any:
1112
+ raise exceptions.SnowflakeMLException(
1113
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1114
+ original_exception=AttributeError(
1115
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1116
+ "to_lightgbm()",
1117
+ "to_sklearn()"
1118
+ )
1119
+ ),
1120
+ )
1021
1121
 
1022
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1122
+ def _get_dependencies(self) -> List[str]:
1123
+ return self._deps
1124
+
1125
+
1126
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1023
1127
  self._model_signature_dict = dict()
1024
1128
 
1025
1129
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1026
1130
 
1027
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1131
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1028
1132
  outputs: List[BaseFeatureSpec] = []
1029
1133
  if hasattr(self, "predict"):
1030
1134
  # keep mypy happy
1031
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1135
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1032
1136
  # For classifier, the type of predict is the same as the type of label
1033
- if self._sklearn_object._estimator_type == 'classifier':
1034
- # label columns is the desired type for output
1137
+ if self._sklearn_object._estimator_type == "classifier":
1138
+ # label columns is the desired type for output
1035
1139
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1036
1140
  # rename the output columns
1037
1141
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1041
1145
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1042
1146
  # For outlier models, returns -1 for outliers and 1 for inliers.
1043
- # Clusterer returns int64 cluster labels.
1147
+ # Clusterer returns int64 cluster labels.
1044
1148
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1045
1149
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1150
+ self._model_signature_dict["predict"] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1153
+
1050
1154
  # For regressor, the type of predict is float64
1051
- elif self._sklearn_object._estimator_type == 'regressor':
1155
+ elif self._sklearn_object._estimator_type == "regressor":
1052
1156
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1053
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1054
- ([] if self._drop_input_cols else inputs)
1055
- + outputs)
1056
-
1157
+ self._model_signature_dict["predict"] = ModelSignature(
1158
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1159
+ )
1160
+
1057
1161
  for prob_func in PROB_FUNCTIONS:
1058
1162
  if hasattr(self, prob_func):
1059
1163
  output_cols_prefix: str = f"{prob_func}_"
1060
1164
  output_column_names = self._get_output_column_names(output_cols_prefix)
1061
1165
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1062
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1166
+ self._model_signature_dict[prob_func] = ModelSignature(
1167
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1168
+ )
1065
1169
 
1066
1170
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1067
1171
  items = list(self._model_signature_dict.items())
@@ -1074,10 +1178,10 @@ class DictionaryLearning(BaseTransformer):
1074
1178
  """Returns model signature of current class.
1075
1179
 
1076
1180
  Raises:
1077
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1181
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1078
1182
 
1079
1183
  Returns:
1080
- Dict[str, ModelSignature]: each method and its input output signature
1184
+ Dict with each method and its input output signature
1081
1185
  """
1082
1186
  if self._model_signature_dict is None:
1083
1187
  raise exceptions.SnowflakeMLException(
@@ -1085,35 +1189,3 @@ class DictionaryLearning(BaseTransformer):
1085
1189
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1086
1190
  )
1087
1191
  return self._model_signature_dict
1088
-
1089
- def to_sklearn(self) -> Any:
1090
- """Get sklearn.decomposition.DictionaryLearning object.
1091
- """
1092
- if self._sklearn_object is None:
1093
- self._sklearn_object = self._create_sklearn_object()
1094
- return self._sklearn_object
1095
-
1096
- def to_xgboost(self) -> Any:
1097
- raise exceptions.SnowflakeMLException(
1098
- error_code=error_codes.METHOD_NOT_ALLOWED,
1099
- original_exception=AttributeError(
1100
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
- "to_xgboost()",
1102
- "to_sklearn()"
1103
- )
1104
- ),
1105
- )
1106
-
1107
- def to_lightgbm(self) -> Any:
1108
- raise exceptions.SnowflakeMLException(
1109
- error_code=error_codes.METHOD_NOT_ALLOWED,
1110
- original_exception=AttributeError(
1111
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
- "to_lightgbm()",
1113
- "to_sklearn()"
1114
- )
1115
- ),
1116
- )
1117
-
1118
- def _get_dependencies(self) -> List[str]:
1119
- return self._deps