snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -244,12 +243,7 @@ class KernelRidge(BaseTransformer):
244
243
  )
245
244
  return selected_cols
246
245
 
247
- @telemetry.send_api_usage_telemetry(
248
- project=_PROJECT,
249
- subproject=_SUBPROJECT,
250
- custom_tags=dict([("autogen", True)]),
251
- )
252
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
246
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
253
247
  """Fit Kernel Ridge regression model
254
248
  For more details on this function, see [sklearn.kernel_ridge.KernelRidge.fit]
255
249
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html#sklearn.kernel_ridge.KernelRidge.fit)
@@ -276,12 +270,14 @@ class KernelRidge(BaseTransformer):
276
270
 
277
271
  self._snowpark_cols = dataset.select(self.input_cols).columns
278
272
 
279
- # If we are already in a stored procedure, no need to kick off another one.
273
+ # If we are already in a stored procedure, no need to kick off another one.
280
274
  if SNOWML_SPROC_ENV in os.environ:
281
275
  statement_params = telemetry.get_function_usage_statement_params(
282
276
  project=_PROJECT,
283
277
  subproject=_SUBPROJECT,
284
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelRidge.__class__.__name__),
278
+ function_name=telemetry.get_statement_params_full_func_name(
279
+ inspect.currentframe(), KernelRidge.__class__.__name__
280
+ ),
285
281
  api_calls=[Session.call],
286
282
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
287
283
  )
@@ -302,7 +298,7 @@ class KernelRidge(BaseTransformer):
302
298
  )
303
299
  self._sklearn_object = model_trainer.train()
304
300
  self._is_fitted = True
305
- self._get_model_signatures(dataset)
301
+ self._generate_model_signatures(dataset)
306
302
  return self
307
303
 
308
304
  def _batch_inference_validate_snowpark(
@@ -378,7 +374,9 @@ class KernelRidge(BaseTransformer):
378
374
  # when it is classifier, infer the datatype from label columns
379
375
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
380
376
  # Batch inference takes a single expected output column type. Use the first columns type for now.
381
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
377
+ label_cols_signatures = [
378
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
379
+ ]
382
380
  if len(label_cols_signatures) == 0:
383
381
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
384
382
  raise exceptions.SnowflakeMLException(
@@ -386,25 +384,22 @@ class KernelRidge(BaseTransformer):
386
384
  original_exception=ValueError(error_str),
387
385
  )
388
386
 
389
- expected_type_inferred = convert_sp_to_sf_type(
390
- label_cols_signatures[0].as_snowpark_type()
391
- )
387
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
392
388
 
393
389
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
394
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
390
+ assert isinstance(
391
+ dataset._session, Session
392
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
393
 
396
394
  transform_kwargs = dict(
397
- session = dataset._session,
398
- dependencies = self._deps,
399
- drop_input_cols = self._drop_input_cols,
400
- expected_output_cols_type = expected_type_inferred,
395
+ session=dataset._session,
396
+ dependencies=self._deps,
397
+ drop_input_cols=self._drop_input_cols,
398
+ expected_output_cols_type=expected_type_inferred,
401
399
  )
402
400
 
403
401
  elif isinstance(dataset, pd.DataFrame):
404
- transform_kwargs = dict(
405
- snowpark_input_cols = self._snowpark_cols,
406
- drop_input_cols = self._drop_input_cols
407
- )
402
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
408
403
 
409
404
  transform_handlers = ModelTransformerBuilder.build(
410
405
  dataset=dataset,
@@ -444,7 +439,7 @@ class KernelRidge(BaseTransformer):
444
439
  Transformed dataset.
445
440
  """
446
441
  super()._check_dataset_type(dataset)
447
- inference_method="transform"
442
+ inference_method = "transform"
448
443
 
449
444
  # This dictionary contains optional kwargs for batch inference. These kwargs
450
445
  # are specific to the type of dataset used.
@@ -481,17 +476,14 @@ class KernelRidge(BaseTransformer):
481
476
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
482
477
 
