snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -248,12 +247,7 @@ class RidgeClassifierCV(BaseTransformer):
248
247
  )
249
248
  return selected_cols
250
249
 
251
- @telemetry.send_api_usage_telemetry(
252
- project=_PROJECT,
253
- subproject=_SUBPROJECT,
254
- custom_tags=dict([("autogen", True)]),
255
- )
256
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
250
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
257
251
  """Fit Ridge classifier with cv
258
252
  For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.fit]
259
253
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html#sklearn.linear_model.RidgeClassifierCV.fit)
@@ -280,12 +274,14 @@ class RidgeClassifierCV(BaseTransformer):
280
274
 
281
275
  self._snowpark_cols = dataset.select(self.input_cols).columns
282
276
 
283
- # If we are already in a stored procedure, no need to kick off another one.
277
+ # If we are already in a stored procedure, no need to kick off another one.
284
278
  if SNOWML_SPROC_ENV in os.environ:
285
279
  statement_params = telemetry.get_function_usage_statement_params(
286
280
  project=_PROJECT,
287
281
  subproject=_SUBPROJECT,
288
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
282
+ function_name=telemetry.get_statement_params_full_func_name(
283
+ inspect.currentframe(), RidgeClassifierCV.__class__.__name__
284
+ ),
289
285
  api_calls=[Session.call],
290
286
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
291
287
  )
@@ -306,7 +302,7 @@ class RidgeClassifierCV(BaseTransformer):
306
302
  )
307
303
  self._sklearn_object = model_trainer.train()
308
304
  self._is_fitted = True
309
- self._get_model_signatures(dataset)
305
+ self._generate_model_signatures(dataset)
310
306
  return self
311
307
 
312
308
  def _batch_inference_validate_snowpark(
@@ -382,7 +378,9 @@ class RidgeClassifierCV(BaseTransformer):
382
378
  # when it is classifier, infer the datatype from label columns
383
379
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
384
380
  # Batch inference takes a single expected output column type. Use the first columns type for now.
385
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
381
+ label_cols_signatures = [
382
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
383
+ ]
386
384
  if len(label_cols_signatures) == 0:
387
385
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
388
386
  raise exceptions.SnowflakeMLException(
@@ -390,25 +388,22 @@ class RidgeClassifierCV(BaseTransformer):
390
388
  original_exception=ValueError(error_str),
391
389
  )
392
390
 
393
- expected_type_inferred = convert_sp_to_sf_type(
394
- label_cols_signatures[0].as_snowpark_type()
395
- )
391
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
396
392
 
397
393
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
394
+ assert isinstance(
395
+ dataset._session, Session
396
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
397
 
400
398
  transform_kwargs = dict(
401
- session = dataset._session,
402
- dependencies = self._deps,
403
- drop_input_cols = self._drop_input_cols,
404
- expected_output_cols_type = expected_type_inferred,
399
+ session=dataset._session,
400
+ dependencies=self._deps,
401
+ drop_input_cols=self._drop_input_cols,
402
+ expected_output_cols_type=expected_type_inferred,
405
403
  )
406
404
 
407
405
  elif isinstance(dataset, pd.DataFrame):
408
- transform_kwargs = dict(
409
- snowpark_input_cols = self._snowpark_cols,
410
- drop_input_cols = self._drop_input_cols
411
- )
406
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
412
407
 
413
408
  transform_handlers = ModelTransformerBuilder.build(
414
409
  dataset=dataset,
@@ -448,7 +443,7 @@ class RidgeClassifierCV(BaseTransformer):
448
443
  Transformed dataset.
449
444
  """
450
445
  super()._check_dataset_type(dataset)
451
- inference_method="transform"
446
+ inference_method = "transform"
452
447
 
453
448
  # This dictionary contains optional kwargs for batch inference. These kwargs
454
449
  # are specific to the type of dataset used.
@@ -485,17 +480,14 @@ class RidgeClassifierCV(BaseTransformer):
485
480
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
486
481
 
487
482
  transform_kwargs = dict(
488
- session = dataset._session,
489
- dependencies = self._deps,
490
- drop_input_cols = self._drop_input_cols,
491
- expected_output_cols_type = expected_dtype,
483
+ session=dataset._session,
484
+ dependencies=self._deps,
485
+ drop_input_cols=self._drop_input_cols,
486
+ expected_output_cols_type=expected_dtype,
492
487
  )
493
488
 
