snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -249,12 +248,7 @@ class GammaRegressor(BaseTransformer):
|
|
249
248
|
)
|
250
249
|
return selected_cols
|
251
250
|
|
252
|
-
|
253
|
-
project=_PROJECT,
|
254
|
-
subproject=_SUBPROJECT,
|
255
|
-
custom_tags=dict([("autogen", True)]),
|
256
|
-
)
|
257
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GammaRegressor":
|
251
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GammaRegressor":
|
258
252
|
"""Fit a Generalized Linear Model
|
259
253
|
For more details on this function, see [sklearn.linear_model.GammaRegressor.fit]
|
260
254
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html#sklearn.linear_model.GammaRegressor.fit)
|
@@ -281,12 +275,14 @@ class GammaRegressor(BaseTransformer):
|
|
281
275
|
|
282
276
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
283
277
|
|
284
|
-
|
278
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
285
279
|
if SNOWML_SPROC_ENV in os.environ:
|
286
280
|
statement_params = telemetry.get_function_usage_statement_params(
|
287
281
|
project=_PROJECT,
|
288
282
|
subproject=_SUBPROJECT,
|
289
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
283
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
284
|
+
inspect.currentframe(), GammaRegressor.__class__.__name__
|
285
|
+
),
|
290
286
|
api_calls=[Session.call],
|
291
287
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
292
288
|
)
|
@@ -307,7 +303,7 @@ class GammaRegressor(BaseTransformer):
|
|
307
303
|
)
|
308
304
|
self._sklearn_object = model_trainer.train()
|
309
305
|
self._is_fitted = True
|
310
|
-
self.
|
306
|
+
self._generate_model_signatures(dataset)
|
311
307
|
return self
|
312
308
|
|
313
309
|
def _batch_inference_validate_snowpark(
|
@@ -383,7 +379,9 @@ class GammaRegressor(BaseTransformer):
|
|
383
379
|
# when it is classifier, infer the datatype from label columns
|
384
380
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
385
381
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
386
|
-
label_cols_signatures = [
|
382
|
+
label_cols_signatures = [
|
383
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
384
|
+
]
|
387
385
|
if len(label_cols_signatures) == 0:
|
388
386
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
389
387
|
raise exceptions.SnowflakeMLException(
|
@@ -391,25 +389,22 @@ class GammaRegressor(BaseTransformer):
|
|
391
389
|
original_exception=ValueError(error_str),
|
392
390
|
)
|
393
391
|
|
394
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
395
|
-
label_cols_signatures[0].as_snowpark_type()
|
396
|
-
)
|
392
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
397
393
|
|
398
394
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
399
|
-
assert isinstance(
|
395
|
+
assert isinstance(
|
396
|
+
dataset._session, Session
|
397
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
400
398
|
|
401
399
|
transform_kwargs = dict(
|
402
|
-
session
|
403
|
-
dependencies
|
404
|
-
drop_input_cols
|
405
|
-
expected_output_cols_type
|
400
|
+
session=dataset._session,
|
401
|
+
dependencies=self._deps,
|
402
|
+
drop_input_cols=self._drop_input_cols,
|
403
|
+
expected_output_cols_type=expected_type_inferred,
|
406
404
|
)
|
407
405
|
|
408
406
|
elif isinstance(dataset, pd.DataFrame):
|
409
|
-
transform_kwargs = dict(
|
410
|
-
snowpark_input_cols = self._snowpark_cols,
|
411
|
-
drop_input_cols = self._drop_input_cols
|
412
|
-
)
|
407
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
413
408
|
|
414
409
|
transform_handlers = ModelTransformerBuilder.build(
|
415
410
|
dataset=dataset,
|
@@ -449,7 +444,7 @@ class GammaRegressor(BaseTransformer):
|
|
449
444
|
Transformed dataset.
