snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -222,12 +221,7 @@ class BernoulliNB(BaseTransformer):
|
|
222
221
|
)
|
223
222
|
return selected_cols
|
224
223
|
|
225
|
-
|
226
|
-
project=_PROJECT,
|
227
|
-
subproject=_SUBPROJECT,
|
228
|
-
custom_tags=dict([("autogen", True)]),
|
229
|
-
)
|
230
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliNB":
|
224
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliNB":
|
231
225
|
"""Fit Naive Bayes classifier according to X, y
|
232
226
|
For more details on this function, see [sklearn.naive_bayes.BernoulliNB.fit]
|
233
227
|
(https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.fit)
|
@@ -254,12 +248,14 @@ class BernoulliNB(BaseTransformer):
|
|
254
248
|
|
255
249
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
256
250
|
|
257
|
-
|
251
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
258
252
|
if SNOWML_SPROC_ENV in os.environ:
|
259
253
|
statement_params = telemetry.get_function_usage_statement_params(
|
260
254
|
project=_PROJECT,
|
261
255
|
subproject=_SUBPROJECT,
|
262
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
256
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
257
|
+
inspect.currentframe(), BernoulliNB.__class__.__name__
|
258
|
+
),
|
263
259
|
api_calls=[Session.call],
|
264
260
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
265
261
|
)
|
@@ -280,7 +276,7 @@ class BernoulliNB(BaseTransformer):
|
|
280
276
|
)
|
281
277
|
self._sklearn_object = model_trainer.train()
|
282
278
|
self._is_fitted = True
|
283
|
-
self.
|
279
|
+
self._generate_model_signatures(dataset)
|
284
280
|
return self
|
285
281
|
|
286
282
|
def _batch_inference_validate_snowpark(
|
@@ -356,7 +352,9 @@ class BernoulliNB(BaseTransformer):
|
|
356
352
|
# when it is classifier, infer the datatype from label columns
|
357
353
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
358
354
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
359
|
-
label_cols_signatures = [
|
355
|
+
label_cols_signatures = [
|
356
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
357
|
+
]
|
360
358
|
if len(label_cols_signatures) == 0:
|
361
359
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
362
360
|
raise exceptions.SnowflakeMLException(
|
@@ -364,25 +362,22 @@ class BernoulliNB(BaseTransformer):
|
|
364
362
|
original_exception=ValueError(error_str),
|
365
363
|
)
|
366
364
|
|
367
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
368
|
-
label_cols_signatures[0].as_snowpark_type()
|
369
|
-
)
|
365
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
370
366
|
|
371
367
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
372
|
-
assert isinstance(
|
368
|
+
assert isinstance(
|
369
|
+
dataset._session, Session
|
370
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
373
371
|
|
374
372
|
transform_kwargs = dict(
|
375
|
-
session
|
376
|
-
dependencies
|
377
|
-
drop_input_cols
|
378
|
-
expected_output_cols_type
|
373
|
+
session=dataset._session,
|
374
|
+
dependencies=self._deps,
|
375
|
+
drop_input_cols=self._drop_input_cols,
|
376
|
+
expected_output_cols_type=expected_type_inferred,
|
379
377
|
)
|
380
378
|
|
381
379
|
elif isinstance(dataset, pd.DataFrame):
|
382
|
-
transform_kwargs = dict(
|
383
|
-
snowpark_input_cols = self._snowpark_cols,
|
384
|
-
drop_input_cols = self._drop_input_cols
|
385
|
-
)
|
380
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
386
381
|
|
387
382
|
transform_handlers = ModelTransformerBuilder.build(
|
388
383
|
dataset=dataset,
|
@@ -422,7 +417,7 @@ class BernoulliNB(BaseTransformer):
|
|
422
417
|
Transformed dataset.