494
489
  elif isinstance(dataset, pd.DataFrame):
495
- transform_kwargs = dict(
496
- snowpark_input_cols = self._snowpark_cols,
497
- drop_input_cols = self._drop_input_cols
498
- )
490
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
499
491
 
500
492
  transform_handlers = ModelTransformerBuilder.build(
501
493
  dataset=dataset,
@@ -514,7 +506,11 @@ class RidgeClassifierCV(BaseTransformer):
514
506
  return output_df
515
507
 
516
508
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
517
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
509
+ def fit_predict(
510
+ self,
511
+ dataset: Union[DataFrame, pd.DataFrame],
512
+ output_cols_prefix: str = "fit_predict_",
513
+ ) -> Union[DataFrame, pd.DataFrame]:
518
514
  """ Method not supported for this class.
519
515
 
520
516
 
@@ -539,7 +535,9 @@ class RidgeClassifierCV(BaseTransformer):
539
535
  )
540
536
  output_result, fitted_estimator = model_trainer.train_fit_predict(
541
537
  drop_input_cols=self._drop_input_cols,
542
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
538
+ expected_output_cols_list=(
539
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
540
+ ),
543
541
  )
544
542
  self._sklearn_object = fitted_estimator
545
543
  self._is_fitted = True
@@ -556,6 +554,62 @@ class RidgeClassifierCV(BaseTransformer):
556
554
  assert self._sklearn_object is not None
557
555
  return self._sklearn_object.embedding_
558
556
 
557
+
558
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
559
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
560
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
561
+ """
562
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
563
+ # The following condition is introduced for kneighbors methods, and not used in other methods
564
+ if output_cols:
565
+ output_cols = [
566
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
567
+ for c in output_cols
568
+ ]
569
+ elif getattr(self._sklearn_object, "classes_", None) is None:
570
+ output_cols = [output_cols_prefix]
571
+ elif self._sklearn_object is not None:
572
+ classes = self._sklearn_object.classes_
573
+ if isinstance(classes, numpy.ndarray):
574
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
575
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
576
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
577
+ output_cols = []
578
+ for i, cl in enumerate(classes):
579
+ # For binary classification, there is only one output column for each class
580
+ # ndarray as the two classes are complementary.
581
+ if len(cl) == 2:
582
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
583
+ else:
584
+ output_cols.extend([
585
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
586
+ ])
587
+ else:
588
+ output_cols = []
589
+
590
+ # Make sure column names are valid snowflake identifiers.
591
+ assert output_cols is not None # Make MyPy happy
592
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
593
+
594
+ return rv
595
+
596
+ def _align_expected_output_names(
597
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
598
+ ) -> List[str]:
599
+ # in case the inferred output column names dimension is different
600
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
601
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
602
+ output_df_columns = list(output_df_pd.columns)
603
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
604
+ if self.sample_weight_col:
605
+ output_df_columns_set -= set(self.sample_weight_col)
606
+ # if the dimension of inferred output column names is correct; use it
607
+ if len(expected_output_cols_list) == len(output_df_columns_set):
608
+ return expected_output_cols_list
609
+ # otherwise, use the sklearn estimator's output
610
+ else:
611
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
612
+
559
613
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
560
614
  @telemetry.send_api_usage_telemetry(
561
615
  project=_PROJECT,
@@ -586,24 +640,28 @@ class RidgeClassifierCV(BaseTransformer):
586
640
  # are specific to the type of dataset used.
587
641
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
588
642
 
643
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
644
+
589
645
  if isinstance(dataset, DataFrame):
590
646
  self._deps = self._batch_inference_validate_snowpark(
591
647
  dataset=dataset,
592
648
  inference_method=inference_method,
593
649
  )
594
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
650
+ assert isinstance(
651
+ dataset._session, Session
652
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
595
653
  transform_kwargs = dict(
596
654
  session=dataset._session,
597
655
  dependencies=self._deps,
598
- drop_input_cols = self._drop_input_cols,
656
+ drop_input_cols=self._drop_input_cols,
599
657
  expected_output_cols_type="float",
600
658
  )
659
+ expected_output_cols = self._align_expected_output_names(
660
+ inference_method, dataset, expected_output_cols, output_cols_prefix
661
+ )
601
662
 
602
663
  elif isinstance(dataset, pd.DataFrame):
603
- transform_kwargs = dict(
604
- snowpark_input_cols = self._snowpark_cols,
605
- drop_input_cols = self._drop_input_cols
606
- )
664
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
607
665
 