483
478
  transform_kwargs = dict(
484
- session = dataset._session,
485
- dependencies = self._deps,
486
- drop_input_cols = self._drop_input_cols,
487
- expected_output_cols_type = expected_dtype,
479
+ session=dataset._session,
480
+ dependencies=self._deps,
481
+ drop_input_cols=self._drop_input_cols,
482
+ expected_output_cols_type=expected_dtype,
488
483
  )
489
484
 
490
485
  elif isinstance(dataset, pd.DataFrame):
491
- transform_kwargs = dict(
492
- snowpark_input_cols = self._snowpark_cols,
493
- drop_input_cols = self._drop_input_cols
494
- )
486
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
495
487
 
496
488
  transform_handlers = ModelTransformerBuilder.build(
497
489
  dataset=dataset,
@@ -510,7 +502,11 @@ class KernelRidge(BaseTransformer):
510
502
  return output_df
511
503
 
512
504
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
513
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
505
+ def fit_predict(
506
+ self,
507
+ dataset: Union[DataFrame, pd.DataFrame],
508
+ output_cols_prefix: str = "fit_predict_",
509
+ ) -> Union[DataFrame, pd.DataFrame]:
514
510
  """ Method not supported for this class.
515
511
 
516
512
 
@@ -535,7 +531,9 @@ class KernelRidge(BaseTransformer):
535
531
  )
536
532
  output_result, fitted_estimator = model_trainer.train_fit_predict(
537
533
  drop_input_cols=self._drop_input_cols,
538
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
534
+ expected_output_cols_list=(
535
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
536
+ ),
539
537
  )
540
538
  self._sklearn_object = fitted_estimator
541
539
  self._is_fitted = True
@@ -552,6 +550,62 @@ class KernelRidge(BaseTransformer):
552
550
  assert self._sklearn_object is not None
553
551
  return self._sklearn_object.embedding_
554
552
 
553
+
554
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
555
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
556
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
557
+ """
558
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
559
+ # The following condition is introduced for kneighbors methods, and not used in other methods
560
+ if output_cols:
561
+ output_cols = [
562
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
563
+ for c in output_cols
564
+ ]
565
+ elif getattr(self._sklearn_object, "classes_", None) is None:
566
+ output_cols = [output_cols_prefix]
567
+ elif self._sklearn_object is not None:
568
+ classes = self._sklearn_object.classes_
569
+ if isinstance(classes, numpy.ndarray):
570
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
571
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
572
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
573
+ output_cols = []
574
+ for i, cl in enumerate(classes):
575
+ # For binary classification, there is only one output column for each class
576
+ # ndarray as the two classes are complementary.
577
+ if len(cl) == 2:
578
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
579
+ else:
580
+ output_cols.extend([
581
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
582
+ ])
583
+ else:
584
+ output_cols = []
585
+
586
+ # Make sure column names are valid snowflake identifiers.
587
+ assert output_cols is not None # Make MyPy happy
588
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
589
+
590
+ return rv
591
+
592
+ def _align_expected_output_names(
593
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
594
+ ) -> List[str]:
595
+ # in case the inferred output column names dimension is different
596
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
597
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
598
+ output_df_columns = list(output_df_pd.columns)
599
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
600
+ if self.sample_weight_col:
601
+ output_df_columns_set -= set(self.sample_weight_col)
602
+ # if the dimension of inferred output column names is correct; use it
603
+ if len(expected_output_cols_list) == len(output_df_columns_set):
604
+ return expected_output_cols_list
605
+ # otherwise, use the sklearn estimator's output
606
+ else:
607
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
608
+
555
609
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
556
610
  @telemetry.send_api_usage_telemetry(
557
611
  project=_PROJECT,
@@ -582,24 +636,28 @@ class KernelRidge(BaseTransformer):
582
636
  # are specific to the type of dataset used.
583
637
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
584
638
 
