snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -222,12 +221,7 @@ class BernoulliNB(BaseTransformer):
222
221
  )
223
222
  return selected_cols
224
223
 
225
- @telemetry.send_api_usage_telemetry(
226
- project=_PROJECT,
227
- subproject=_SUBPROJECT,
228
- custom_tags=dict([("autogen", True)]),
229
- )
230
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliNB":
224
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliNB":
231
225
  """Fit Naive Bayes classifier according to X, y
232
226
  For more details on this function, see [sklearn.naive_bayes.BernoulliNB.fit]
233
227
  (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.fit)
@@ -254,12 +248,14 @@ class BernoulliNB(BaseTransformer):
254
248
 
255
249
  self._snowpark_cols = dataset.select(self.input_cols).columns
256
250
 
257
- # If we are already in a stored procedure, no need to kick off another one.
251
+ # If we are already in a stored procedure, no need to kick off another one.
258
252
  if SNOWML_SPROC_ENV in os.environ:
259
253
  statement_params = telemetry.get_function_usage_statement_params(
260
254
  project=_PROJECT,
261
255
  subproject=_SUBPROJECT,
262
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BernoulliNB.__class__.__name__),
256
+ function_name=telemetry.get_statement_params_full_func_name(
257
+ inspect.currentframe(), BernoulliNB.__class__.__name__
258
+ ),
263
259
  api_calls=[Session.call],
264
260
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
261
  )
@@ -280,7 +276,7 @@ class BernoulliNB(BaseTransformer):
280
276
  )
281
277
  self._sklearn_object = model_trainer.train()
282
278
  self._is_fitted = True
283
- self._get_model_signatures(dataset)
279
+ self._generate_model_signatures(dataset)
284
280
  return self
285
281
 
286
282
  def _batch_inference_validate_snowpark(
@@ -356,7 +352,9 @@ class BernoulliNB(BaseTransformer):
356
352
  # when it is classifier, infer the datatype from label columns
357
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
358
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
359
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
360
358
  if len(label_cols_signatures) == 0:
361
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
362
360
  raise exceptions.SnowflakeMLException(
@@ -364,25 +362,22 @@ class BernoulliNB(BaseTransformer):
364
362
  original_exception=ValueError(error_str),
365
363
  )
366
364
 
367
- expected_type_inferred = convert_sp_to_sf_type(
368
- label_cols_signatures[0].as_snowpark_type()
369
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
370
366
 
371
367
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
368
+ assert isinstance(
369
+ dataset._session, Session
370
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
371
 
374
372
  transform_kwargs = dict(
375
- session = dataset._session,
376
- dependencies = self._deps,
377
- drop_input_cols = self._drop_input_cols,
378
- expected_output_cols_type = expected_type_inferred,
373
+ session=dataset._session,
374
+ dependencies=self._deps,
375
+ drop_input_cols=self._drop_input_cols,
376
+ expected_output_cols_type=expected_type_inferred,
379
377
  )
380
378
 
381
379
  elif isinstance(dataset, pd.DataFrame):
382
- transform_kwargs = dict(
383
- snowpark_input_cols = self._snowpark_cols,
384
- drop_input_cols = self._drop_input_cols
385
- )
380
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
386
381
 
387
382
  transform_handlers = ModelTransformerBuilder.build(
388
383
  dataset=dataset,
@@ -422,7 +417,7 @@ class BernoulliNB(BaseTransformer):
422
417
  Transformed dataset.
423
418
  """
424
419
  super()._check_dataset_type(dataset)
425
- inference_method="transform"
420
+ inference_method = "transform"
426
421
 
427
422
  # This dictionary contains optional kwargs for batch inference. These kwargs
428
423
  # are specific to the type of dataset used.
@@ -459,17 +454,14 @@ class BernoulliNB(BaseTransformer):
459
454
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
460
455
 
