snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -244,12 +243,7 @@ class KernelRidge(BaseTransformer):
|
|
244
243
|
)
|
245
244
|
return selected_cols
|
246
245
|
|
247
|
-
|
248
|
-
project=_PROJECT,
|
249
|
-
subproject=_SUBPROJECT,
|
250
|
-
custom_tags=dict([("autogen", True)]),
|
251
|
-
)
|
252
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
|
246
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
|
253
247
|
"""Fit Kernel Ridge regression model
|
254
248
|
For more details on this function, see [sklearn.kernel_ridge.KernelRidge.fit]
|
255
249
|
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html#sklearn.kernel_ridge.KernelRidge.fit)
|
@@ -276,12 +270,14 @@ class KernelRidge(BaseTransformer):
|
|
276
270
|
|
277
271
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
272
|
|
279
|
-
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
280
274
|
if SNOWML_SPROC_ENV in os.environ:
|
281
275
|
statement_params = telemetry.get_function_usage_statement_params(
|
282
276
|
project=_PROJECT,
|
283
277
|
subproject=_SUBPROJECT,
|
284
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
279
|
+
inspect.currentframe(), KernelRidge.__class__.__name__
|
280
|
+
),
|
285
281
|
api_calls=[Session.call],
|
286
282
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
287
283
|
)
|
@@ -302,7 +298,7 @@ class KernelRidge(BaseTransformer):
|
|
302
298
|
)
|
303
299
|
self._sklearn_object = model_trainer.train()
|
304
300
|
self._is_fitted = True
|
305
|
-
self.
|
301
|
+
self._generate_model_signatures(dataset)
|
306
302
|
return self
|
307
303
|
|
308
304
|
def _batch_inference_validate_snowpark(
|
@@ -378,7 +374,9 @@ class KernelRidge(BaseTransformer):
|
|
378
374
|
# when it is classifier, infer the datatype from label columns
|
379
375
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
380
376
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
381
|
-
label_cols_signatures = [
|
377
|
+
label_cols_signatures = [
|
378
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
379
|
+
]
|
382
380
|
if len(label_cols_signatures) == 0:
|
383
381
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
384
382
|
raise exceptions.SnowflakeMLException(
|
@@ -386,25 +384,22 @@ class KernelRidge(BaseTransformer):
|
|
386
384
|
original_exception=ValueError(error_str),
|
387
385
|
)
|
388
386
|
|
389
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
390
|
-
label_cols_signatures[0].as_snowpark_type()
|
391
|
-
)
|
387
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
392
388
|
|
393
389
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
394
|
-
assert isinstance(
|
390
|
+
assert isinstance(
|
391
|
+
dataset._session, Session
|
392
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
395
393
|
|
396
394
|
transform_kwargs = dict(
|
397
|
-
session
|
398
|
-
dependencies
|
399
|
-
drop_input_cols
|
400
|
-
expected_output_cols_type
|
395
|
+
session=dataset._session,
|
396
|
+
dependencies=self._deps,
|
397
|
+
drop_input_cols=self._drop_input_cols,
|
398
|
+
expected_output_cols_type=expected_type_inferred,
|
401
399
|
)
|
402
400
|
|
403
401
|
elif isinstance(dataset, pd.DataFrame):
|
404
|
-
transform_kwargs = dict(
|
405
|
-
snowpark_input_cols = self._snowpark_cols,
|
406
|
-
drop_input_cols = self._drop_input_cols
|
407
|
-
)
|
402
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
408
403
|
|
409
404
|
transform_handlers = ModelTransformerBuilder.build(
|
410
405
|
dataset=dataset,
|
@@ -444,7 +439,7 @@ class KernelRidge(BaseTransformer):
|
|
444
439
|
Transformed dataset.