639
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
640
+
585
641
  if isinstance(dataset, DataFrame):
586
642
  self._deps = self._batch_inference_validate_snowpark(
587
643
  dataset=dataset,
588
644
  inference_method=inference_method,
589
645
  )
590
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
646
+ assert isinstance(
647
+ dataset._session, Session
648
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
591
649
  transform_kwargs = dict(
592
650
  session=dataset._session,
593
651
  dependencies=self._deps,
594
- drop_input_cols = self._drop_input_cols,
652
+ drop_input_cols=self._drop_input_cols,
595
653
  expected_output_cols_type="float",
596
654
  )
655
+ expected_output_cols = self._align_expected_output_names(
656
+ inference_method, dataset, expected_output_cols, output_cols_prefix
657
+ )
597
658
 
598
659
  elif isinstance(dataset, pd.DataFrame):
599
- transform_kwargs = dict(
600
- snowpark_input_cols = self._snowpark_cols,
601
- drop_input_cols = self._drop_input_cols
602
- )
660
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
603
661
 
604
662
  transform_handlers = ModelTransformerBuilder.build(
605
663
  dataset=dataset,
@@ -611,7 +669,7 @@ class KernelRidge(BaseTransformer):
611
669
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
612
670
  inference_method=inference_method,
613
671
  input_cols=self.input_cols,
614
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
672
+ expected_output_cols=expected_output_cols,
615
673
  **transform_kwargs
616
674
  )
617
675
  return output_df
@@ -641,7 +699,8 @@ class KernelRidge(BaseTransformer):
641
699
  Output dataset with log probability of the sample for each class in the model.
642
700
  """
643
701
  super()._check_dataset_type(dataset)
644
- inference_method="predict_log_proba"
702
+ inference_method = "predict_log_proba"
703
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
645
704
 
646
705
  # This dictionary contains optional kwargs for batch inference. These kwargs
647
706
  # are specific to the type of dataset used.
@@ -652,18 +711,20 @@ class KernelRidge(BaseTransformer):
652
711
  dataset=dataset,
653
712
  inference_method=inference_method,
654
713
  )
655
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ assert isinstance(
715
+ dataset._session, Session
716
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
656
717
  transform_kwargs = dict(
657
718
  session=dataset._session,
658
719
  dependencies=self._deps,
659
- drop_input_cols = self._drop_input_cols,
720
+ drop_input_cols=self._drop_input_cols,
660
721
  expected_output_cols_type="float",
661
722
  )
723
+ expected_output_cols = self._align_expected_output_names(
724
+ inference_method, dataset, expected_output_cols, output_cols_prefix
725
+ )
662
726
  elif isinstance(dataset, pd.DataFrame):
663
- transform_kwargs = dict(
664
- snowpark_input_cols = self._snowpark_cols,
665
- drop_input_cols = self._drop_input_cols
666
- )
727
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
667
728
 
668
729
  transform_handlers = ModelTransformerBuilder.build(
669
730
  dataset=dataset,
@@ -676,7 +737,7 @@ class KernelRidge(BaseTransformer):
676
737
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
677
738
  inference_method=inference_method,
678
739
  input_cols=self.input_cols,
679
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
740
+ expected_output_cols=expected_output_cols,
680
741
  **transform_kwargs
681
742
  )
682
743
  return output_df
@@ -702,30 +763,34 @@ class KernelRidge(BaseTransformer):
702
763
  Output dataset with results of the decision function for the samples in input dataset.
703
764
  """
704
765
  super()._check_dataset_type(dataset)
705
- inference_method="decision_function"
766
+ inference_method = "decision_function"
706
767
 
707
768
  # This dictionary contains optional kwargs for batch inference. These kwargs
708
769
  # are specific to the type of dataset used.
709
770
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
710
771
 
