snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -251,12 +250,7 @@ class FactorAnalysis(BaseTransformer):
|
|
251
250
|
)
|
252
251
|
return selected_cols
|
253
252
|
|
254
|
-
|
255
|
-
project=_PROJECT,
|
256
|
-
subproject=_SUBPROJECT,
|
257
|
-
custom_tags=dict([("autogen", True)]),
|
258
|
-
)
|
259
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
|
253
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
|
260
254
|
"""Fit the FactorAnalysis model to X using SVD based approach
|
261
255
|
For more details on this function, see [sklearn.decomposition.FactorAnalysis.fit]
|
262
256
|
(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html#sklearn.decomposition.FactorAnalysis.fit)
|
@@ -283,12 +277,14 @@ class FactorAnalysis(BaseTransformer):
|
|
283
277
|
|
284
278
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
279
|
|
286
|
-
|
280
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
287
281
|
if SNOWML_SPROC_ENV in os.environ:
|
288
282
|
statement_params = telemetry.get_function_usage_statement_params(
|
289
283
|
project=_PROJECT,
|
290
284
|
subproject=_SUBPROJECT,
|
291
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
285
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
286
|
+
inspect.currentframe(), FactorAnalysis.__class__.__name__
|
287
|
+
),
|
292
288
|
api_calls=[Session.call],
|
293
289
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
294
290
|
)
|
@@ -309,7 +305,7 @@ class FactorAnalysis(BaseTransformer):
|
|
309
305
|
)
|
310
306
|
self._sklearn_object = model_trainer.train()
|
311
307
|
self._is_fitted = True
|
312
|
-
self.
|
308
|
+
self._generate_model_signatures(dataset)
|
313
309
|
return self
|
314
310
|
|
315
311
|
def _batch_inference_validate_snowpark(
|
@@ -383,7 +379,9 @@ class FactorAnalysis(BaseTransformer):
|
|
383
379
|
# when it is classifier, infer the datatype from label columns
|
384
380
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
385
381
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
386
|
-
label_cols_signatures = [
|
382
|
+
label_cols_signatures = [
|
383
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
384
|
+
]
|
387
385
|
if len(label_cols_signatures) == 0:
|
388
386
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
389
387
|
raise exceptions.SnowflakeMLException(
|
@@ -391,25 +389,22 @@ class FactorAnalysis(BaseTransformer):
|
|
391
389
|
original_exception=ValueError(error_str),
|
392
390
|
)
|
393
391
|
|
394
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
395
|
-
label_cols_signatures[0].as_snowpark_type()
|
396
|
-
)
|
392
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
397
393
|
|
398
394
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
399
|
-
assert isinstance(
|
395
|
+
assert isinstance(
|
396
|
+
dataset._session, Session
|
397
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
400
398
|
|
401
399
|
transform_kwargs = dict(
|
402
|
-
session
|
403
|
-
dependencies
|
404
|
-
drop_input_cols
|
405
|
-
expected_output_cols_type
|
400
|
+
session=dataset._session,
|
401
|
+
dependencies=self._deps,
|
402
|
+
drop_input_cols=self._drop_input_cols,
|
403
|
+
expected_output_cols_type=expected_type_inferred,
|
406
404
|
)
|
407
405
|
|
408
406
|
elif isinstance(dataset, pd.DataFrame):
|
409
|
-
transform_kwargs = dict(
|
410
|
-
snowpark_input_cols = self._snowpark_cols,
|
411
|
-
drop_input_cols = self._drop_input_cols
|
412
|
-
)
|
407
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
413
408
|
|
414
409
|
transform_handlers = ModelTransformerBuilder.build(
|
415
410
|
dataset=dataset,
|
@@ -451,7 +446,7 @@ class FactorAnalysis(BaseTransformer):
|
|
451
446
|
Transformed dataset.
