snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -325,12 +324,7 @@ class BayesianGaussianMixture(BaseTransformer):
325
324
  )
326
325
  return selected_cols
327
326
 
328
- @telemetry.send_api_usage_telemetry(
329
- project=_PROJECT,
330
- subproject=_SUBPROJECT,
331
- custom_tags=dict([("autogen", True)]),
332
- )
333
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BayesianGaussianMixture":
327
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BayesianGaussianMixture":
334
328
  """Estimate model parameters with the EM algorithm
335
329
  For more details on this function, see [sklearn.mixture.BayesianGaussianMixture.fit]
336
330
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture.fit)
@@ -357,12 +351,14 @@ class BayesianGaussianMixture(BaseTransformer):
357
351
 
358
352
  self._snowpark_cols = dataset.select(self.input_cols).columns
359
353
 
360
- # If we are already in a stored procedure, no need to kick off another one.
354
+ # If we are already in a stored procedure, no need to kick off another one.
361
355
  if SNOWML_SPROC_ENV in os.environ:
362
356
  statement_params = telemetry.get_function_usage_statement_params(
363
357
  project=_PROJECT,
364
358
  subproject=_SUBPROJECT,
365
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BayesianGaussianMixture.__class__.__name__),
359
+ function_name=telemetry.get_statement_params_full_func_name(
360
+ inspect.currentframe(), BayesianGaussianMixture.__class__.__name__
361
+ ),
366
362
  api_calls=[Session.call],
367
363
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
368
364
  )
@@ -383,7 +379,7 @@ class BayesianGaussianMixture(BaseTransformer):
383
379
  )
384
380
  self._sklearn_object = model_trainer.train()
385
381
  self._is_fitted = True
386
- self._get_model_signatures(dataset)
382
+ self._generate_model_signatures(dataset)
387
383
  return self
388
384
 
389
385
  def _batch_inference_validate_snowpark(
@@ -459,7 +455,9 @@ class BayesianGaussianMixture(BaseTransformer):
459
455
  # when it is classifier, infer the datatype from label columns
460
456
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
461
457
  # Batch inference takes a single expected output column type. Use the first columns type for now.
462
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
458
+ label_cols_signatures = [
459
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
460
+ ]
463
461
  if len(label_cols_signatures) == 0:
464
462
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
465
463
  raise exceptions.SnowflakeMLException(
@@ -467,25 +465,22 @@ class BayesianGaussianMixture(BaseTransformer):
467
465
  original_exception=ValueError(error_str),
468
466
  )
469
467
 
470
- expected_type_inferred = convert_sp_to_sf_type(
471
- label_cols_signatures[0].as_snowpark_type()
472
- )
468
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
473
469
 
474
470
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
475
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
+ assert isinstance(
472
+ dataset._session, Session
473
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
476
474
 
477
475
  transform_kwargs = dict(
478
- session = dataset._session,
479
- dependencies = self._deps,
480
- drop_input_cols = self._drop_input_cols,
481
- expected_output_cols_type = expected_type_inferred,
476
+ session=dataset._session,
477
+ dependencies=self._deps,
478
+ drop_input_cols=self._drop_input_cols,
479
+ expected_output_cols_type=expected_type_inferred,
482
480
  )
483
481
 
484
482
  elif isinstance(dataset, pd.DataFrame):
485
- transform_kwargs = dict(
486
- snowpark_input_cols = self._snowpark_cols,
487
- drop_input_cols = self._drop_input_cols
488
- )
483
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
489
484
 
490
485
  transform_handlers = ModelTransformerBuilder.build(
491
486
  dataset=dataset,
@@ -525,7 +520,7 @@ class BayesianGaussianMixture(BaseTransformer):
525
520
  Transformed dataset.
526
521
  """
527
522
  super()._check_dataset_type(dataset)
528
- inference_method="transform"
523
+ inference_method = "transform"
529
524
 