772
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
773
+
711
774
  if isinstance(dataset, DataFrame):
712
775
  self._deps = self._batch_inference_validate_snowpark(
713
776
  dataset=dataset,
714
777
  inference_method=inference_method,
715
778
  )
716
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
779
+ assert isinstance(
780
+ dataset._session, Session
781
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
717
782
  transform_kwargs = dict(
718
783
  session=dataset._session,
719
784
  dependencies=self._deps,
720
- drop_input_cols = self._drop_input_cols,
785
+ drop_input_cols=self._drop_input_cols,
721
786
  expected_output_cols_type="float",
722
787
  )
788
+ expected_output_cols = self._align_expected_output_names(
789
+ inference_method, dataset, expected_output_cols, output_cols_prefix
790
+ )
723
791
 
724
792
  elif isinstance(dataset, pd.DataFrame):
725
- transform_kwargs = dict(
726
- snowpark_input_cols = self._snowpark_cols,
727
- drop_input_cols = self._drop_input_cols
728
- )
793
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
729
794
 
730
795
  transform_handlers = ModelTransformerBuilder.build(
731
796
  dataset=dataset,
@@ -738,7 +803,7 @@ class KernelRidge(BaseTransformer):
738
803
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
739
804
  inference_method=inference_method,
740
805
  input_cols=self.input_cols,
741
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
806
+ expected_output_cols=expected_output_cols,
742
807
  **transform_kwargs
743
808
  )
744
809
  return output_df
@@ -767,12 +832,14 @@ class KernelRidge(BaseTransformer):
767
832
  Output dataset with probability of the sample for each class in the model.
768
833
  """
769
834
  super()._check_dataset_type(dataset)
770
- inference_method="score_samples"
835
+ inference_method = "score_samples"
771
836
 
772
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
773
838
  # are specific to the type of dataset used.
774
839
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
775
840
 
841
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
842
+
776
843
  if isinstance(dataset, DataFrame):
777
844
  self._deps = self._batch_inference_validate_snowpark(
778
845
  dataset=dataset,
@@ -785,6 +852,9 @@ class KernelRidge(BaseTransformer):
785
852
  drop_input_cols = self._drop_input_cols,
786
853
  expected_output_cols_type="float",
787
854
  )
855
+ expected_output_cols = self._align_expected_output_names(
856
+ inference_method, dataset, expected_output_cols, output_cols_prefix
857
+ )
788
858
 
789
859
  elif isinstance(dataset, pd.DataFrame):
790
860
  transform_kwargs = dict(
@@ -803,7 +873,7 @@ class KernelRidge(BaseTransformer):
803
873
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
804
874
  inference_method=inference_method,
805
875
  input_cols=self.input_cols,
806
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
876
+ expected_output_cols=expected_output_cols,
807
877
  **transform_kwargs
808
878
  )
809
879
  return output_df
@@ -950,50 +1020,84 @@ class KernelRidge(BaseTransformer):
950
1020
  )
951
1021
  return output_df
952
1022
 
1023
+
1024
+
1025
+ def to_sklearn(self) -> Any:
1026
+ """Get sklearn.kernel_ridge.KernelRidge object.
1027
+ """
1028
+ if self._sklearn_object is None:
1029
+ self._sklearn_object = self._create_sklearn_object()
1030
+ return self._sklearn_object
1031
+
1032
+ def to_xgboost(self) -> Any:
1033
+ raise exceptions.SnowflakeMLException(
1034
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1035
+ original_exception=AttributeError(
1036
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
+ "to_xgboost()",
1038
+ "to_sklearn()"
1039
+ )
1040
+ ),
1041
+ )
1042
+
1043
+ def to_lightgbm(self) -> Any:
1044
+ raise exceptions.SnowflakeMLException(
1045
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1046
+ original_exception=AttributeError(
1047
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
+ "to_lightgbm()",
1049
+ "to_sklearn()"
1050
+ )
1051
+ ),
1052
+ )
953
1053
 