|
450
445
|
"""
|
451
446
|
super()._check_dataset_type(dataset)
|
452
|
-
inference_method="transform"
|
447
|
+
inference_method = "transform"
|
453
448
|
|
454
449
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
455
450
|
# are specific to the type of dataset used.
|
@@ -486,17 +481,14 @@ class GammaRegressor(BaseTransformer):
|
|
486
481
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
487
482
|
|
488
483
|
transform_kwargs = dict(
|
489
|
-
session
|
490
|
-
dependencies
|
491
|
-
drop_input_cols
|
492
|
-
expected_output_cols_type
|
484
|
+
session=dataset._session,
|
485
|
+
dependencies=self._deps,
|
486
|
+
drop_input_cols=self._drop_input_cols,
|
487
|
+
expected_output_cols_type=expected_dtype,
|
493
488
|
)
|
494
489
|
|
495
490
|
elif isinstance(dataset, pd.DataFrame):
|
496
|
-
transform_kwargs = dict(
|
497
|
-
snowpark_input_cols = self._snowpark_cols,
|
498
|
-
drop_input_cols = self._drop_input_cols
|
499
|
-
)
|
491
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
500
492
|
|
501
493
|
transform_handlers = ModelTransformerBuilder.build(
|
502
494
|
dataset=dataset,
|
@@ -515,7 +507,11 @@ class GammaRegressor(BaseTransformer):
|
|
515
507
|
return output_df
|
516
508
|
|
517
509
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
518
|
-
def fit_predict(
|
510
|
+
def fit_predict(
|
511
|
+
self,
|
512
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
513
|
+
output_cols_prefix: str = "fit_predict_",
|
514
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
519
515
|
""" Method not supported for this class.
|
520
516
|
|
521
517
|
|
@@ -540,7 +536,9 @@ class GammaRegressor(BaseTransformer):
|
|
540
536
|
)
|
541
537
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
542
538
|
drop_input_cols=self._drop_input_cols,
|
543
|
-
expected_output_cols_list=
|
539
|
+
expected_output_cols_list=(
|
540
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
541
|
+
),
|
544
542
|
)
|
545
543
|
self._sklearn_object = fitted_estimator
|
546
544
|
self._is_fitted = True
|
@@ -557,6 +555,62 @@ class GammaRegressor(BaseTransformer):
|
|
557
555
|
assert self._sklearn_object is not None
|
558
556
|
return self._sklearn_object.embedding_
|
559
557
|
|
558
|
+
|
559
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
560
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
561
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
562
|
+
"""
|
563
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
564
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
565
|
+
if output_cols:
|
566
|
+
output_cols = [
|
567
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
568
|
+
for c in output_cols
|
569
|
+
]
|
570
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
571
|
+
output_cols = [output_cols_prefix]
|
572
|
+
elif self._sklearn_object is not None:
|
573
|
+
classes = self._sklearn_object.classes_
|
574
|
+
if isinstance(classes, numpy.ndarray):
|
575
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
576
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
577
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
578
|
+
output_cols = []
|
579
|
+
for i, cl in enumerate(classes):
|
580
|
+
# For binary classification, there is only one output column for each class
|
581
|
+
# ndarray as the two classes are complementary.
|
582
|
+
if len(cl) == 2:
|
583
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
584
|
+
else:
|
585
|
+
output_cols.extend([
|
586
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
587
|
+
])
|
588
|
+
else:
|
589
|
+
output_cols = []
|
590
|
+
|
591
|
+
# Make sure column names are valid snowflake identifiers.
|
592
|
+
assert output_cols is not None # Make MyPy happy
|
593
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
594
|
+
|
595
|
+
return rv
|
596
|
+
|
597
|
+
def _align_expected_output_names(
|
598
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
599
|
+
) -> List[str]:
|
600
|
+
# in case the inferred output column names dimension is different
|
601
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
602
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
603
|
+
output_df_columns = list(output_df_pd.columns)
|
604
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
605
|
+
if self.sample_weight_col:
|
606
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
607
|
+
# if the dimension of inferred output column names is correct; use it
|
608
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
609
|
+
return expected_output_cols_list
|
610
|
+
# otherwise, use the sklearn estimator's output
|
611
|
+
else:
|
612
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
613
|
+
|
560
614
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
561
615
|
@telemetry.send_api_usage_telemetry(
|
562
616
|
project=_PROJECT,
|
@@ -587,24 +641,28 @@ class GammaRegressor(BaseTransformer):
