snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -258,12 +257,7 @@ class ARDRegression(BaseTransformer):
258
257
  )
259
258
  return selected_cols
260
259
 
261
- @telemetry.send_api_usage_telemetry(
262
- project=_PROJECT,
263
- subproject=_SUBPROJECT,
264
- custom_tags=dict([("autogen", True)]),
265
- )
266
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
260
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
267
261
  """Fit the model according to the given training data and parameters
268
262
  For more details on this function, see [sklearn.linear_model.ARDRegression.fit]
269
263
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression.fit)
@@ -290,12 +284,14 @@ class ARDRegression(BaseTransformer):
290
284
 
291
285
  self._snowpark_cols = dataset.select(self.input_cols).columns
292
286
 
293
- # If we are already in a stored procedure, no need to kick off another one.
287
+ # If we are already in a stored procedure, no need to kick off another one.
294
288
  if SNOWML_SPROC_ENV in os.environ:
295
289
  statement_params = telemetry.get_function_usage_statement_params(
296
290
  project=_PROJECT,
297
291
  subproject=_SUBPROJECT,
298
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ARDRegression.__class__.__name__),
292
+ function_name=telemetry.get_statement_params_full_func_name(
293
+ inspect.currentframe(), ARDRegression.__class__.__name__
294
+ ),
299
295
  api_calls=[Session.call],
300
296
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
297
  )
@@ -316,7 +312,7 @@ class ARDRegression(BaseTransformer):
316
312
  )
317
313
  self._sklearn_object = model_trainer.train()
318
314
  self._is_fitted = True
319
- self._get_model_signatures(dataset)
315
+ self._generate_model_signatures(dataset)
320
316
  return self
321
317
 
322
318
  def _batch_inference_validate_snowpark(
@@ -392,7 +388,9 @@ class ARDRegression(BaseTransformer):
392
388
  # when it is classifier, infer the datatype from label columns
393
389
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
394
390
  # Batch inference takes a single expected output column type. Use the first columns type for now.
395
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
391
+ label_cols_signatures = [
392
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
393
+ ]
396
394
  if len(label_cols_signatures) == 0:
397
395
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
398
396
  raise exceptions.SnowflakeMLException(
@@ -400,25 +398,22 @@ class ARDRegression(BaseTransformer):
400
398
  original_exception=ValueError(error_str),
401
399
  )
402
400
 
403
- expected_type_inferred = convert_sp_to_sf_type(
404
- label_cols_signatures[0].as_snowpark_type()
405
- )
401
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
406
402
 
407
403
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
408
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
404
+ assert isinstance(
405
+ dataset._session, Session
406
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
409
407
 
410
408
  transform_kwargs = dict(
411
- session = dataset._session,
412
- dependencies = self._deps,
413
- drop_input_cols = self._drop_input_cols,
414
- expected_output_cols_type = expected_type_inferred,
409
+ session=dataset._session,
410
+ dependencies=self._deps,
411
+ drop_input_cols=self._drop_input_cols,
412
+ expected_output_cols_type=expected_type_inferred,
415
413
  )
416
414
 
417
415
  elif isinstance(dataset, pd.DataFrame):
418
- transform_kwargs = dict(
419
- snowpark_input_cols = self._snowpark_cols,
420
- drop_input_cols = self._drop_input_cols
421
- )
416
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
422
417
 
423
418
  transform_handlers = ModelTransformerBuilder.build(
424
419
  dataset=dataset,
@@ -458,7 +453,7 @@ class ARDRegression(BaseTransformer):
458
453
  Transformed dataset.
459
454
  """
460
455
  super()._check_dataset_type(dataset)
461
- inference_method="transform"
456
+ inference_method = "transform"
462
457
 
463
458
  # This dictionary contains optional kwargs for batch inference. These kwargs
464
459
  # are specific to the type of dataset used.
@@ -495,17 +490,14 @@ class ARDRegression(BaseTransformer):
495
490
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
496
491
 
497
492
  transform_kwargs = dict(
498
- session = dataset._session,
499
- dependencies = self._deps,
500
- drop_input_cols = self._drop_input_cols,
501
- expected_output_cols_type = expected_dtype,
493
+ session=dataset._session,
494
+ dependencies=self._deps,
495
+ drop_input_cols=self._drop_input_cols,
496
+ expected_output_cols_type=expected_dtype,
502
497
  )
503
498
 
504
499
  elif isinstance(dataset, pd.DataFrame):
505
- transform_kwargs = dict(
506
- snowpark_input_cols = self._snowpark_cols,
507
- drop_input_cols = self._drop_input_cols
508
- )
500
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
509
501
 
510
502
  transform_handlers = ModelTransformerBuilder.build(
511
503
  dataset=dataset,
@@ -524,7 +516,11 @@ class ARDRegression(BaseTransformer):
524
516
  return output_df
525
517
 