954
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1054
+ def _get_dependencies(self) -> List[str]:
1055
+ return self._deps
1056
+
1057
+
1058
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
955
1059
  self._model_signature_dict = dict()
956
1060
 
957
1061
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
958
1062
 
959
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1063
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
960
1064
  outputs: List[BaseFeatureSpec] = []
961
1065
  if hasattr(self, "predict"):
962
1066
  # keep mypy happy
963
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1067
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
964
1068
  # For classifier, the type of predict is the same as the type of label
965
- if self._sklearn_object._estimator_type == 'classifier':
966
- # label columns is the desired type for output
1069
+ if self._sklearn_object._estimator_type == "classifier":
1070
+ # label columns is the desired type for output
967
1071
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
968
1072
  # rename the output columns
969
1073
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
970
- self._model_signature_dict["predict"] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
1074
+ self._model_signature_dict["predict"] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
973
1077
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
974
1078
  # For outlier models, returns -1 for outliers and 1 for inliers.
975
- # Clusterer returns int64 cluster labels.
1079
+ # Clusterer returns int64 cluster labels.
976
1080
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
977
1081
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
978
- self._model_signature_dict["predict"] = ModelSignature(inputs,
979
- ([] if self._drop_input_cols else inputs)
980
- + outputs)
981
-
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
1085
+
982
1086
  # For regressor, the type of predict is float64
983
- elif self._sklearn_object._estimator_type == 'regressor':
1087
+ elif self._sklearn_object._estimator_type == "regressor":
984
1088
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
985
- self._model_signature_dict["predict"] = ModelSignature(inputs,
986
- ([] if self._drop_input_cols else inputs)
987
- + outputs)
988
-
1089
+ self._model_signature_dict["predict"] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
1092
+
989
1093
  for prob_func in PROB_FUNCTIONS:
990
1094
  if hasattr(self, prob_func):
991
1095
  output_cols_prefix: str = f"{prob_func}_"
992
1096
  output_column_names = self._get_output_column_names(output_cols_prefix)
993
1097
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
994
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
1098
+ self._model_signature_dict[prob_func] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
997
1101
 
998
1102
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
999
1103
  items = list(self._model_signature_dict.items())
@@ -1006,10 +1110,10 @@ class KernelRidge(BaseTransformer):
1006
1110
  """Returns model signature of current class.
1007
1111
 
1008
1112
  Raises:
1009
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1113
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1010
1114
 
1011
1115
  Returns:
1012
- Dict[str, ModelSignature]: each method and its input output signature
1116
+ Dict with each method and its input output signature
1013
1117
  """
1014
1118
  if self._model_signature_dict is None:
1015
1119
  raise exceptions.SnowflakeMLException(
@@ -1017,35 +1121,3 @@ class KernelRidge(BaseTransformer):
1017
1121
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1018
1122
  )
1019
1123
  return self._model_signature_dict
1020
-
1021
- def to_sklearn(self) -> Any:
1022
- """Get sklearn.kernel_ridge.KernelRidge object.
1023
- """
1024
- if self._sklearn_object is None:
1025
- self._sklearn_object = self._create_sklearn_object()
1026
- return self._sklearn_object
1027
-
1028
- def to_xgboost(self) -> Any:
1029
- raise exceptions.SnowflakeMLException(
1030
- error_code=error_codes.METHOD_NOT_ALLOWED,
1031
- original_exception=AttributeError(
1032
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1033
- "to_xgboost()",
1034
- "to_sklearn()"
1035
- )
1036
- ),
1037
- )
1038
-
1039
- def to_lightgbm(self) -> Any:
1040
- raise exceptions.SnowflakeMLException(
1041
- error_code=error_codes.METHOD_NOT_ALLOWED,
1042
- original_exception=AttributeError(
1043
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1044
- "to_lightgbm()",
1045
- "to_sklearn()"
1046
- )
1047
- ),
1048
- )
1049
-
1050
- def _get_dependencies(self) -> List[str]:
1051
- return self._deps