|
|
587
641
|
# are specific to the type of dataset used.
|
588
642
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
589
643
|
|
644
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
645
|
+
|
590
646
|
if isinstance(dataset, DataFrame):
|
591
647
|
self._deps = self._batch_inference_validate_snowpark(
|
592
648
|
dataset=dataset,
|
593
649
|
inference_method=inference_method,
|
594
650
|
)
|
595
|
-
assert isinstance(
|
651
|
+
assert isinstance(
|
652
|
+
dataset._session, Session
|
653
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
596
654
|
transform_kwargs = dict(
|
597
655
|
session=dataset._session,
|
598
656
|
dependencies=self._deps,
|
599
|
-
drop_input_cols
|
657
|
+
drop_input_cols=self._drop_input_cols,
|
600
658
|
expected_output_cols_type="float",
|
601
659
|
)
|
660
|
+
expected_output_cols = self._align_expected_output_names(
|
661
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
662
|
+
)
|
602
663
|
|
603
664
|
elif isinstance(dataset, pd.DataFrame):
|
604
|
-
transform_kwargs = dict(
|
605
|
-
snowpark_input_cols = self._snowpark_cols,
|
606
|
-
drop_input_cols = self._drop_input_cols
|
607
|
-
)
|
665
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
608
666
|
|
609
667
|
transform_handlers = ModelTransformerBuilder.build(
|
610
668
|
dataset=dataset,
|
@@ -616,7 +674,7 @@ class GammaRegressor(BaseTransformer):
|
|
616
674
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
617
675
|
inference_method=inference_method,
|
618
676
|
input_cols=self.input_cols,
|
619
|
-
expected_output_cols=
|
677
|
+
expected_output_cols=expected_output_cols,
|
620
678
|
**transform_kwargs
|
621
679
|
)
|
622
680
|
return output_df
|
@@ -646,7 +704,8 @@ class GammaRegressor(BaseTransformer):
|
|
646
704
|
Output dataset with log probability of the sample for each class in the model.
|
647
705
|
"""
|
648
706
|
super()._check_dataset_type(dataset)
|
649
|
-
inference_method="predict_log_proba"
|
707
|
+
inference_method = "predict_log_proba"
|
708
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
650
709
|
|
651
710
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
652
711
|
# are specific to the type of dataset used.
|
@@ -657,18 +716,20 @@ class GammaRegressor(BaseTransformer):
|
|
657
716
|
dataset=dataset,
|
658
717
|
inference_method=inference_method,
|
659
718
|
)
|
660
|
-
assert isinstance(
|
719
|
+
assert isinstance(
|
720
|
+
dataset._session, Session
|
721
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
661
722
|
transform_kwargs = dict(
|
662
723
|
session=dataset._session,
|
663
724
|
dependencies=self._deps,
|
664
|
-
drop_input_cols
|
725
|
+
drop_input_cols=self._drop_input_cols,
|
665
726
|
expected_output_cols_type="float",
|
666
727
|
)
|
728
|
+
expected_output_cols = self._align_expected_output_names(
|
729
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
730
|
+
)
|
667
731
|
elif isinstance(dataset, pd.DataFrame):
|
668
|
-
transform_kwargs = dict(
|
669
|
-
snowpark_input_cols = self._snowpark_cols,
|
670
|
-
drop_input_cols = self._drop_input_cols
|
671
|
-
)
|
732
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
672
733
|
|
673
734
|
transform_handlers = ModelTransformerBuilder.build(
|
674
735
|
dataset=dataset,
|
@@ -681,7 +742,7 @@ class GammaRegressor(BaseTransformer):
|
|
681
742
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
682
743
|
inference_method=inference_method,
|
683
744
|
input_cols=self.input_cols,
|
684
|
-
expected_output_cols=
|
745
|
+
expected_output_cols=expected_output_cols,
|
685
746
|
**transform_kwargs
|
686
747
|
)
|
687
748
|
return output_df
|
@@ -707,30 +768,34 @@ class GammaRegressor(BaseTransformer):
|
|
707
768
|
Output dataset with results of the decision function for the samples in input dataset.