526
518
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
527
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
519
+ def fit_predict(
520
+ self,
521
+ dataset: Union[DataFrame, pd.DataFrame],
522
+ output_cols_prefix: str = "fit_predict_",
523
+ ) -> Union[DataFrame, pd.DataFrame]:
528
524
  """ Method not supported for this class.
529
525
 
530
526
 
@@ -549,7 +545,9 @@ class ARDRegression(BaseTransformer):
549
545
  )
550
546
  output_result, fitted_estimator = model_trainer.train_fit_predict(
551
547
  drop_input_cols=self._drop_input_cols,
552
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
548
+ expected_output_cols_list=(
549
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
550
+ ),
553
551
  )
554
552
  self._sklearn_object = fitted_estimator
555
553
  self._is_fitted = True
@@ -566,6 +564,62 @@ class ARDRegression(BaseTransformer):
566
564
  assert self._sklearn_object is not None
567
565
  return self._sklearn_object.embedding_
568
566
 
567
+
568
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
569
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
570
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
571
+ """
572
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
573
+ # The following condition is introduced for kneighbors methods, and not used in other methods
574
+ if output_cols:
575
+ output_cols = [
576
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
577
+ for c in output_cols
578
+ ]
579
+ elif getattr(self._sklearn_object, "classes_", None) is None:
580
+ output_cols = [output_cols_prefix]
581
+ elif self._sklearn_object is not None:
582
+ classes = self._sklearn_object.classes_
583
+ if isinstance(classes, numpy.ndarray):
584
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
585
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
586
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
587
+ output_cols = []
588
+ for i, cl in enumerate(classes):
589
+ # For binary classification, there is only one output column for each class
590
+ # ndarray as the two classes are complementary.
591
+ if len(cl) == 2:
592
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
593
+ else:
594
+ output_cols.extend([
595
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
596
+ ])
597
+ else:
598
+ output_cols = []
599
+
600
+ # Make sure column names are valid snowflake identifiers.
601
+ assert output_cols is not None # Make MyPy happy
602
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
603
+
604
+ return rv
605
+
606
+ def _align_expected_output_names(
607
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
608
+ ) -> List[str]:
609
+ # in case the inferred output column names dimension is different
610
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
611
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
612
+ output_df_columns = list(output_df_pd.columns)
613
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
614
+ if self.sample_weight_col:
615
+ output_df_columns_set -= set(self.sample_weight_col)
616
+ # if the dimension of inferred output column names is correct; use it
617
+ if len(expected_output_cols_list) == len(output_df_columns_set):
618
+ return expected_output_cols_list
619
+ # otherwise, use the sklearn estimator's output
620
+ else:
621
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
622
+
569
623
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
570
624
  @telemetry.send_api_usage_telemetry(
571
625
  project=_PROJECT,
@@ -596,24 +650,28 @@ class ARDRegression(BaseTransformer):
596
650
  # are specific to the type of dataset used.
597
651
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
598
652
 
653
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
654
+
599
655
  if isinstance(dataset, DataFrame):
600
656
  self._deps = self._batch_inference_validate_snowpark(
601
657
  dataset=dataset,
602
658
  inference_method=inference_method,
603
659
  )
604
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
+ assert isinstance(
661
+ dataset._session, Session
662
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
605
663
  transform_kwargs = dict(
606
664
  session=dataset._session,
607
665
  dependencies=self._deps,
608
- drop_input_cols = self._drop_input_cols,
666
+ drop_input_cols=self._drop_input_cols,
609
667
  expected_output_cols_type="float",
610
668
  )
669
+ expected_output_cols = self._align_expected_output_names(
670
+ inference_method, dataset, expected_output_cols, output_cols_prefix
671
+ )
611
672
 
612
673
  elif isinstance(dataset, pd.DataFrame):
613
- transform_kwargs = dict(
614
- snowpark_input_cols = self._snowpark_cols,
615
- drop_input_cols = self._drop_input_cols
616
- )
674
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
617
675
 
618
676
  transform_handlers = ModelTransformerBuilder.build(
619
677
  dataset=dataset,
@@ -625,7 +683,7 @@ class ARDRegression(BaseTransformer):
625
683
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
626
684
  inference_method=inference_method,
627
685
  input_cols=self.input_cols,
628
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
686
+ expected_output_cols=expected_output_cols,
629
687
  **transform_kwargs
630
688
  )
631
689
  return output_df
@@ -655,7 +713,8 @@ class ARDRegression(BaseTransformer):
655
713
  Output dataset with log probability of the sample for each class in the model.
656
714
  """
657
715
  super()._check_dataset_type(dataset)
658
- inference_method="predict_log_proba"
716
+ inference_method = "predict_log_proba"
717
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
659
718
 