|
445
440
|
"""
|
446
441
|
super()._check_dataset_type(dataset)
|
447
|
-
inference_method="transform"
|
442
|
+
inference_method = "transform"
|
448
443
|
|
449
444
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
450
445
|
# are specific to the type of dataset used.
|
@@ -481,17 +476,14 @@ class KernelRidge(BaseTransformer):
|
|
481
476
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
482
477
|
|
483
478
|
transform_kwargs = dict(
|
484
|
-
session
|
485
|
-
dependencies
|
486
|
-
drop_input_cols
|
487
|
-
expected_output_cols_type
|
479
|
+
session=dataset._session,
|
480
|
+
dependencies=self._deps,
|
481
|
+
drop_input_cols=self._drop_input_cols,
|
482
|
+
expected_output_cols_type=expected_dtype,
|
488
483
|
)
|
489
484
|
|
490
485
|
elif isinstance(dataset, pd.DataFrame):
|
491
|
-
transform_kwargs = dict(
|
492
|
-
snowpark_input_cols = self._snowpark_cols,
|
493
|
-
drop_input_cols = self._drop_input_cols
|
494
|
-
)
|
486
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
495
487
|
|
496
488
|
transform_handlers = ModelTransformerBuilder.build(
|
497
489
|
dataset=dataset,
|
@@ -510,7 +502,11 @@ class KernelRidge(BaseTransformer):
|
|
510
502
|
return output_df
|
511
503
|
|
512
504
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
513
|
-
def fit_predict(
|
505
|
+
def fit_predict(
|
506
|
+
self,
|
507
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
508
|
+
output_cols_prefix: str = "fit_predict_",
|
509
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
514
510
|
""" Method not supported for this class.
|
515
511
|
|
516
512
|
|
@@ -535,7 +531,9 @@ class KernelRidge(BaseTransformer):
|
|
535
531
|
)
|
536
532
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
537
533
|
drop_input_cols=self._drop_input_cols,
|
538
|
-
expected_output_cols_list=
|
534
|
+
expected_output_cols_list=(
|
535
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
536
|
+
),
|
539
537
|
)
|
540
538
|
self._sklearn_object = fitted_estimator
|
541
539
|
self._is_fitted = True
|
@@ -552,6 +550,62 @@ class KernelRidge(BaseTransformer):
|
|
552
550
|
assert self._sklearn_object is not None
|
553
551
|
return self._sklearn_object.embedding_
|
554
552
|
|
553
|
+
|
554
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
555
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
556
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
557
|
+
"""
|
558
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
559
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
560
|
+
if output_cols:
|
561
|
+
output_cols = [
|
562
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
563
|
+
for c in output_cols
|
564
|
+
]
|
565
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
566
|
+
output_cols = [output_cols_prefix]
|
567
|
+
elif self._sklearn_object is not None:
|
568
|
+
classes = self._sklearn_object.classes_
|
569
|
+
if isinstance(classes, numpy.ndarray):
|
570
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
571
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
572
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
573
|
+
output_cols = []
|
574
|
+
for i, cl in enumerate(classes):
|
575
|
+
# For binary classification, there is only one output column for each class
|
576
|
+
# ndarray as the two classes are complementary.
|
577
|
+
if len(cl) == 2:
|
578
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
579
|
+
else:
|
580
|
+
output_cols.extend([
|
581
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
582
|
+
])
|
583
|
+
else:
|
584
|
+
output_cols = []
|
585
|
+
|
586
|
+
# Make sure column names are valid snowflake identifiers.
|
587
|
+
assert output_cols is not None # Make MyPy happy
|
588
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
589
|
+
|
590
|
+
return rv
|
591
|
+
|
592
|
+
def _align_expected_output_names(
|
593
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
594
|
+
) -> List[str]:
|
595
|
+
# in case the inferred output column names dimension is different
|
596
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
597
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
598
|
+
output_df_columns = list(output_df_pd.columns)
|
599
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
600
|
+
if self.sample_weight_col:
|
601
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
602
|
+
# if the dimension of inferred output column names is correct; use it
|
603
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
604
|
+
return expected_output_cols_list
|
605
|
+
# otherwise, use the sklearn estimator's output
|
606
|
+
else:
|
607
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
608
|
+
|
555
609
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
556
610
|
@telemetry.send_api_usage_telemetry(
|
557
611
|
project=_PROJECT,
|
@@ -582,24 +636,28 @@ class KernelRidge(BaseTransformer):