530
525
  # This dictionary contains optional kwargs for batch inference. These kwargs
531
526
  # are specific to the type of dataset used.
@@ -562,17 +557,14 @@ class BayesianGaussianMixture(BaseTransformer):
562
557
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
563
558
 
564
559
  transform_kwargs = dict(
565
- session = dataset._session,
566
- dependencies = self._deps,
567
- drop_input_cols = self._drop_input_cols,
568
- expected_output_cols_type = expected_dtype,
560
+ session=dataset._session,
561
+ dependencies=self._deps,
562
+ drop_input_cols=self._drop_input_cols,
563
+ expected_output_cols_type=expected_dtype,
569
564
  )
570
565
 
571
566
  elif isinstance(dataset, pd.DataFrame):
572
- transform_kwargs = dict(
573
- snowpark_input_cols = self._snowpark_cols,
574
- drop_input_cols = self._drop_input_cols
575
- )
567
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
576
568
 
577
569
  transform_handlers = ModelTransformerBuilder.build(
578
570
  dataset=dataset,
@@ -591,7 +583,11 @@ class BayesianGaussianMixture(BaseTransformer):
591
583
  return output_df
592
584
 
593
585
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
594
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
586
+ def fit_predict(
587
+ self,
588
+ dataset: Union[DataFrame, pd.DataFrame],
589
+ output_cols_prefix: str = "fit_predict_",
590
+ ) -> Union[DataFrame, pd.DataFrame]:
595
591
  """ Estimate model parameters using X and predict the labels for X
596
592
  For more details on this function, see [sklearn.mixture.BayesianGaussianMixture.fit_predict]
597
593
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture.fit_predict)
@@ -618,7 +614,9 @@ class BayesianGaussianMixture(BaseTransformer):
618
614
  )
619
615
  output_result, fitted_estimator = model_trainer.train_fit_predict(
620
616
  drop_input_cols=self._drop_input_cols,
621
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
617
+ expected_output_cols_list=(
618
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
619
+ ),
622
620
  )
623
621
  self._sklearn_object = fitted_estimator
624
622
  self._is_fitted = True
@@ -635,6 +633,62 @@ class BayesianGaussianMixture(BaseTransformer):
635
633
  assert self._sklearn_object is not None
636
634
  return self._sklearn_object.embedding_
637
635
 
636
+
637
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
638
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
639
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
640
+ """
641
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
642
+ # The following condition is introduced for kneighbors methods, and not used in other methods
643
+ if output_cols:
644
+ output_cols = [
645
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
646
+ for c in output_cols
647
+ ]
648
+ elif getattr(self._sklearn_object, "classes_", None) is None:
649
+ output_cols = [output_cols_prefix]
650
+ elif self._sklearn_object is not None:
651
+ classes = self._sklearn_object.classes_
652
+ if isinstance(classes, numpy.ndarray):
653
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
654
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
655
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
656
+ output_cols = []
657
+ for i, cl in enumerate(classes):
658
+ # For binary classification, there is only one output column for each class
659
+ # ndarray as the two classes are complementary.
660
+ if len(cl) == 2:
661
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
662
+ else:
663
+ output_cols.extend([
664
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
665
+ ])
666
+ else:
667
+ output_cols = []
668
+
669
+ # Make sure column names are valid snowflake identifiers.
670
+ assert output_cols is not None # Make MyPy happy
671
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
672
+
673
+ return rv
674
+
675
+ def _align_expected_output_names(
676
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
677
+ ) -> List[str]:
678
+ # in case the inferred output column names dimension is different
679
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
680
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
681
+ output_df_columns = list(output_df_pd.columns)
682
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
683
+ if self.sample_weight_col:
684
+ output_df_columns_set -= set(self.sample_weight_col)
685
+ # if the dimension of inferred output column names is correct; use it
686
+ if len(expected_output_cols_list) == len(output_df_columns_set):
687
+ return expected_output_cols_list
688
+ # otherwise, use the sklearn estimator's output
689
+ else:
690
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
691
+
638
692
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
639
693
  @telemetry.send_api_usage_telemetry(
640
694
  project=_PROJECT,
@@ -667,24 +721,28 @@ class BayesianGaussianMixture(BaseTransformer):
667
721
  # are specific to the type of dataset used.
668
722
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
669
723
 