|
423
418
|
"""
|
424
419
|
super()._check_dataset_type(dataset)
|
425
|
-
inference_method="transform"
|
420
|
+
inference_method = "transform"
|
426
421
|
|
427
422
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
428
423
|
# are specific to the type of dataset used.
|
@@ -459,17 +454,14 @@ class BernoulliNB(BaseTransformer):
|
|
459
454
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
460
455
|
|
461
456
|
transform_kwargs = dict(
|
462
|
-
session
|
463
|
-
dependencies
|
464
|
-
drop_input_cols
|
465
|
-
expected_output_cols_type
|
457
|
+
session=dataset._session,
|
458
|
+
dependencies=self._deps,
|
459
|
+
drop_input_cols=self._drop_input_cols,
|
460
|
+
expected_output_cols_type=expected_dtype,
|
466
461
|
)
|
467
462
|
|
468
463
|
elif isinstance(dataset, pd.DataFrame):
|
469
|
-
transform_kwargs = dict(
|
470
|
-
snowpark_input_cols = self._snowpark_cols,
|
471
|
-
drop_input_cols = self._drop_input_cols
|
472
|
-
)
|
464
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
473
465
|
|
474
466
|
transform_handlers = ModelTransformerBuilder.build(
|
475
467
|
dataset=dataset,
|
@@ -488,7 +480,11 @@ class BernoulliNB(BaseTransformer):
|
|
488
480
|
return output_df
|
489
481
|
|
490
482
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
491
|
-
def fit_predict(
|
483
|
+
def fit_predict(
|
484
|
+
self,
|
485
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
486
|
+
output_cols_prefix: str = "fit_predict_",
|
487
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
492
488
|
""" Method not supported for this class.
|
493
489
|
|
494
490
|
|
@@ -513,7 +509,9 @@ class BernoulliNB(BaseTransformer):
|
|
513
509
|
)
|
514
510
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
515
511
|
drop_input_cols=self._drop_input_cols,
|
516
|
-
expected_output_cols_list=
|
512
|
+
expected_output_cols_list=(
|
513
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
514
|
+
),
|
517
515
|
)
|
518
516
|
self._sklearn_object = fitted_estimator
|
519
517
|
self._is_fitted = True
|
@@ -530,6 +528,62 @@ class BernoulliNB(BaseTransformer):
|
|
530
528
|
assert self._sklearn_object is not None
|
531
529
|
return self._sklearn_object.embedding_
|
532
530
|
|
531
|
+
|
532
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
533
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
534
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
535
|
+
"""
|
536
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
537
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
538
|
+
if output_cols:
|
539
|
+
output_cols = [
|
540
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
541
|
+
for c in output_cols
|
542
|
+
]
|
543
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
544
|
+
output_cols = [output_cols_prefix]
|
545
|
+
elif self._sklearn_object is not None:
|
546
|
+
classes = self._sklearn_object.classes_
|
547
|
+
if isinstance(classes, numpy.ndarray):
|
548
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
549
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
550
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
551
|
+
output_cols = []
|
552
|
+
for i, cl in enumerate(classes):
|
553
|
+
# For binary classification, there is only one output column for each class
|
554
|
+
# ndarray as the two classes are complementary.
|
555
|
+
if len(cl) == 2:
|
556
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
557
|
+
else:
|
558
|
+
output_cols.extend([
|
559
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
560
|
+
])
|
561
|
+
else:
|
562
|
+
output_cols = []
|
563
|
+
|
564
|
+
# Make sure column names are valid snowflake identifiers.
|
565
|
+
assert output_cols is not None # Make MyPy happy
|
566
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
567
|
+
|
568
|
+
return rv
|
569
|
+
|
570
|
+
def _align_expected_output_names(
|
571
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
572
|
+
) -> List[str]:
|
573
|
+
# in case the inferred output column names dimension is different
|
574
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
575
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
576
|
+
output_df_columns = list(output_df_pd.columns)
|
577
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
578
|
+
if self.sample_weight_col:
|
579
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
580
|
+
# if the dimension of inferred output column names is correct; use it
|
581
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
582
|
+
return expected_output_cols_list
|
583
|
+
# otherwise, use the sklearn estimator's output
|
584
|
+
else:
|
585
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
586
|
+
|
533
587
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
534
588
|
@telemetry.send_api_usage_telemetry(
|
535
589
|
project=_PROJECT,
|
@@ -562,24 +616,28 @@ class BernoulliNB(BaseTransformer):