608
666
  transform_handlers = ModelTransformerBuilder.build(
609
667
  dataset=dataset,
@@ -615,7 +673,7 @@ class RidgeClassifierCV(BaseTransformer):
615
673
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
616
674
  inference_method=inference_method,
617
675
  input_cols=self.input_cols,
618
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
676
+ expected_output_cols=expected_output_cols,
619
677
  **transform_kwargs
620
678
  )
621
679
  return output_df
@@ -645,7 +703,8 @@ class RidgeClassifierCV(BaseTransformer):
645
703
  Output dataset with log probability of the sample for each class in the model.
646
704
  """
647
705
  super()._check_dataset_type(dataset)
648
- inference_method="predict_log_proba"
706
+ inference_method = "predict_log_proba"
707
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
649
708
 
650
709
  # This dictionary contains optional kwargs for batch inference. These kwargs
651
710
  # are specific to the type of dataset used.
@@ -656,18 +715,20 @@ class RidgeClassifierCV(BaseTransformer):
656
715
  dataset=dataset,
657
716
  inference_method=inference_method,
658
717
  )
659
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
718
+ assert isinstance(
719
+ dataset._session, Session
720
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
721
  transform_kwargs = dict(
661
722
  session=dataset._session,
662
723
  dependencies=self._deps,
663
- drop_input_cols = self._drop_input_cols,
724
+ drop_input_cols=self._drop_input_cols,
664
725
  expected_output_cols_type="float",
665
726
  )
727
+ expected_output_cols = self._align_expected_output_names(
728
+ inference_method, dataset, expected_output_cols, output_cols_prefix
729
+ )
666
730
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
731
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
732
 
672
733
  transform_handlers = ModelTransformerBuilder.build(
673
734
  dataset=dataset,
@@ -680,7 +741,7 @@ class RidgeClassifierCV(BaseTransformer):
680
741
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
681
742
  inference_method=inference_method,
682
743
  input_cols=self.input_cols,
683
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
744
+ expected_output_cols=expected_output_cols,
684
745
  **transform_kwargs
685
746
  )
686
747
  return output_df
@@ -708,30 +769,34 @@ class RidgeClassifierCV(BaseTransformer):
708
769
  Output dataset with results of the decision function for the samples in input dataset.
709
770
  """
710
771
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
772
+ inference_method = "decision_function"
712
773
 
713
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
775
  # are specific to the type of dataset used.
715
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
777
 
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
779
+
717
780
  if isinstance(dataset, DataFrame):
718
781
  self._deps = self._batch_inference_validate_snowpark(
719
782
  dataset=dataset,
720
783
  inference_method=inference_method,
721
784
  )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
+ assert isinstance(
786
+ dataset._session, Session
787
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
788
  transform_kwargs = dict(
724
789
  session=dataset._session,
725
790
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
791
+ drop_input_cols=self._drop_input_cols,
727
792
  expected_output_cols_type="float",
728
793
  )
794
+ expected_output_cols = self._align_expected_output_names(
795
+ inference_method, dataset, expected_output_cols, output_cols_prefix
796
+ )
729
797
 
730
798
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
799
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
800
 
736
801
  transform_handlers = ModelTransformerBuilder.build(
737
802
  dataset=dataset,
@@ -744,7 +809,7 @@ class RidgeClassifierCV(BaseTransformer):
744
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
810
  inference_method=inference_method,
746
811
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
748
813
  **transform_kwargs
749
814
  )
750
815
  return output_df
@@ -773,12 +838,14 @@ class RidgeClassifierCV(BaseTransformer):
773
838
  Output dataset with probability of the sample for each class in the model.
774
839
  """
775
840
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
841
+ inference_method = "score_samples"
777
842
 
778
843
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
844
  # are specific to the type of dataset used.
780
845
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
846
 
847
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
848
+
782
849
  if isinstance(dataset, DataFrame):
783
850
  self._deps = self._batch_inference_validate_snowpark(
784
851
  dataset=dataset,
@@ -791,6 +858,9 @@ class RidgeClassifierCV(BaseTransformer):
791
858
  drop_input_cols = self._drop_input_cols,
792
859
  expected_output_cols_type="float",
793
860
  )
861
+ expected_output_cols = self._align_expected_output_names(
862
+ inference_method, dataset, expected_output_cols, output_cols_prefix
863
+ )
794
864
 