724
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
725
+
670
726
  if isinstance(dataset, DataFrame):
671
727
  self._deps = self._batch_inference_validate_snowpark(
672
728
  dataset=dataset,
673
729
  inference_method=inference_method,
674
730
  )
675
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
676
734
  transform_kwargs = dict(
677
735
  session=dataset._session,
678
736
  dependencies=self._deps,
679
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
680
738
  expected_output_cols_type="float",
681
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
682
743
 
683
744
  elif isinstance(dataset, pd.DataFrame):
684
- transform_kwargs = dict(
685
- snowpark_input_cols = self._snowpark_cols,
686
- drop_input_cols = self._drop_input_cols
687
- )
745
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
688
746
 
689
747
  transform_handlers = ModelTransformerBuilder.build(
690
748
  dataset=dataset,
@@ -696,7 +754,7 @@ class BayesianGaussianMixture(BaseTransformer):
696
754
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
697
755
  inference_method=inference_method,
698
756
  input_cols=self.input_cols,
699
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
757
+ expected_output_cols=expected_output_cols,
700
758
  **transform_kwargs
701
759
  )
702
760
  return output_df
@@ -728,7 +786,8 @@ class BayesianGaussianMixture(BaseTransformer):
728
786
  Output dataset with log probability of the sample for each class in the model.
729
787
  """
730
788
  super()._check_dataset_type(dataset)
731
- inference_method="predict_log_proba"
789
+ inference_method = "predict_log_proba"
790
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
732
791
 
733
792
  # This dictionary contains optional kwargs for batch inference. These kwargs
734
793
  # are specific to the type of dataset used.
@@ -739,18 +798,20 @@ class BayesianGaussianMixture(BaseTransformer):
739
798
  dataset=dataset,
740
799
  inference_method=inference_method,
741
800
  )
742
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
801
+ assert isinstance(
802
+ dataset._session, Session
803
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
743
804
  transform_kwargs = dict(
744
805
  session=dataset._session,
745
806
  dependencies=self._deps,
746
- drop_input_cols = self._drop_input_cols,
807
+ drop_input_cols=self._drop_input_cols,
747
808
  expected_output_cols_type="float",
748
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
749
813
  elif isinstance(dataset, pd.DataFrame):
750
- transform_kwargs = dict(
751
- snowpark_input_cols = self._snowpark_cols,
752
- drop_input_cols = self._drop_input_cols
753
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
754
815
 
755
816
  transform_handlers = ModelTransformerBuilder.build(
756
817
  dataset=dataset,
@@ -763,7 +824,7 @@ class BayesianGaussianMixture(BaseTransformer):
763
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
764
825
  inference_method=inference_method,
765
826
  input_cols=self.input_cols,
766
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
767
828
  **transform_kwargs
768
829
  )
769
830
  return output_df
@@ -789,30 +850,34 @@ class BayesianGaussianMixture(BaseTransformer):
789
850
  Output dataset with results of the decision function for the samples in input dataset.
790
851
  """
791
852
  super()._check_dataset_type(dataset)
792
- inference_method="decision_function"
853
+ inference_method = "decision_function"
793
854
 
794
855
  # This dictionary contains optional kwargs for batch inference. These kwargs
795
856
  # are specific to the type of dataset used.
796
857
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
797
858
 
859
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
860
+
798
861
  if isinstance(dataset, DataFrame):
799
862
  self._deps = self._batch_inference_validate_snowpark(
800
863
  dataset=dataset,
801
864
  inference_method=inference_method,
802
865
  )
803
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
866
+ assert isinstance(
867
+ dataset._session, Session
868
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
869
  transform_kwargs = dict(
805
870
  session=dataset._session,
806
871
  dependencies=self._deps,
807
- drop_input_cols = self._drop_input_cols,
872
+ drop_input_cols=self._drop_input_cols,
808
873
  expected_output_cols_type="float",
809
874
  )
875
+ expected_output_cols = self._align_expected_output_names(
876
+ inference_method, dataset, expected_output_cols, output_cols_prefix
877
+ )
810
878
 