|
452
447
|
"""
|
453
448
|
super()._check_dataset_type(dataset)
|
454
|
-
inference_method="transform"
|
449
|
+
inference_method = "transform"
|
455
450
|
|
456
451
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
457
452
|
# are specific to the type of dataset used.
|
@@ -488,17 +483,14 @@ class FactorAnalysis(BaseTransformer):
|
|
488
483
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
489
484
|
|
490
485
|
transform_kwargs = dict(
|
491
|
-
session
|
492
|
-
dependencies
|
493
|
-
drop_input_cols
|
494
|
-
expected_output_cols_type
|
486
|
+
session=dataset._session,
|
487
|
+
dependencies=self._deps,
|
488
|
+
drop_input_cols=self._drop_input_cols,
|
489
|
+
expected_output_cols_type=expected_dtype,
|
495
490
|
)
|
496
491
|
|
497
492
|
elif isinstance(dataset, pd.DataFrame):
|
498
|
-
transform_kwargs = dict(
|
499
|
-
snowpark_input_cols = self._snowpark_cols,
|
500
|
-
drop_input_cols = self._drop_input_cols
|
501
|
-
)
|
493
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
502
494
|
|
503
495
|
transform_handlers = ModelTransformerBuilder.build(
|
504
496
|
dataset=dataset,
|
@@ -517,7 +509,11 @@ class FactorAnalysis(BaseTransformer):
|
|
517
509
|
return output_df
|
518
510
|
|
519
511
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
520
|
-
def fit_predict(
|
512
|
+
def fit_predict(
|
513
|
+
self,
|
514
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
515
|
+
output_cols_prefix: str = "fit_predict_",
|
516
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
521
517
|
""" Method not supported for this class.
|
522
518
|
|
523
519
|
|
@@ -542,7 +538,9 @@ class FactorAnalysis(BaseTransformer):
|
|
542
538
|
)
|
543
539
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
544
540
|
drop_input_cols=self._drop_input_cols,
|
545
|
-
expected_output_cols_list=
|
541
|
+
expected_output_cols_list=(
|
542
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
543
|
+
),
|
546
544
|
)
|
547
545
|
self._sklearn_object = fitted_estimator
|
548
546
|
self._is_fitted = True
|
@@ -559,6 +557,62 @@ class FactorAnalysis(BaseTransformer):
|
|
559
557
|
assert self._sklearn_object is not None
|
560
558
|
return self._sklearn_object.embedding_
|
561
559
|
|
560
|
+
|
561
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
562
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
563
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
564
|
+
"""
|
565
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
566
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
567
|
+
if output_cols:
|
568
|
+
output_cols = [
|
569
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
570
|
+
for c in output_cols
|
571
|
+
]
|
572
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
573
|
+
output_cols = [output_cols_prefix]
|
574
|
+
elif self._sklearn_object is not None:
|
575
|
+
classes = self._sklearn_object.classes_
|
576
|
+
if isinstance(classes, numpy.ndarray):
|
577
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
578
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
579
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
580
|
+
output_cols = []
|
581
|
+
for i, cl in enumerate(classes):
|
582
|
+
# For binary classification, there is only one output column for each class
|
583
|
+
# ndarray as the two classes are complementary.
|
584
|
+
if len(cl) == 2:
|
585
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
586
|
+
else:
|
587
|
+
output_cols.extend([
|
588
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
589
|
+
])
|
590
|
+
else:
|
591
|
+
output_cols = []
|
592
|
+
|
593
|
+
# Make sure column names are valid snowflake identifiers.
|
594
|
+
assert output_cols is not None # Make MyPy happy
|
595
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
596
|
+
|
597
|
+
return rv
|
598
|
+
|
599
|
+
def _align_expected_output_names(
|
600
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
601
|
+
) -> List[str]:
|
602
|
+
# in case the inferred output column names dimension is different
|
603
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
604
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
605
|
+
output_df_columns = list(output_df_pd.columns)
|
606
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
607
|
+
if self.sample_weight_col:
|
608
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
609
|
+
# if the dimension of inferred output column names is correct; use it
|
610
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
611
|
+
return expected_output_cols_list
|
612
|
+
# otherwise, use the sklearn estimator's output
|
613
|
+
else:
|
614
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
615
|
+
|
562
616
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
563
617
|
@telemetry.send_api_usage_telemetry(
|
564
618
|
project=_PROJECT,
|
@@ -589,24 +643,28 @@ class FactorAnalysis(BaseTransformer):