660
719
  # This dictionary contains optional kwargs for batch inference. These kwargs
661
720
  # are specific to the type of dataset used.
@@ -666,18 +725,20 @@ class ARDRegression(BaseTransformer):
666
725
  dataset=dataset,
667
726
  inference_method=inference_method,
668
727
  )
669
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
728
+ assert isinstance(
729
+ dataset._session, Session
730
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
731
  transform_kwargs = dict(
671
732
  session=dataset._session,
672
733
  dependencies=self._deps,
673
- drop_input_cols = self._drop_input_cols,
734
+ drop_input_cols=self._drop_input_cols,
674
735
  expected_output_cols_type="float",
675
736
  )
737
+ expected_output_cols = self._align_expected_output_names(
738
+ inference_method, dataset, expected_output_cols, output_cols_prefix
739
+ )
676
740
  elif isinstance(dataset, pd.DataFrame):
677
- transform_kwargs = dict(
678
- snowpark_input_cols = self._snowpark_cols,
679
- drop_input_cols = self._drop_input_cols
680
- )
741
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
681
742
 
682
743
  transform_handlers = ModelTransformerBuilder.build(
683
744
  dataset=dataset,
@@ -690,7 +751,7 @@ class ARDRegression(BaseTransformer):
690
751
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
691
752
  inference_method=inference_method,
692
753
  input_cols=self.input_cols,
693
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
754
+ expected_output_cols=expected_output_cols,
694
755
  **transform_kwargs
695
756
  )
696
757
  return output_df
@@ -716,30 +777,34 @@ class ARDRegression(BaseTransformer):
716
777
  Output dataset with results of the decision function for the samples in input dataset.
717
778
  """
718
779
  super()._check_dataset_type(dataset)
719
- inference_method="decision_function"
780
+ inference_method = "decision_function"
720
781
 
721
782
  # This dictionary contains optional kwargs for batch inference. These kwargs
722
783
  # are specific to the type of dataset used.
723
784
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
724
785
 
786
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
787
+
725
788
  if isinstance(dataset, DataFrame):
726
789
  self._deps = self._batch_inference_validate_snowpark(
727
790
  dataset=dataset,
728
791
  inference_method=inference_method,
729
792
  )
730
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
+ assert isinstance(
794
+ dataset._session, Session
795
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
796
  transform_kwargs = dict(
732
797
  session=dataset._session,
733
798
  dependencies=self._deps,
734
- drop_input_cols = self._drop_input_cols,
799
+ drop_input_cols=self._drop_input_cols,
735
800
  expected_output_cols_type="float",
736
801
  )
802
+ expected_output_cols = self._align_expected_output_names(
803
+ inference_method, dataset, expected_output_cols, output_cols_prefix
804
+ )
737
805
 
738
806
  elif isinstance(dataset, pd.DataFrame):
739
- transform_kwargs = dict(
740
- snowpark_input_cols = self._snowpark_cols,
741
- drop_input_cols = self._drop_input_cols
742
- )
807
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
743
808
 
744
809
  transform_handlers = ModelTransformerBuilder.build(
745
810
  dataset=dataset,
@@ -752,7 +817,7 @@ class ARDRegression(BaseTransformer):
752
817
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
753
818
  inference_method=inference_method,
754
819
  input_cols=self.input_cols,
755
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
820
+ expected_output_cols=expected_output_cols,
756
821
  **transform_kwargs
757
822
  )
758
823
  return output_df
@@ -781,12 +846,14 @@ class ARDRegression(BaseTransformer):
781
846
  Output dataset with probability of the sample for each class in the model.
782
847
  """
783
848
  super()._check_dataset_type(dataset)
784
- inference_method="score_samples"
849
+ inference_method = "score_samples"
785
850
 
786
851
  # This dictionary contains optional kwargs for batch inference. These kwargs
787
852
  # are specific to the type of dataset used.
788
853
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
789
854
 
855
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
856
+
790
857
  if isinstance(dataset, DataFrame):
791
858
  self._deps = self._batch_inference_validate_snowpark(
792
859
  dataset=dataset,
@@ -799,6 +866,9 @@ class ARDRegression(BaseTransformer):
799
866
  drop_input_cols = self._drop_input_cols,
800
867
  expected_output_cols_type="float",
801
868
  )
869
+ expected_output_cols = self._align_expected_output_names(
870
+ inference_method, dataset, expected_output_cols, output_cols_prefix
871
+ )
802
872
 
803
873
  elif isinstance(dataset, pd.DataFrame):
804
874
  transform_kwargs = dict(
@@ -817,7 +887,7 @@ class ARDRegression(BaseTransformer):
817
887
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
818
888
  inference_method=inference_method,
819
889
  input_cols=self.input_cols,
820
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
890
+ expected_output_cols=expected_output_cols,
821
891
  **transform_kwargs
822
892
  )
823
893
  return output_df
@@ -964,50 +1034,84 @@ class ARDRegression(BaseTransformer):
964
1034
  )
965
1035
  return output_df
966
1036
 