811
879
  elif isinstance(dataset, pd.DataFrame):
812
- transform_kwargs = dict(
813
- snowpark_input_cols = self._snowpark_cols,
814
- drop_input_cols = self._drop_input_cols
815
- )
880
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
816
881
 
817
882
  transform_handlers = ModelTransformerBuilder.build(
818
883
  dataset=dataset,
@@ -825,7 +890,7 @@ class BayesianGaussianMixture(BaseTransformer):
825
890
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
826
891
  inference_method=inference_method,
827
892
  input_cols=self.input_cols,
828
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
893
+ expected_output_cols=expected_output_cols,
829
894
  **transform_kwargs
830
895
  )
831
896
  return output_df
@@ -856,12 +921,14 @@ class BayesianGaussianMixture(BaseTransformer):
856
921
  Output dataset with probability of the sample for each class in the model.
857
922
  """
858
923
  super()._check_dataset_type(dataset)
859
- inference_method="score_samples"
924
+ inference_method = "score_samples"
860
925
 
861
926
  # This dictionary contains optional kwargs for batch inference. These kwargs
862
927
  # are specific to the type of dataset used.
863
928
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
864
929
 
930
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
931
+
865
932
  if isinstance(dataset, DataFrame):
866
933
  self._deps = self._batch_inference_validate_snowpark(
867
934
  dataset=dataset,
@@ -874,6 +941,9 @@ class BayesianGaussianMixture(BaseTransformer):
874
941
  drop_input_cols = self._drop_input_cols,
875
942
  expected_output_cols_type="float",
876
943
  )
944
+ expected_output_cols = self._align_expected_output_names(
945
+ inference_method, dataset, expected_output_cols, output_cols_prefix
946
+ )
877
947
 
878
948
  elif isinstance(dataset, pd.DataFrame):
879
949
  transform_kwargs = dict(
@@ -892,7 +962,7 @@ class BayesianGaussianMixture(BaseTransformer):
892
962
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
893
963
  inference_method=inference_method,
894
964
  input_cols=self.input_cols,
895
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
965
+ expected_output_cols=expected_output_cols,
896
966
  **transform_kwargs
897
967
  )
898
968
  return output_df
@@ -1039,50 +1109,84 @@ class BayesianGaussianMixture(BaseTransformer):
1039
1109
  )
1040
1110
  return output_df
1041
1111
 
1112
+
1113
+
1114
+ def to_sklearn(self) -> Any:
1115
+ """Get sklearn.mixture.BayesianGaussianMixture object.
1116
+ """
1117
+ if self._sklearn_object is None:
1118
+ self._sklearn_object = self._create_sklearn_object()
1119
+ return self._sklearn_object
1120
+
1121
+ def to_xgboost(self) -> Any:
1122
+ raise exceptions.SnowflakeMLException(
1123
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1124
+ original_exception=AttributeError(
1125
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
+ "to_xgboost()",
1127
+ "to_sklearn()"
1128
+ )
1129
+ ),
1130
+ )
1131
+
1132
+ def to_lightgbm(self) -> Any:
1133
+ raise exceptions.SnowflakeMLException(
1134
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1135
+ original_exception=AttributeError(
1136
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1137
+ "to_lightgbm()",
1138
+ "to_sklearn()"
1139
+ )
1140
+ ),
1141
+ )
1042
1142
 
1043
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1143
+ def _get_dependencies(self) -> List[str]:
1144
+ return self._deps
1145
+
1146
+
1147
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1044
1148
  self._model_signature_dict = dict()
1045
1149
 