|
708
769
|
"""
|
709
770
|
super()._check_dataset_type(dataset)
|
710
|
-
inference_method="decision_function"
|
771
|
+
inference_method = "decision_function"
|
711
772
|
|
712
773
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
713
774
|
# are specific to the type of dataset used.
|
714
775
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
715
776
|
|
777
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
778
|
+
|
716
779
|
if isinstance(dataset, DataFrame):
|
717
780
|
self._deps = self._batch_inference_validate_snowpark(
|
718
781
|
dataset=dataset,
|
719
782
|
inference_method=inference_method,
|
720
783
|
)
|
721
|
-
assert isinstance(
|
784
|
+
assert isinstance(
|
785
|
+
dataset._session, Session
|
786
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
722
787
|
transform_kwargs = dict(
|
723
788
|
session=dataset._session,
|
724
789
|
dependencies=self._deps,
|
725
|
-
drop_input_cols
|
790
|
+
drop_input_cols=self._drop_input_cols,
|
726
791
|
expected_output_cols_type="float",
|
727
792
|
)
|
793
|
+
expected_output_cols = self._align_expected_output_names(
|
794
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
795
|
+
)
|
728
796
|
|
729
797
|
elif isinstance(dataset, pd.DataFrame):
|
730
|
-
transform_kwargs = dict(
|
731
|
-
snowpark_input_cols = self._snowpark_cols,
|
732
|
-
drop_input_cols = self._drop_input_cols
|
733
|
-
)
|
798
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
734
799
|
|
735
800
|
transform_handlers = ModelTransformerBuilder.build(
|
736
801
|
dataset=dataset,
|
@@ -743,7 +808,7 @@ class GammaRegressor(BaseTransformer):
|
|
743
808
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
744
809
|
inference_method=inference_method,
|
745
810
|
input_cols=self.input_cols,
|
746
|
-
expected_output_cols=
|
811
|
+
expected_output_cols=expected_output_cols,
|
747
812
|
**transform_kwargs
|
748
813
|
)
|
749
814
|
return output_df
|
@@ -772,12 +837,14 @@ class GammaRegressor(BaseTransformer):
|
|
772
837
|
Output dataset with probability of the sample for each class in the model.
|
773
838
|
"""
|
774
839
|
super()._check_dataset_type(dataset)
|
775
|
-
inference_method="score_samples"
|
840
|
+
inference_method = "score_samples"
|
776
841
|
|
777
842
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
778
843
|
# are specific to the type of dataset used.
|
779
844
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
780
845
|
|
846
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
847
|
+
|
781
848
|
if isinstance(dataset, DataFrame):
|
782
849
|
self._deps = self._batch_inference_validate_snowpark(
|
783
850
|
dataset=dataset,
|
@@ -790,6 +857,9 @@ class GammaRegressor(BaseTransformer):
|
|
790
857
|
drop_input_cols = self._drop_input_cols,
|
791
858
|
expected_output_cols_type="float",
|
792
859
|
)
|
860
|
+
expected_output_cols = self._align_expected_output_names(
|
861
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
862
|
+
)
|
793
863
|
|
794
864
|
elif isinstance(dataset, pd.DataFrame):
|
795
865
|
transform_kwargs = dict(
|
@@ -808,7 +878,7 @@ class GammaRegressor(BaseTransformer):
|
|
808
878
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
809
879
|
inference_method=inference_method,
|
810
880
|
input_cols=self.input_cols,
|
811
|
-
expected_output_cols=
|
881
|
+
expected_output_cols=expected_output_cols,
|
812
882
|
**transform_kwargs
|
813
883
|
)
|
814
884
|
return output_df
|
@@ -955,50 +1025,84 @@ class GammaRegressor(BaseTransformer):
|
|
955
1025
|
)
|
956
1026
|
return output_df
|
957
1027
|
|
1028
|
+
|
1029
|
+
|
1030
|
+
def to_sklearn(self) -> Any:
|
1031
|
+
"""Get sklearn.linear_model.GammaRegressor object.