461
456
  transform_kwargs = dict(
462
- session = dataset._session,
463
- dependencies = self._deps,
464
- drop_input_cols = self._drop_input_cols,
465
- expected_output_cols_type = expected_dtype,
457
+ session=dataset._session,
458
+ dependencies=self._deps,
459
+ drop_input_cols=self._drop_input_cols,
460
+ expected_output_cols_type=expected_dtype,
466
461
  )
467
462
 
468
463
  elif isinstance(dataset, pd.DataFrame):
469
- transform_kwargs = dict(
470
- snowpark_input_cols = self._snowpark_cols,
471
- drop_input_cols = self._drop_input_cols
472
- )
464
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
473
465
 
474
466
  transform_handlers = ModelTransformerBuilder.build(
475
467
  dataset=dataset,
@@ -488,7 +480,11 @@ class BernoulliNB(BaseTransformer):
488
480
  return output_df
489
481
 
490
482
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
491
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
483
+ def fit_predict(
484
+ self,
485
+ dataset: Union[DataFrame, pd.DataFrame],
486
+ output_cols_prefix: str = "fit_predict_",
487
+ ) -> Union[DataFrame, pd.DataFrame]:
492
488
  """ Method not supported for this class.
493
489
 
494
490
 
@@ -513,7 +509,9 @@ class BernoulliNB(BaseTransformer):
513
509
  )
514
510
  output_result, fitted_estimator = model_trainer.train_fit_predict(
515
511
  drop_input_cols=self._drop_input_cols,
516
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
512
+ expected_output_cols_list=(
513
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
514
+ ),
517
515
  )
518
516
  self._sklearn_object = fitted_estimator
519
517
  self._is_fitted = True
@@ -530,6 +528,62 @@ class BernoulliNB(BaseTransformer):
530
528
  assert self._sklearn_object is not None
531
529
  return self._sklearn_object.embedding_
532
530
 
531
+
532
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
533
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
534
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
535
+ """
536
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
537
+ # The following condition is introduced for kneighbors methods, and not used in other methods
538
+ if output_cols:
539
+ output_cols = [
540
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
541
+ for c in output_cols
542
+ ]
543
+ elif getattr(self._sklearn_object, "classes_", None) is None:
544
+ output_cols = [output_cols_prefix]
545
+ elif self._sklearn_object is not None:
546
+ classes = self._sklearn_object.classes_
547
+ if isinstance(classes, numpy.ndarray):
548
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
549
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
550
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
551
+ output_cols = []
552
+ for i, cl in enumerate(classes):
553
+ # For binary classification, there is only one output column for each class
554
+ # ndarray as the two classes are complementary.
555
+ if len(cl) == 2:
556
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
557
+ else:
558
+ output_cols.extend([
559
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
560
+ ])
561
+ else:
562
+ output_cols = []
563
+
564
+ # Make sure column names are valid snowflake identifiers.
565
+ assert output_cols is not None # Make MyPy happy
566
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
567
+
568
+ return rv
569
+
570
+ def _align_expected_output_names(
571
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
572
+ ) -> List[str]:
573
+ # in case the inferred output column names dimension is different
574
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
575
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
576
+ output_df_columns = list(output_df_pd.columns)
577
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
578
+ if self.sample_weight_col:
579
+ output_df_columns_set -= set(self.sample_weight_col)
580
+ # if the dimension of inferred output column names is correct; use it
581
+ if len(expected_output_cols_list) == len(output_df_columns_set):
582
+ return expected_output_cols_list
583
+ # otherwise, use the sklearn estimator's output
584
+ else:
585
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
586
+
533
587
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
534
588
  @telemetry.send_api_usage_telemetry(
535
589
  project=_PROJECT,
@@ -562,24 +616,28 @@ class BernoulliNB(BaseTransformer):
562
616
  # are specific to the type of dataset used.
563
617
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
564
618
 