|
|
582
636
|
# are specific to the type of dataset used.
|
583
637
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
584
638
|
|
639
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
640
|
+
|
585
641
|
if isinstance(dataset, DataFrame):
|
586
642
|
self._deps = self._batch_inference_validate_snowpark(
|
587
643
|
dataset=dataset,
|
588
644
|
inference_method=inference_method,
|
589
645
|
)
|
590
|
-
assert isinstance(
|
646
|
+
assert isinstance(
|
647
|
+
dataset._session, Session
|
648
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
591
649
|
transform_kwargs = dict(
|
592
650
|
session=dataset._session,
|
593
651
|
dependencies=self._deps,
|
594
|
-
drop_input_cols
|
652
|
+
drop_input_cols=self._drop_input_cols,
|
595
653
|
expected_output_cols_type="float",
|
596
654
|
)
|
655
|
+
expected_output_cols = self._align_expected_output_names(
|
656
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
657
|
+
)
|
597
658
|
|
598
659
|
elif isinstance(dataset, pd.DataFrame):
|
599
|
-
transform_kwargs = dict(
|
600
|
-
snowpark_input_cols = self._snowpark_cols,
|
601
|
-
drop_input_cols = self._drop_input_cols
|
602
|
-
)
|
660
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
603
661
|
|
604
662
|
transform_handlers = ModelTransformerBuilder.build(
|
605
663
|
dataset=dataset,
|
@@ -611,7 +669,7 @@ class KernelRidge(BaseTransformer):
|
|
611
669
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
612
670
|
inference_method=inference_method,
|
613
671
|
input_cols=self.input_cols,
|
614
|
-
expected_output_cols=
|
672
|
+
expected_output_cols=expected_output_cols,
|
615
673
|
**transform_kwargs
|
616
674
|
)
|
617
675
|
return output_df
|
@@ -641,7 +699,8 @@ class KernelRidge(BaseTransformer):
|
|
641
699
|
Output dataset with log probability of the sample for each class in the model.
|
642
700
|
"""
|
643
701
|
super()._check_dataset_type(dataset)
|
644
|
-
inference_method="predict_log_proba"
|
702
|
+
inference_method = "predict_log_proba"
|
703
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
645
704
|
|
646
705
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
647
706
|
# are specific to the type of dataset used.
|
@@ -652,18 +711,20 @@ class KernelRidge(BaseTransformer):
|
|
652
711
|
dataset=dataset,
|
653
712
|
inference_method=inference_method,
|
654
713
|
)
|
655
|
-
assert isinstance(
|
714
|
+
assert isinstance(
|
715
|
+
dataset._session, Session
|
716
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
656
717
|
transform_kwargs = dict(
|
657
718
|
session=dataset._session,
|
658
719
|
dependencies=self._deps,
|
659
|
-
drop_input_cols
|
720
|
+
drop_input_cols=self._drop_input_cols,
|
660
721
|
expected_output_cols_type="float",
|
661
722
|
)
|
723
|
+
expected_output_cols = self._align_expected_output_names(
|
724
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
725
|
+
)
|
662
726
|
elif isinstance(dataset, pd.DataFrame):
|
663
|
-
transform_kwargs = dict(
|
664
|
-
snowpark_input_cols = self._snowpark_cols,
|
665
|
-
drop_input_cols = self._drop_input_cols
|
666
|
-
)
|
727
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
667
728
|
|
668
729
|
transform_handlers = ModelTransformerBuilder.build(
|
669
730
|
dataset=dataset,
|
@@ -676,7 +737,7 @@ class KernelRidge(BaseTransformer):
|
|
676
737
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
677
738
|
inference_method=inference_method,
|
678
739
|
input_cols=self.input_cols,
|
679
|
-
expected_output_cols=
|
740
|
+
expected_output_cols=expected_output_cols,
|
680
741
|
**transform_kwargs
|
681
742
|
)
|
682
743
|
return output_df
|
@@ -702,30 +763,34 @@ class KernelRidge(BaseTransformer):
|
|
702
763
|
Output dataset with results of the decision function for the samples in input dataset.