795
865
  elif isinstance(dataset, pd.DataFrame):
796
866
  transform_kwargs = dict(
@@ -809,7 +879,7 @@ class RidgeClassifierCV(BaseTransformer):
809
879
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
880
  inference_method=inference_method,
811
881
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
882
+ expected_output_cols=expected_output_cols,
813
883
  **transform_kwargs
814
884
  )
815
885
  return output_df
@@ -956,50 +1026,84 @@ class RidgeClassifierCV(BaseTransformer):
956
1026
  )
957
1027
  return output_df
958
1028
 
1029
+
1030
+
1031
+ def to_sklearn(self) -> Any:
1032
+ """Get sklearn.linear_model.RidgeClassifierCV object.
1033
+ """
1034
+ if self._sklearn_object is None:
1035
+ self._sklearn_object = self._create_sklearn_object()
1036
+ return self._sklearn_object
1037
+
1038
+ def to_xgboost(self) -> Any:
1039
+ raise exceptions.SnowflakeMLException(
1040
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1041
+ original_exception=AttributeError(
1042
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1043
+ "to_xgboost()",
1044
+ "to_sklearn()"
1045
+ )
1046
+ ),
1047
+ )
1048
+
1049
+ def to_lightgbm(self) -> Any:
1050
+ raise exceptions.SnowflakeMLException(
1051
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1052
+ original_exception=AttributeError(
1053
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
+ "to_lightgbm()",
1055
+ "to_sklearn()"
1056
+ )
1057
+ ),
1058
+ )
959
1059
 
960
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1060
+ def _get_dependencies(self) -> List[str]:
1061
+ return self._deps
1062
+
1063
+
1064
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
961
1065
  self._model_signature_dict = dict()
962
1066
 
963
1067
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
964
1068
 
965
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1069
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
966
1070
  outputs: List[BaseFeatureSpec] = []
967
1071
  if hasattr(self, "predict"):
968
1072
  # keep mypy happy
969
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1073
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
970
1074
  # For classifier, the type of predict is the same as the type of label
971
- if self._sklearn_object._estimator_type == 'classifier':
972
- # label columns is the desired type for output
1075
+ if self._sklearn_object._estimator_type == "classifier":
1076
+ # label columns is the desired type for output
973
1077
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
974
1078
  # rename the output columns
975
1079
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
1080
+ self._model_signature_dict["predict"] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
979
1083
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
980
1084
  # For outlier models, returns -1 for outliers and 1 for inliers.
981
- # Clusterer returns int64 cluster labels.
1085
+ # Clusterer returns int64 cluster labels.
982
1086
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
983
1087
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
1091
+
988
1092
  # For regressor, the type of predict is float64
989
- elif self._sklearn_object._estimator_type == 'regressor':
1093
+ elif self._sklearn_object._estimator_type == "regressor":
990
1094
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
1098
+
995
1099
  for prob_func in PROB_FUNCTIONS:
996
1100
  if hasattr(self, prob_func):
997
1101
  output_cols_prefix: str = f"{prob_func}_"
998
1102
  output_column_names = self._get_output_column_names(output_cols_prefix)
999
1103
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1000
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1104
+ self._model_signature_dict[prob_func] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1003
1107
 
1004
1108
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1005
1109
  items = list(self._model_signature_dict.items())
@@ -1012,10 +1116,10 @@ class RidgeClassifierCV(BaseTransformer):
1012
1116
  """Returns model signature of current class.
1013
1117
 
1014
1118
  Raises:
1015
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1119
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1016
1120
 
1017
1121
  Returns:
1018
- Dict[str, ModelSignature]: each method and its input output signature
1122
+ Dict with each method and its input output signature
1019
1123
  """
1020
1124
  if self._model_signature_dict is None:
1021
1125
  raise exceptions.SnowflakeMLException(
@@ -1023,35 +1127,3 @@ class RidgeClassifierCV(BaseTransformer):
1023
1127
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1024
1128
  )
1025
1129
  return self._model_signature_dict
1026
-
1027
- def to_sklearn(self) -> Any:
1028
- """Get sklearn.linear_model.RidgeClassifierCV object.
1029
- """
1030
- if self._sklearn_object is None:
1031
- self._sklearn_object = self._create_sklearn_object()
1032
- return self._sklearn_object
1033
-
1034
- def to_xgboost(self) -> Any:
1035
- raise exceptions.SnowflakeMLException(
1036
- error_code=error_codes.METHOD_NOT_ALLOWED,
1037
- original_exception=AttributeError(
1038
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
- "to_xgboost()",
1040
- "to_sklearn()"
1041
- )
1042
- ),
1043
- )
1044
-
1045
- def to_lightgbm(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_lightgbm()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def _get_dependencies(self) -> List[str]:
1057
- return self._deps