619
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
620
+
565
621
  if isinstance(dataset, DataFrame):
566
622
  self._deps = self._batch_inference_validate_snowpark(
567
623
  dataset=dataset,
568
624
  inference_method=inference_method,
569
625
  )
570
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
+ assert isinstance(
627
+ dataset._session, Session
628
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
571
629
  transform_kwargs = dict(
572
630
  session=dataset._session,
573
631
  dependencies=self._deps,
574
- drop_input_cols = self._drop_input_cols,
632
+ drop_input_cols=self._drop_input_cols,
575
633
  expected_output_cols_type="float",
576
634
  )
635
+ expected_output_cols = self._align_expected_output_names(
636
+ inference_method, dataset, expected_output_cols, output_cols_prefix
637
+ )
577
638
 
578
639
  elif isinstance(dataset, pd.DataFrame):
579
- transform_kwargs = dict(
580
- snowpark_input_cols = self._snowpark_cols,
581
- drop_input_cols = self._drop_input_cols
582
- )
640
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
583
641
 
584
642
  transform_handlers = ModelTransformerBuilder.build(
585
643
  dataset=dataset,
@@ -591,7 +649,7 @@ class BernoulliNB(BaseTransformer):
591
649
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
592
650
  inference_method=inference_method,
593
651
  input_cols=self.input_cols,
594
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
652
+ expected_output_cols=expected_output_cols,
595
653
  **transform_kwargs
596
654
  )
597
655
  return output_df
@@ -623,7 +681,8 @@ class BernoulliNB(BaseTransformer):
623
681
  Output dataset with log probability of the sample for each class in the model.
624
682
  """
625
683
  super()._check_dataset_type(dataset)
626
- inference_method="predict_log_proba"
684
+ inference_method = "predict_log_proba"
685
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
627
686
 
628
687
  # This dictionary contains optional kwargs for batch inference. These kwargs
629
688
  # are specific to the type of dataset used.
@@ -634,18 +693,20 @@ class BernoulliNB(BaseTransformer):
634
693
  dataset=dataset,
635
694
  inference_method=inference_method,
636
695
  )
637
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
+ assert isinstance(
697
+ dataset._session, Session
698
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
638
699
  transform_kwargs = dict(
639
700
  session=dataset._session,
640
701
  dependencies=self._deps,
641
- drop_input_cols = self._drop_input_cols,
702
+ drop_input_cols=self._drop_input_cols,
642
703
  expected_output_cols_type="float",
643
704
  )
705
+ expected_output_cols = self._align_expected_output_names(
706
+ inference_method, dataset, expected_output_cols, output_cols_prefix
707
+ )
644
708
  elif isinstance(dataset, pd.DataFrame):
645
- transform_kwargs = dict(
646
- snowpark_input_cols = self._snowpark_cols,
647
- drop_input_cols = self._drop_input_cols
648
- )
709
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
649
710
 
650
711
  transform_handlers = ModelTransformerBuilder.build(
651
712
  dataset=dataset,
@@ -658,7 +719,7 @@ class BernoulliNB(BaseTransformer):
658
719
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
659
720
  inference_method=inference_method,
660
721
  input_cols=self.input_cols,
661
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
722
+ expected_output_cols=expected_output_cols,
662
723
  **transform_kwargs
663
724
  )
664
725
  return output_df
@@ -684,30 +745,34 @@ class BernoulliNB(BaseTransformer):
684
745
  Output dataset with results of the decision function for the samples in input dataset.
685
746
  """
686
747
  super()._check_dataset_type(dataset)
687
- inference_method="decision_function"
748
+ inference_method = "decision_function"
688
749
 
689
750
  # This dictionary contains optional kwargs for batch inference. These kwargs
690
751
  # are specific to the type of dataset used.
691
752
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
692
753
 