|
703
764
|
"""
|
704
765
|
super()._check_dataset_type(dataset)
|
705
|
-
inference_method="decision_function"
|
766
|
+
inference_method = "decision_function"
|
706
767
|
|
707
768
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
708
769
|
# are specific to the type of dataset used.
|
709
770
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
710
771
|
|
772
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
773
|
+
|
711
774
|
if isinstance(dataset, DataFrame):
|
712
775
|
self._deps = self._batch_inference_validate_snowpark(
|
713
776
|
dataset=dataset,
|
714
777
|
inference_method=inference_method,
|
715
778
|
)
|
716
|
-
assert isinstance(
|
779
|
+
assert isinstance(
|
780
|
+
dataset._session, Session
|
781
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
717
782
|
transform_kwargs = dict(
|
718
783
|
session=dataset._session,
|
719
784
|
dependencies=self._deps,
|
720
|
-
drop_input_cols
|
785
|
+
drop_input_cols=self._drop_input_cols,
|
721
786
|
expected_output_cols_type="float",
|
722
787
|
)
|
788
|
+
expected_output_cols = self._align_expected_output_names(
|
789
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
790
|
+
)
|
723
791
|
|
724
792
|
elif isinstance(dataset, pd.DataFrame):
|
725
|
-
transform_kwargs = dict(
|
726
|
-
snowpark_input_cols = self._snowpark_cols,
|
727
|
-
drop_input_cols = self._drop_input_cols
|
728
|
-
)
|
793
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
729
794
|
|
730
795
|
transform_handlers = ModelTransformerBuilder.build(
|
731
796
|
dataset=dataset,
|
@@ -738,7 +803,7 @@ class KernelRidge(BaseTransformer):
|
|
738
803
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
739
804
|
inference_method=inference_method,
|
740
805
|
input_cols=self.input_cols,
|
741
|
-
expected_output_cols=
|
806
|
+
expected_output_cols=expected_output_cols,
|
742
807
|
**transform_kwargs
|
743
808
|
)
|
744
809
|
return output_df
|
@@ -767,12 +832,14 @@ class KernelRidge(BaseTransformer):
|
|
767
832
|
Output dataset with probability of the sample for each class in the model.
|
768
833
|
"""
|
769
834
|
super()._check_dataset_type(dataset)
|
770
|
-
inference_method="score_samples"
|
835
|
+
inference_method = "score_samples"
|
771
836
|
|
772
837
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
773
838
|
# are specific to the type of dataset used.
|
774
839
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
775
840
|
|
841
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
842
|
+
|
776
843
|
if isinstance(dataset, DataFrame):
|
777
844
|
self._deps = self._batch_inference_validate_snowpark(
|
778
845
|
dataset=dataset,
|
@@ -785,6 +852,9 @@ class KernelRidge(BaseTransformer):
|
|
785
852
|
drop_input_cols = self._drop_input_cols,
|
786
853
|
expected_output_cols_type="float",
|
787
854
|
)
|
855
|
+
expected_output_cols = self._align_expected_output_names(
|
856
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
857
|
+
)
|
788
858
|
|
789
859
|
elif isinstance(dataset, pd.DataFrame):
|
790
860
|
transform_kwargs = dict(
|
@@ -803,7 +873,7 @@ class KernelRidge(BaseTransformer):
|
|
803
873
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
804
874
|
inference_method=inference_method,
|
805
875
|
input_cols=self.input_cols,
|
806
|
-
expected_output_cols=
|
876
|
+
expected_output_cols=expected_output_cols,
|
807
877
|
**transform_kwargs
|
808
878
|
)
|
809
879
|
return output_df
|
@@ -950,50 +1020,84 @@ class KernelRidge(BaseTransformer):
|
|
950
1020
|
)
|
951
1021
|
return output_df
|
952
1022
|
|
1023
|
+
|
1024
|
+
|
1025
|
+
def to_sklearn(self) -> Any:
|
1026
|
+
"""Get sklearn.kernel_ridge.KernelRidge object.