|
|
562
616
|
# are specific to the type of dataset used.
|
563
617
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
564
618
|
|
619
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
620
|
+
|
565
621
|
if isinstance(dataset, DataFrame):
|
566
622
|
self._deps = self._batch_inference_validate_snowpark(
|
567
623
|
dataset=dataset,
|
568
624
|
inference_method=inference_method,
|
569
625
|
)
|
570
|
-
assert isinstance(
|
626
|
+
assert isinstance(
|
627
|
+
dataset._session, Session
|
628
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
571
629
|
transform_kwargs = dict(
|
572
630
|
session=dataset._session,
|
573
631
|
dependencies=self._deps,
|
574
|
-
drop_input_cols
|
632
|
+
drop_input_cols=self._drop_input_cols,
|
575
633
|
expected_output_cols_type="float",
|
576
634
|
)
|
635
|
+
expected_output_cols = self._align_expected_output_names(
|
636
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
637
|
+
)
|
577
638
|
|
578
639
|
elif isinstance(dataset, pd.DataFrame):
|
579
|
-
transform_kwargs = dict(
|
580
|
-
snowpark_input_cols = self._snowpark_cols,
|
581
|
-
drop_input_cols = self._drop_input_cols
|
582
|
-
)
|
640
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
583
641
|
|
584
642
|
transform_handlers = ModelTransformerBuilder.build(
|
585
643
|
dataset=dataset,
|
@@ -591,7 +649,7 @@ class BernoulliNB(BaseTransformer):
|
|
591
649
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
592
650
|
inference_method=inference_method,
|
593
651
|
input_cols=self.input_cols,
|
594
|
-
expected_output_cols=
|
652
|
+
expected_output_cols=expected_output_cols,
|
595
653
|
**transform_kwargs
|
596
654
|
)
|
597
655
|
return output_df
|
@@ -623,7 +681,8 @@ class BernoulliNB(BaseTransformer):
|
|
623
681
|
Output dataset with log probability of the sample for each class in the model.
|
624
682
|
"""
|
625
683
|
super()._check_dataset_type(dataset)
|
626
|
-
inference_method="predict_log_proba"
|
684
|
+
inference_method = "predict_log_proba"
|
685
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
627
686
|
|
628
687
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
629
688
|
# are specific to the type of dataset used.
|
@@ -634,18 +693,20 @@ class BernoulliNB(BaseTransformer):
|
|
634
693
|
dataset=dataset,
|
635
694
|
inference_method=inference_method,
|
636
695
|
)
|
637
|
-
assert isinstance(
|
696
|
+
assert isinstance(
|
697
|
+
dataset._session, Session
|
698
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
638
699
|
transform_kwargs = dict(
|
639
700
|
session=dataset._session,
|
640
701
|
dependencies=self._deps,
|
641
|
-
drop_input_cols
|
702
|
+
drop_input_cols=self._drop_input_cols,
|
642
703
|
expected_output_cols_type="float",
|
643
704
|
)
|
705
|
+
expected_output_cols = self._align_expected_output_names(
|
706
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
707
|
+
)
|
644
708
|
elif isinstance(dataset, pd.DataFrame):
|
645
|
-
transform_kwargs = dict(
|
646
|
-
snowpark_input_cols = self._snowpark_cols,
|
647
|
-
drop_input_cols = self._drop_input_cols
|
648
|
-
)
|
709
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
649
710
|
|
650
711
|
transform_handlers = ModelTransformerBuilder.build(
|
651
712
|
dataset=dataset,
|
@@ -658,7 +719,7 @@ class BernoulliNB(BaseTransformer):
|
|
658
719
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
659
720
|
inference_method=inference_method,
|
660
721
|
input_cols=self.input_cols,
|
661
|
-
expected_output_cols=
|
722
|
+
expected_output_cols=expected_output_cols,
|
662
723
|
**transform_kwargs
|
663
724
|
)
|
664
725
|
return output_df
|
@@ -684,30 +745,34 @@ class BernoulliNB(BaseTransformer):
|
|
684
745
|
Output dataset with results of the decision function for the samples in input dataset.