754
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
755
+
693
756
  if isinstance(dataset, DataFrame):
694
757
  self._deps = self._batch_inference_validate_snowpark(
695
758
  dataset=dataset,
696
759
  inference_method=inference_method,
697
760
  )
698
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
761
+ assert isinstance(
762
+ dataset._session, Session
763
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
764
  transform_kwargs = dict(
700
765
  session=dataset._session,
701
766
  dependencies=self._deps,
702
- drop_input_cols = self._drop_input_cols,
767
+ drop_input_cols=self._drop_input_cols,
703
768
  expected_output_cols_type="float",
704
769
  )
770
+ expected_output_cols = self._align_expected_output_names(
771
+ inference_method, dataset, expected_output_cols, output_cols_prefix
772
+ )
705
773
 
706
774
  elif isinstance(dataset, pd.DataFrame):
707
- transform_kwargs = dict(
708
- snowpark_input_cols = self._snowpark_cols,
709
- drop_input_cols = self._drop_input_cols
710
- )
775
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
711
776
 
712
777
  transform_handlers = ModelTransformerBuilder.build(
713
778
  dataset=dataset,
@@ -720,7 +785,7 @@ class BernoulliNB(BaseTransformer):
720
785
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
721
786
  inference_method=inference_method,
722
787
  input_cols=self.input_cols,
723
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
788
+ expected_output_cols=expected_output_cols,
724
789
  **transform_kwargs
725
790
  )
726
791
  return output_df
@@ -749,12 +814,14 @@ class BernoulliNB(BaseTransformer):
749
814
  Output dataset with probability of the sample for each class in the model.
750
815
  """
751
816
  super()._check_dataset_type(dataset)
752
- inference_method="score_samples"
817
+ inference_method = "score_samples"
753
818
 
754
819
  # This dictionary contains optional kwargs for batch inference. These kwargs
755
820
  # are specific to the type of dataset used.
756
821
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
757
822
 
823
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
824
+
758
825
  if isinstance(dataset, DataFrame):
759
826
  self._deps = self._batch_inference_validate_snowpark(
760
827
  dataset=dataset,
@@ -767,6 +834,9 @@ class BernoulliNB(BaseTransformer):
767
834
  drop_input_cols = self._drop_input_cols,
768
835
  expected_output_cols_type="float",
769
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
770
840
 
771
841
  elif isinstance(dataset, pd.DataFrame):
772
842
  transform_kwargs = dict(
@@ -785,7 +855,7 @@ class BernoulliNB(BaseTransformer):
785
855
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
786
856
  inference_method=inference_method,
787
857
  input_cols=self.input_cols,
788
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
858
+ expected_output_cols=expected_output_cols,
789
859
  **transform_kwargs
790
860
  )
791
861
  return output_df
@@ -932,50 +1002,84 @@ class BernoulliNB(BaseTransformer):
932
1002
  )
933
1003
  return output_df
934
1004
 
1005
+
1006
+
1007
+ def to_sklearn(self) -> Any:
1008
+ """Get sklearn.naive_bayes.BernoulliNB object.
1009
+ """
1010
+ if self._sklearn_object is None:
1011
+ self._sklearn_object = self._create_sklearn_object()
1012
+ return self._sklearn_object
1013
+
1014
+ def to_xgboost(self) -> Any:
1015
+ raise exceptions.SnowflakeMLException(
1016
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1017
+ original_exception=AttributeError(
1018
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1019
+ "to_xgboost()",
1020
+ "to_sklearn()"
1021
+ )
1022
+ ),
1023
+ )
1024
+
1025
+ def to_lightgbm(self) -> Any:
1026
+ raise exceptions.SnowflakeMLException(
1027
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1028
+ original_exception=AttributeError(
1029
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1030
+ "to_lightgbm()",
1031
+ "to_sklearn()"
1032
+ )
1033
+ ),
1034
+ )
935
1035
 
936
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1036
+ def _get_dependencies(self) -> List[str]:
1037
+ return self._deps
1038
+
1039
+
1040
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
937
1041
  self._model_signature_dict = dict()
938
1042
 