1046
1150
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1047
1151
 
1048
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1152
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1049
1153
  outputs: List[BaseFeatureSpec] = []
1050
1154
  if hasattr(self, "predict"):
1051
1155
  # keep mypy happy
1052
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1156
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1053
1157
  # For classifier, the type of predict is the same as the type of label
1054
- if self._sklearn_object._estimator_type == 'classifier':
1055
- # label columns is the desired type for output
1158
+ if self._sklearn_object._estimator_type == "classifier":
1159
+ # label columns is the desired type for output
1056
1160
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1057
1161
  # rename the output columns
1058
1162
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1059
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1060
- ([] if self._drop_input_cols else inputs)
1061
- + outputs)
1163
+ self._model_signature_dict["predict"] = ModelSignature(
1164
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1165
+ )
1062
1166
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1063
1167
  # For outlier models, returns -1 for outliers and 1 for inliers.
1064
- # Clusterer returns int64 cluster labels.
1168
+ # Clusterer returns int64 cluster labels.
1065
1169
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1066
1170
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1067
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1068
- ([] if self._drop_input_cols else inputs)
1069
- + outputs)
1070
-
1171
+ self._model_signature_dict["predict"] = ModelSignature(
1172
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1173
+ )
1174
+
1071
1175
  # For regressor, the type of predict is float64
1072
- elif self._sklearn_object._estimator_type == 'regressor':
1176
+ elif self._sklearn_object._estimator_type == "regressor":
1073
1177
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1074
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1075
- ([] if self._drop_input_cols else inputs)
1076
- + outputs)
1077
-
1178
+ self._model_signature_dict["predict"] = ModelSignature(
1179
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1180
+ )
1181
+
1078
1182
  for prob_func in PROB_FUNCTIONS:
1079
1183
  if hasattr(self, prob_func):
1080
1184
  output_cols_prefix: str = f"{prob_func}_"
1081
1185
  output_column_names = self._get_output_column_names(output_cols_prefix)
1082
1186
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1083
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1084
- ([] if self._drop_input_cols else inputs)
1085
- + outputs)
1187
+ self._model_signature_dict[prob_func] = ModelSignature(
1188
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1189
+ )
1086
1190
 
1087
1191
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1088
1192
  items = list(self._model_signature_dict.items())
@@ -1095,10 +1199,10 @@ class BayesianGaussianMixture(BaseTransformer):
1095
1199
  """Returns model signature of current class.
1096
1200
 
1097
1201
  Raises:
1098
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1202
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1099
1203
 
1100
1204
  Returns:
1101
- Dict[str, ModelSignature]: each method and its input output signature
1205
+ Dict with each method and its input output signature
1102
1206
  """
1103
1207
  if self._model_signature_dict is None:
1104
1208
  raise exceptions.SnowflakeMLException(
@@ -1106,35 +1210,3 @@ class BayesianGaussianMixture(BaseTransformer):
1106
1210
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1107
1211
  )
1108
1212
  return self._model_signature_dict
1109
-
1110
- def to_sklearn(self) -> Any:
1111
- """Get sklearn.mixture.BayesianGaussianMixture object.
1112
- """
1113
- if self._sklearn_object is None:
1114
- self._sklearn_object = self._create_sklearn_object()
1115
- return self._sklearn_object
1116
-
1117
- def to_xgboost(self) -> Any:
1118
- raise exceptions.SnowflakeMLException(
1119
- error_code=error_codes.METHOD_NOT_ALLOWED,
1120
- original_exception=AttributeError(
1121
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1122
- "to_xgboost()",
1123
- "to_sklearn()"
1124
- )
1125
- ),
1126
- )
1127
-
1128
- def to_lightgbm(self) -> Any:
1129
- raise exceptions.SnowflakeMLException(
1130
- error_code=error_codes.METHOD_NOT_ALLOWED,
1131
- original_exception=AttributeError(
1132
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1133
- "to_lightgbm()",
1134
- "to_sklearn()"
1135
- )
1136
- ),
1137
- )
1138
-
1139
- def _get_dependencies(self) -> List[str]:
1140
- return self._deps