|
685
746
|
"""
|
686
747
|
super()._check_dataset_type(dataset)
|
687
|
-
inference_method="decision_function"
|
748
|
+
inference_method = "decision_function"
|
688
749
|
|
689
750
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
690
751
|
# are specific to the type of dataset used.
|
691
752
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
692
753
|
|
754
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
755
|
+
|
693
756
|
if isinstance(dataset, DataFrame):
|
694
757
|
self._deps = self._batch_inference_validate_snowpark(
|
695
758
|
dataset=dataset,
|
696
759
|
inference_method=inference_method,
|
697
760
|
)
|
698
|
-
assert isinstance(
|
761
|
+
assert isinstance(
|
762
|
+
dataset._session, Session
|
763
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
699
764
|
transform_kwargs = dict(
|
700
765
|
session=dataset._session,
|
701
766
|
dependencies=self._deps,
|
702
|
-
drop_input_cols
|
767
|
+
drop_input_cols=self._drop_input_cols,
|
703
768
|
expected_output_cols_type="float",
|
704
769
|
)
|
770
|
+
expected_output_cols = self._align_expected_output_names(
|
771
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
772
|
+
)
|
705
773
|
|
706
774
|
elif isinstance(dataset, pd.DataFrame):
|
707
|
-
transform_kwargs = dict(
|
708
|
-
snowpark_input_cols = self._snowpark_cols,
|
709
|
-
drop_input_cols = self._drop_input_cols
|
710
|
-
)
|
775
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
711
776
|
|
712
777
|
transform_handlers = ModelTransformerBuilder.build(
|
713
778
|
dataset=dataset,
|
@@ -720,7 +785,7 @@ class BernoulliNB(BaseTransformer):
|
|
720
785
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
721
786
|
inference_method=inference_method,
|
722
787
|
input_cols=self.input_cols,
|
723
|
-
expected_output_cols=
|
788
|
+
expected_output_cols=expected_output_cols,
|
724
789
|
**transform_kwargs
|
725
790
|
)
|
726
791
|
return output_df
|
@@ -749,12 +814,14 @@ class BernoulliNB(BaseTransformer):
|
|
749
814
|
Output dataset with probability of the sample for each class in the model.
|
750
815
|
"""
|
751
816
|
super()._check_dataset_type(dataset)
|
752
|
-
inference_method="score_samples"
|
817
|
+
inference_method = "score_samples"
|
753
818
|
|
754
819
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
755
820
|
# are specific to the type of dataset used.
|
756
821
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
757
822
|
|
823
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
824
|
+
|
758
825
|
if isinstance(dataset, DataFrame):
|
759
826
|
self._deps = self._batch_inference_validate_snowpark(
|
760
827
|
dataset=dataset,
|
@@ -767,6 +834,9 @@ class BernoulliNB(BaseTransformer):
|
|
767
834
|
drop_input_cols = self._drop_input_cols,
|
768
835
|
expected_output_cols_type="float",
|
769
836
|
)
|
837
|
+
expected_output_cols = self._align_expected_output_names(
|
838
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
839
|
+
)
|
770
840
|
|
771
841
|
elif isinstance(dataset, pd.DataFrame):
|
772
842
|
transform_kwargs = dict(
|
@@ -785,7 +855,7 @@ class BernoulliNB(BaseTransformer):
|
|
785
855
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
786
856
|
inference_method=inference_method,
|
787
857
|
input_cols=self.input_cols,
|
788
|
-
expected_output_cols=
|
858
|
+
expected_output_cols=expected_output_cols,
|
789
859
|
**transform_kwargs
|
790
860
|
)
|
791
861
|
return output_df
|
@@ -932,50 +1002,84 @@ class BernoulliNB(BaseTransformer):
|
|
932
1002
|
)
|
933
1003
|
return output_df
|
934
1004
|
|
1005
|
+
|
1006
|
+
|
1007
|
+
def to_sklearn(self) -> Any:
|
1008
|
+
"""Get sklearn.naive_bayes.BernoulliNB object.