939
1043
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
940
1044
 
941
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1045
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
942
1046
  outputs: List[BaseFeatureSpec] = []
943
1047
  if hasattr(self, "predict"):
944
1048
  # keep mypy happy
945
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1049
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
946
1050
  # For classifier, the type of predict is the same as the type of label
947
- if self._sklearn_object._estimator_type == 'classifier':
948
- # label columns is the desired type for output
1051
+ if self._sklearn_object._estimator_type == "classifier":
1052
+ # label columns is the desired type for output
949
1053
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
950
1054
  # rename the output columns
951
1055
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
952
- self._model_signature_dict["predict"] = ModelSignature(inputs,
953
- ([] if self._drop_input_cols else inputs)
954
- + outputs)
1056
+ self._model_signature_dict["predict"] = ModelSignature(
1057
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1058
+ )
955
1059
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
956
1060
  # For outlier models, returns -1 for outliers and 1 for inliers.
957
- # Clusterer returns int64 cluster labels.
1061
+ # Clusterer returns int64 cluster labels.
958
1062
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
959
1063
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
960
- self._model_signature_dict["predict"] = ModelSignature(inputs,
961
- ([] if self._drop_input_cols else inputs)
962
- + outputs)
963
-
1064
+ self._model_signature_dict["predict"] = ModelSignature(
1065
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1066
+ )
1067
+
964
1068
  # For regressor, the type of predict is float64
965
- elif self._sklearn_object._estimator_type == 'regressor':
1069
+ elif self._sklearn_object._estimator_type == "regressor":
966
1070
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
967
- self._model_signature_dict["predict"] = ModelSignature(inputs,
968
- ([] if self._drop_input_cols else inputs)
969
- + outputs)
970
-
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
1074
+
971
1075
  for prob_func in PROB_FUNCTIONS:
972
1076
  if hasattr(self, prob_func):
973
1077
  output_cols_prefix: str = f"{prob_func}_"
974
1078
  output_column_names = self._get_output_column_names(output_cols_prefix)
975
1079
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
976
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
1080
+ self._model_signature_dict[prob_func] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
979
1083
 
980
1084
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
981
1085
  items = list(self._model_signature_dict.items())
@@ -988,10 +1092,10 @@ class BernoulliNB(BaseTransformer):
988
1092
  """Returns model signature of current class.
989
1093
 
990
1094
  Raises:
991
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1095
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
992
1096
 
993
1097
  Returns:
994
- Dict[str, ModelSignature]: each method and its input output signature
1098
+ Dict with each method and its input output signature
995
1099
  """
996
1100
  if self._model_signature_dict is None:
997
1101
  raise exceptions.SnowflakeMLException(
@@ -999,35 +1103,3 @@ class BernoulliNB(BaseTransformer):
999
1103
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1000
1104
  )
1001
1105
  return self._model_signature_dict
1002
-
1003
- def to_sklearn(self) -> Any:
1004
- """Get sklearn.naive_bayes.BernoulliNB object.
1005
- """
1006
- if self._sklearn_object is None:
1007
- self._sklearn_object = self._create_sklearn_object()
1008
- return self._sklearn_object
1009
-
1010
- def to_xgboost(self) -> Any:
1011
- raise exceptions.SnowflakeMLException(
1012
- error_code=error_codes.METHOD_NOT_ALLOWED,
1013
- original_exception=AttributeError(
1014
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1015
- "to_xgboost()",
1016
- "to_sklearn()"
1017
- )
1018
- ),
1019
- )
1020
-
1021
- def to_lightgbm(self) -> Any:
1022
- raise exceptions.SnowflakeMLException(
1023
- error_code=error_codes.METHOD_NOT_ALLOWED,
1024
- original_exception=AttributeError(
1025
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
- "to_lightgbm()",
1027
- "to_sklearn()"
1028
- )
1029
- ),
1030
- )
1031
-
1032
- def _get_dependencies(self) -> List[str]:
1033
- return self._deps