|
|
589
643
|
# are specific to the type of dataset used.
|
590
644
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
591
645
|
|
646
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
647
|
+
|
592
648
|
if isinstance(dataset, DataFrame):
|
593
649
|
self._deps = self._batch_inference_validate_snowpark(
|
594
650
|
dataset=dataset,
|
595
651
|
inference_method=inference_method,
|
596
652
|
)
|
597
|
-
assert isinstance(
|
653
|
+
assert isinstance(
|
654
|
+
dataset._session, Session
|
655
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
598
656
|
transform_kwargs = dict(
|
599
657
|
session=dataset._session,
|
600
658
|
dependencies=self._deps,
|
601
|
-
drop_input_cols
|
659
|
+
drop_input_cols=self._drop_input_cols,
|
602
660
|
expected_output_cols_type="float",
|
603
661
|
)
|
662
|
+
expected_output_cols = self._align_expected_output_names(
|
663
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
664
|
+
)
|
604
665
|
|
605
666
|
elif isinstance(dataset, pd.DataFrame):
|
606
|
-
transform_kwargs = dict(
|
607
|
-
snowpark_input_cols = self._snowpark_cols,
|
608
|
-
drop_input_cols = self._drop_input_cols
|
609
|
-
)
|
667
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
610
668
|
|
611
669
|
transform_handlers = ModelTransformerBuilder.build(
|
612
670
|
dataset=dataset,
|
@@ -618,7 +676,7 @@ class FactorAnalysis(BaseTransformer):
|
|
618
676
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
619
677
|
inference_method=inference_method,
|
620
678
|
input_cols=self.input_cols,
|
621
|
-
expected_output_cols=
|
679
|
+
expected_output_cols=expected_output_cols,
|
622
680
|
**transform_kwargs
|
623
681
|
)
|
624
682
|
return output_df
|
@@ -648,7 +706,8 @@ class FactorAnalysis(BaseTransformer):
|
|
648
706
|
Output dataset with log probability of the sample for each class in the model.
|
649
707
|
"""
|
650
708
|
super()._check_dataset_type(dataset)
|
651
|
-
inference_method="predict_log_proba"
|
709
|
+
inference_method = "predict_log_proba"
|
710
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
652
711
|
|
653
712
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
654
713
|
# are specific to the type of dataset used.
|
@@ -659,18 +718,20 @@ class FactorAnalysis(BaseTransformer):
|
|
659
718
|
dataset=dataset,
|
660
719
|
inference_method=inference_method,
|
661
720
|
)
|
662
|
-
assert isinstance(
|
721
|
+
assert isinstance(
|
722
|
+
dataset._session, Session
|
723
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
663
724
|
transform_kwargs = dict(
|
664
725
|
session=dataset._session,
|
665
726
|
dependencies=self._deps,
|
666
|
-
drop_input_cols
|
727
|
+
drop_input_cols=self._drop_input_cols,
|
667
728
|
expected_output_cols_type="float",
|
668
729
|
)
|
730
|
+
expected_output_cols = self._align_expected_output_names(
|
731
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
732
|
+
)
|
669
733
|
elif isinstance(dataset, pd.DataFrame):
|
670
|
-
transform_kwargs = dict(
|
671
|
-
snowpark_input_cols = self._snowpark_cols,
|
672
|
-
drop_input_cols = self._drop_input_cols
|
673
|
-
)
|
734
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
674
735
|
|
675
736
|
transform_handlers = ModelTransformerBuilder.build(
|
676
737
|
dataset=dataset,
|
@@ -683,7 +744,7 @@ class FactorAnalysis(BaseTransformer):
|
|
683
744
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
684
745
|
inference_method=inference_method,
|
685
746
|
input_cols=self.input_cols,
|
686
|
-
expected_output_cols=
|
747
|
+
expected_output_cols=expected_output_cols,
|
687
748
|
**transform_kwargs
|
688
749
|
)
|
689
750
|
return output_df
|
@@ -709,30 +770,34 @@ class FactorAnalysis(BaseTransformer):
|
|
709
770
|
Output dataset with results of the decision function for the samples in input dataset.