1037
+
1038
+
1039
+ def to_sklearn(self) -> Any:
1040
+ """Get sklearn.linear_model.ARDRegression object.
1041
+ """
1042
+ if self._sklearn_object is None:
1043
+ self._sklearn_object = self._create_sklearn_object()
1044
+ return self._sklearn_object
1045
+
1046
+ def to_xgboost(self) -> Any:
1047
+ raise exceptions.SnowflakeMLException(
1048
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1049
+ original_exception=AttributeError(
1050
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
+ "to_xgboost()",
1052
+ "to_sklearn()"
1053
+ )
1054
+ ),
1055
+ )
1056
+
1057
+ def to_lightgbm(self) -> Any:
1058
+ raise exceptions.SnowflakeMLException(
1059
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1060
+ original_exception=AttributeError(
1061
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
+ "to_lightgbm()",
1063
+ "to_sklearn()"
1064
+ )
1065
+ ),
1066
+ )
967
1067
 
968
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1068
+ def _get_dependencies(self) -> List[str]:
1069
+ return self._deps
1070
+
1071
+
1072
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
969
1073
  self._model_signature_dict = dict()
970
1074
 
971
1075
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
972
1076
 
973
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1077
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
974
1078
  outputs: List[BaseFeatureSpec] = []
975
1079
  if hasattr(self, "predict"):
976
1080
  # keep mypy happy
977
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1081
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
978
1082
  # For classifier, the type of predict is the same as the type of label
979
- if self._sklearn_object._estimator_type == 'classifier':
980
- # label columns is the desired type for output
1083
+ if self._sklearn_object._estimator_type == "classifier":
1084
+ # label columns is the desired type for output
981
1085
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
982
1086
  # rename the output columns
983
1087
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
987
1091
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
988
1092
  # For outlier models, returns -1 for outliers and 1 for inliers.
989
- # Clusterer returns int64 cluster labels.
1093
+ # Clusterer returns int64 cluster labels.
990
1094
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
991
1095
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
992
- self._model_signature_dict["predict"] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
995
-
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
1099
+
996
1100
  # For regressor, the type of predict is float64
997
- elif self._sklearn_object._estimator_type == 'regressor':
1101
+ elif self._sklearn_object._estimator_type == "regressor":
998
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1003
1107
  for prob_func in PROB_FUNCTIONS:
1004
1108
  if hasattr(self, prob_func):
1005
1109
  output_cols_prefix: str = f"{prob_func}_"
1006
1110
  output_column_names = self._get_output_column_names(output_cols_prefix)
1007
1111
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1008
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1112
+ self._model_signature_dict[prob_func] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1011
1115
 
1012
1116
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1013
1117
  items = list(self._model_signature_dict.items())
@@ -1020,10 +1124,10 @@ class ARDRegression(BaseTransformer):
1020
1124
  """Returns model signature of current class.
1021
1125
 
1022
1126
  Raises:
1023
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1127
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1024
1128
 
1025
1129
  Returns:
1026
- Dict[str, ModelSignature]: each method and its input output signature
1130
+ Dict with each method and its input output signature
1027
1131
  """
1028
1132
  if self._model_signature_dict is None:
1029
1133
  raise exceptions.SnowflakeMLException(
@@ -1031,35 +1135,3 @@ class ARDRegression(BaseTransformer):
1031
1135
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1032
1136
  )
1033
1137
  return self._model_signature_dict
1034
-
1035
- def to_sklearn(self) -> Any:
1036
- """Get sklearn.linear_model.ARDRegression object.
1037
- """
1038
- if self._sklearn_object is None:
1039
- self._sklearn_object = self._create_sklearn_object()
1040
- return self._sklearn_object
1041
-
1042
- def to_xgboost(self) -> Any:
1043
- raise exceptions.SnowflakeMLException(
1044
- error_code=error_codes.METHOD_NOT_ALLOWED,
1045
- original_exception=AttributeError(
1046
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1047
- "to_xgboost()",
1048
- "to_sklearn()"
1049
- )
1050
- ),
1051
- )
1052
-
1053
- def to_lightgbm(self) -> Any:
1054
- raise exceptions.SnowflakeMLException(
1055
- error_code=error_codes.METHOD_NOT_ALLOWED,
1056
- original_exception=AttributeError(
1057
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
- "to_lightgbm()",
1059
- "to_sklearn()"
1060
- )
1061
- ),
1062
- )
1063
-
1064
- def _get_dependencies(self) -> List[str]:
1065
- return self._deps