|
1032
|
+
"""
|
1033
|
+
if self._sklearn_object is None:
|
1034
|
+
self._sklearn_object = self._create_sklearn_object()
|
1035
|
+
return self._sklearn_object
|
1036
|
+
|
1037
|
+
def to_xgboost(self) -> Any:
|
1038
|
+
raise exceptions.SnowflakeMLException(
|
1039
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
+
original_exception=AttributeError(
|
1041
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
+
"to_xgboost()",
|
1043
|
+
"to_sklearn()"
|
1044
|
+
)
|
1045
|
+
),
|
1046
|
+
)
|
1047
|
+
|
1048
|
+
def to_lightgbm(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_lightgbm()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
958
1058
|
|
959
|
-
def
|
1059
|
+
def _get_dependencies(self) -> List[str]:
|
1060
|
+
return self._deps
|
1061
|
+
|
1062
|
+
|
1063
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
960
1064
|
self._model_signature_dict = dict()
|
961
1065
|
|
962
1066
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
963
1067
|
|
964
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1068
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
965
1069
|
outputs: List[BaseFeatureSpec] = []
|
966
1070
|
if hasattr(self, "predict"):
|
967
1071
|
# keep mypy happy
|
968
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1072
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
969
1073
|
# For classifier, the type of predict is the same as the type of label
|
970
|
-
if self._sklearn_object._estimator_type ==
|
971
|
-
|
1074
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1075
|
+
# label columns is the desired type for output
|
972
1076
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
973
1077
|
# rename the output columns
|
974
1078
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
975
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
976
|
-
|
977
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
978
1082
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
979
1083
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
980
|
-
# Clusterer returns int64 cluster labels.
|
1084
|
+
# Clusterer returns int64 cluster labels.
|
981
1085
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
982
1086
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
986
|
-
|
1087
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
1090
|
+
|
987
1091
|
# For regressor, the type of predict is float64
|
988
|
-
elif self._sklearn_object._estimator_type ==
|
1092
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
989
1093
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
990
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
991
|
-
|
992
|
-
|
993
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
994
1098
|
for prob_func in PROB_FUNCTIONS:
|
995
1099
|
if hasattr(self, prob_func):
|
996
1100
|
output_cols_prefix: str = f"{prob_func}_"
|
997
1101
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
998
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
999
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1000
|
-
|
1001
|
-
|
1103
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1002
1106
|
|
1003
1107
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1004
1108
|
items = list(self._model_signature_dict.items())
|
@@ -1011,10 +1115,10 @@ class GammaRegressor(BaseTransformer):
|
|
1011
1115
|
"""Returns model signature of current class.
|
1012
1116
|
|
1013
1117
|
Raises:
|
1014
|
-
|
1118
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1015
1119
|
|
1016
1120
|
Returns:
|
1017
|
-
Dict
|
1121
|
+
Dict with each method and its input output signature
|
1018
1122
|
"""
|
1019
1123
|
if self._model_signature_dict is None:
|
1020
1124
|
raise exceptions.SnowflakeMLException(
|
@@ -1022,35 +1126,3 @@ class GammaRegressor(BaseTransformer):
|
|
1022
1126
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1023
1127
|
)
|
1024
1128
|
return self._model_signature_dict
|
1025
|
-
|
1026
|
-
def to_sklearn(self) -> Any:
|
1027
|
-
"""Get sklearn.linear_model.GammaRegressor object.
|
1028
|
-
"""
|
1029
|
-
if self._sklearn_object is None:
|
1030
|
-
self._sklearn_object = self._create_sklearn_object()
|
1031
|
-
return self._sklearn_object
|
1032
|
-
|
1033
|
-
def to_xgboost(self) -> Any:
|
1034
|
-
raise exceptions.SnowflakeMLException(
|
1035
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1036
|
-
original_exception=AttributeError(
|
1037
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1038
|
-
"to_xgboost()",
|
1039
|
-
"to_sklearn()"
|
1040
|
-
)
|
1041
|
-
),
|
1042
|
-
)
|
1043
|
-
|
1044
|
-
def to_lightgbm(self) -> Any:
|
1045
|
-
raise exceptions.SnowflakeMLException(
|
1046
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
-
original_exception=AttributeError(
|
1048
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
-
"to_lightgbm()",
|
1050
|
-
"to_sklearn()"
|
1051
|
-
)
|
1052
|
-
),
|
1053
|
-
)
|
1054
|
-
|
1055
|
-
def _get_dependencies(self) -> List[str]:
|
1056
|
-
return self._deps
|