|
710
771
|
"""
|
711
772
|
super()._check_dataset_type(dataset)
|
712
|
-
inference_method="decision_function"
|
773
|
+
inference_method = "decision_function"
|
713
774
|
|
714
775
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
715
776
|
# are specific to the type of dataset used.
|
716
777
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
717
778
|
|
779
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
780
|
+
|
718
781
|
if isinstance(dataset, DataFrame):
|
719
782
|
self._deps = self._batch_inference_validate_snowpark(
|
720
783
|
dataset=dataset,
|
721
784
|
inference_method=inference_method,
|
722
785
|
)
|
723
|
-
assert isinstance(
|
786
|
+
assert isinstance(
|
787
|
+
dataset._session, Session
|
788
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
724
789
|
transform_kwargs = dict(
|
725
790
|
session=dataset._session,
|
726
791
|
dependencies=self._deps,
|
727
|
-
drop_input_cols
|
792
|
+
drop_input_cols=self._drop_input_cols,
|
728
793
|
expected_output_cols_type="float",
|
729
794
|
)
|
795
|
+
expected_output_cols = self._align_expected_output_names(
|
796
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
797
|
+
)
|
730
798
|
|
731
799
|
elif isinstance(dataset, pd.DataFrame):
|
732
|
-
transform_kwargs = dict(
|
733
|
-
snowpark_input_cols = self._snowpark_cols,
|
734
|
-
drop_input_cols = self._drop_input_cols
|
735
|
-
)
|
800
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
736
801
|
|
737
802
|
transform_handlers = ModelTransformerBuilder.build(
|
738
803
|
dataset=dataset,
|
@@ -745,7 +810,7 @@ class FactorAnalysis(BaseTransformer):
|
|
745
810
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
746
811
|
inference_method=inference_method,
|
747
812
|
input_cols=self.input_cols,
|
748
|
-
expected_output_cols=
|
813
|
+
expected_output_cols=expected_output_cols,
|
749
814
|
**transform_kwargs
|
750
815
|
)
|
751
816
|
return output_df
|
@@ -776,12 +841,14 @@ class FactorAnalysis(BaseTransformer):
|
|
776
841
|
Output dataset with probability of the sample for each class in the model.
|
777
842
|
"""
|
778
843
|
super()._check_dataset_type(dataset)
|
779
|
-
inference_method="score_samples"
|
844
|
+
inference_method = "score_samples"
|
780
845
|
|
781
846
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
782
847
|
# are specific to the type of dataset used.
|
783
848
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
784
849
|
|
850
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
851
|
+
|
785
852
|
if isinstance(dataset, DataFrame):
|
786
853
|
self._deps = self._batch_inference_validate_snowpark(
|
787
854
|
dataset=dataset,
|
@@ -794,6 +861,9 @@ class FactorAnalysis(BaseTransformer):
|
|
794
861
|
drop_input_cols = self._drop_input_cols,
|
795
862
|
expected_output_cols_type="float",
|
796
863
|
)
|
864
|
+
expected_output_cols = self._align_expected_output_names(
|
865
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
866
|
+
)
|
797
867
|
|
798
868
|
elif isinstance(dataset, pd.DataFrame):
|
799
869
|
transform_kwargs = dict(
|
@@ -812,7 +882,7 @@ class FactorAnalysis(BaseTransformer):
|
|
812
882
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
813
883
|
inference_method=inference_method,
|
814
884
|
input_cols=self.input_cols,
|
815
|
-
expected_output_cols=
|
885
|
+
expected_output_cols=expected_output_cols,
|
816
886
|
**transform_kwargs
|
817
887
|
)
|
818
888
|
return output_df
|
@@ -959,50 +1029,84 @@ class FactorAnalysis(BaseTransformer):
|
|
959
1029
|
)
|
960
1030
|
return output_df
|
961
1031
|
|
1032
|
+
|
1033
|
+
|
1034
|
+
def to_sklearn(self) -> Any:
|
1035
|
+
"""Get sklearn.decomposition.FactorAnalysis object.