|
1009
|
+
"""
|
1010
|
+
if self._sklearn_object is None:
|
1011
|
+
self._sklearn_object = self._create_sklearn_object()
|
1012
|
+
return self._sklearn_object
|
1013
|
+
|
1014
|
+
def to_xgboost(self) -> Any:
|
1015
|
+
raise exceptions.SnowflakeMLException(
|
1016
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1017
|
+
original_exception=AttributeError(
|
1018
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1019
|
+
"to_xgboost()",
|
1020
|
+
"to_sklearn()"
|
1021
|
+
)
|
1022
|
+
),
|
1023
|
+
)
|
1024
|
+
|
1025
|
+
def to_lightgbm(self) -> Any:
|
1026
|
+
raise exceptions.SnowflakeMLException(
|
1027
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1028
|
+
original_exception=AttributeError(
|
1029
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1030
|
+
"to_lightgbm()",
|
1031
|
+
"to_sklearn()"
|
1032
|
+
)
|
1033
|
+
),
|
1034
|
+
)
|
935
1035
|
|
936
|
-
def
|
1036
|
+
def _get_dependencies(self) -> List[str]:
|
1037
|
+
return self._deps
|
1038
|
+
|
1039
|
+
|
1040
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
937
1041
|
self._model_signature_dict = dict()
|
938
1042
|
|
939
1043
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
940
1044
|
|
941
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1045
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
942
1046
|
outputs: List[BaseFeatureSpec] = []
|
943
1047
|
if hasattr(self, "predict"):
|
944
1048
|
# keep mypy happy
|
945
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1049
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
946
1050
|
# For classifier, the type of predict is the same as the type of label
|
947
|
-
if self._sklearn_object._estimator_type ==
|
948
|
-
|
1051
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1052
|
+
# label columns is the desired type for output
|
949
1053
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
950
1054
|
# rename the output columns
|
951
1055
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
952
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
953
|
-
|
954
|
-
|
1056
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1057
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1058
|
+
)
|
955
1059
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
956
1060
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
957
|
-
# Clusterer returns int64 cluster labels.
|
1061
|
+
# Clusterer returns int64 cluster labels.
|
958
1062
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
959
1063
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
960
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
961
|
-
|
962
|
-
|
963
|
-
|
1064
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1065
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1066
|
+
)
|
1067
|
+
|
964
1068
|
# For regressor, the type of predict is float64
|
965
|
-
elif self._sklearn_object._estimator_type ==
|
1069
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
966
1070
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
967
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
968
|
-
|
969
|
-
|
970
|
-
|
1071
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1072
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1073
|
+
)
|
1074
|
+
|
971
1075
|
for prob_func in PROB_FUNCTIONS:
|
972
1076
|
if hasattr(self, prob_func):
|
973
1077
|
output_cols_prefix: str = f"{prob_func}_"
|
974
1078
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
975
1079
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
976
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
977
|
-
|
978
|
-
|
1080
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1081
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1082
|
+
)
|
979
1083
|
|
980
1084
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
981
1085
|
items = list(self._model_signature_dict.items())
|
@@ -988,10 +1092,10 @@ class BernoulliNB(BaseTransformer):
|
|
988
1092
|
"""Returns model signature of current class.
|
989
1093
|
|
990
1094
|
Raises:
|
991
|
-
|
1095
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
992
1096
|
|
993
1097
|
Returns:
|
994
|
-
Dict
|
1098
|
+
Dict with each method and its input output signature
|
995
1099
|
"""
|
996
1100
|
if self._model_signature_dict is None:
|
997
1101
|
raise exceptions.SnowflakeMLException(
|
@@ -999,35 +1103,3 @@ class BernoulliNB(BaseTransformer):
|
|
999
1103
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1000
1104
|
)
|
1001
1105
|
return self._model_signature_dict
|
1002
|
-
|
1003
|
-
def to_sklearn(self) -> Any:
|
1004
|
-
"""Get sklearn.naive_bayes.BernoulliNB object.
|
1005
|
-
"""
|
1006
|
-
if self._sklearn_object is None:
|
1007
|
-
self._sklearn_object = self._create_sklearn_object()
|
1008
|
-
return self._sklearn_object
|
1009
|
-
|
1010
|
-
def to_xgboost(self) -> Any:
|
1011
|
-
raise exceptions.SnowflakeMLException(
|
1012
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1013
|
-
original_exception=AttributeError(
|
1014
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1015
|
-
"to_xgboost()",
|
1016
|
-
"to_sklearn()"
|
1017
|
-
)
|
1018
|
-
),
|
1019
|
-
)
|
1020
|
-
|
1021
|
-
def to_lightgbm(self) -> Any:
|
1022
|
-
raise exceptions.SnowflakeMLException(
|
1023
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1024
|
-
original_exception=AttributeError(
|
1025
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1026
|
-
"to_lightgbm()",
|
1027
|
-
"to_sklearn()"
|
1028
|
-
)
|
1029
|
-
),
|
1030
|
-
)
|
1031
|
-
|
1032
|
-
def _get_dependencies(self) -> List[str]:
|
1033
|
-
return self._deps
|