|
1027
|
+
"""
|
1028
|
+
if self._sklearn_object is None:
|
1029
|
+
self._sklearn_object = self._create_sklearn_object()
|
1030
|
+
return self._sklearn_object
|
1031
|
+
|
1032
|
+
def to_xgboost(self) -> Any:
|
1033
|
+
raise exceptions.SnowflakeMLException(
|
1034
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
+
original_exception=AttributeError(
|
1036
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
+
"to_xgboost()",
|
1038
|
+
"to_sklearn()"
|
1039
|
+
)
|
1040
|
+
),
|
1041
|
+
)
|
1042
|
+
|
1043
|
+
def to_lightgbm(self) -> Any:
|
1044
|
+
raise exceptions.SnowflakeMLException(
|
1045
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
+
original_exception=AttributeError(
|
1047
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
+
"to_lightgbm()",
|
1049
|
+
"to_sklearn()"
|
1050
|
+
)
|
1051
|
+
),
|
1052
|
+
)
|
953
1053
|
|
954
|
-
def
|
1054
|
+
def _get_dependencies(self) -> List[str]:
|
1055
|
+
return self._deps
|
1056
|
+
|
1057
|
+
|
1058
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
955
1059
|
self._model_signature_dict = dict()
|
956
1060
|
|
957
1061
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
958
1062
|
|
959
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1063
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
960
1064
|
outputs: List[BaseFeatureSpec] = []
|
961
1065
|
if hasattr(self, "predict"):
|
962
1066
|
# keep mypy happy
|
963
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1067
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
964
1068
|
# For classifier, the type of predict is the same as the type of label
|
965
|
-
if self._sklearn_object._estimator_type ==
|
966
|
-
|
1069
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1070
|
+
# label columns is the desired type for output
|
967
1071
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
968
1072
|
# rename the output columns
|
969
1073
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
970
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
971
|
-
|
972
|
-
|
1074
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1075
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1076
|
+
)
|
973
1077
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
974
1078
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
975
|
-
# Clusterer returns int64 cluster labels.
|
1079
|
+
# Clusterer returns int64 cluster labels.
|
976
1080
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
977
1081
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
978
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
979
|
-
|
980
|
-
|
981
|
-
|
1082
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1083
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1084
|
+
)
|
1085
|
+
|
982
1086
|
# For regressor, the type of predict is float64
|
983
|
-
elif self._sklearn_object._estimator_type ==
|
1087
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
984
1088
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
985
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
986
|
-
|
987
|
-
|
988
|
-
|
1089
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1090
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1091
|
+
)
|
1092
|
+
|
989
1093
|
for prob_func in PROB_FUNCTIONS:
|
990
1094
|
if hasattr(self, prob_func):
|
991
1095
|
output_cols_prefix: str = f"{prob_func}_"
|
992
1096
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
993
1097
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
994
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
995
|
-
|
996
|
-
|
1098
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1099
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1100
|
+
)
|
997
1101
|
|
998
1102
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
999
1103
|
items = list(self._model_signature_dict.items())
|
@@ -1006,10 +1110,10 @@ class KernelRidge(BaseTransformer):
|
|
1006
1110
|
"""Returns model signature of current class.
|
1007
1111
|
|
1008
1112
|
Raises:
|
1009
|
-
|
1113
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1010
1114
|
|
1011
1115
|
Returns:
|
1012
|
-
Dict
|
1116
|
+
Dict with each method and its input output signature
|
1013
1117
|
"""
|
1014
1118
|
if self._model_signature_dict is None:
|
1015
1119
|
raise exceptions.SnowflakeMLException(
|
@@ -1017,35 +1121,3 @@ class KernelRidge(BaseTransformer):
|
|
1017
1121
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1018
1122
|
)
|
1019
1123
|
return self._model_signature_dict
|
1020
|
-
|
1021
|
-
def to_sklearn(self) -> Any:
|
1022
|
-
"""Get sklearn.kernel_ridge.KernelRidge object.
|
1023
|
-
"""
|
1024
|
-
if self._sklearn_object is None:
|
1025
|
-
self._sklearn_object = self._create_sklearn_object()
|
1026
|
-
return self._sklearn_object
|
1027
|
-
|
1028
|
-
def to_xgboost(self) -> Any:
|
1029
|
-
raise exceptions.SnowflakeMLException(
|
1030
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1031
|
-
original_exception=AttributeError(
|
1032
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1033
|
-
"to_xgboost()",
|
1034
|
-
"to_sklearn()"
|
1035
|
-
)
|
1036
|
-
),
|
1037
|
-
)
|
1038
|
-
|
1039
|
-
def to_lightgbm(self) -> Any:
|
1040
|
-
raise exceptions.SnowflakeMLException(
|
1041
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1042
|
-
original_exception=AttributeError(
|
1043
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1044
|
-
"to_lightgbm()",
|
1045
|
-
"to_sklearn()"
|
1046
|
-
)
|
1047
|
-
),
|
1048
|
-
)
|
1049
|
-
|
1050
|
-
def _get_dependencies(self) -> List[str]:
|
1051
|
-
return self._deps
|