|
1036
|
+
"""
|
1037
|
+
if self._sklearn_object is None:
|
1038
|
+
self._sklearn_object = self._create_sklearn_object()
|
1039
|
+
return self._sklearn_object
|
1040
|
+
|
1041
|
+
def to_xgboost(self) -> Any:
|
1042
|
+
raise exceptions.SnowflakeMLException(
|
1043
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1044
|
+
original_exception=AttributeError(
|
1045
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1046
|
+
"to_xgboost()",
|
1047
|
+
"to_sklearn()"
|
1048
|
+
)
|
1049
|
+
),
|
1050
|
+
)
|
1051
|
+
|
1052
|
+
def to_lightgbm(self) -> Any:
|
1053
|
+
raise exceptions.SnowflakeMLException(
|
1054
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1055
|
+
original_exception=AttributeError(
|
1056
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1057
|
+
"to_lightgbm()",
|
1058
|
+
"to_sklearn()"
|
1059
|
+
)
|
1060
|
+
),
|
1061
|
+
)
|
962
1062
|
|
963
|
-
def
|
1063
|
+
def _get_dependencies(self) -> List[str]:
|
1064
|
+
return self._deps
|
1065
|
+
|
1066
|
+
|
1067
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
964
1068
|
self._model_signature_dict = dict()
|
965
1069
|
|
966
1070
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
967
1071
|
|
968
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1072
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
969
1073
|
outputs: List[BaseFeatureSpec] = []
|
970
1074
|
if hasattr(self, "predict"):
|
971
1075
|
# keep mypy happy
|
972
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1076
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
973
1077
|
# For classifier, the type of predict is the same as the type of label
|
974
|
-
if self._sklearn_object._estimator_type ==
|
975
|
-
|
1078
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1079
|
+
# label columns is the desired type for output
|
976
1080
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
977
1081
|
# rename the output columns
|
978
1082
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
979
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
980
|
-
|
981
|
-
|
1083
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1084
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1085
|
+
)
|
982
1086
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
983
1087
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
984
|
-
# Clusterer returns int64 cluster labels.
|
1088
|
+
# Clusterer returns int64 cluster labels.
|
985
1089
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
986
1090
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
987
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
988
|
-
|
989
|
-
|
990
|
-
|
1091
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1092
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1093
|
+
)
|
1094
|
+
|
991
1095
|
# For regressor, the type of predict is float64
|
992
|
-
elif self._sklearn_object._estimator_type ==
|
1096
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
993
1097
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
994
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
995
|
-
|
996
|
-
|
997
|
-
|
1098
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1099
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1100
|
+
)
|
1101
|
+
|
998
1102
|
for prob_func in PROB_FUNCTIONS:
|
999
1103
|
if hasattr(self, prob_func):
|
1000
1104
|
output_cols_prefix: str = f"{prob_func}_"
|
1001
1105
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1002
1106
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1003
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1004
|
-
|
1005
|
-
|
1107
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1108
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1109
|
+
)
|
1006
1110
|
|
1007
1111
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1008
1112
|
items = list(self._model_signature_dict.items())
|
@@ -1015,10 +1119,10 @@ class FactorAnalysis(BaseTransformer):
|
|
1015
1119
|
"""Returns model signature of current class.
|
1016
1120
|
|
1017
1121
|
Raises:
|
1018
|
-
|
1122
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1019
1123
|
|
1020
1124
|
Returns:
|
1021
|
-
Dict
|
1125
|
+
Dict with each method and its input output signature
|
1022
1126
|
"""
|
1023
1127
|
if self._model_signature_dict is None:
|
1024
1128
|
raise exceptions.SnowflakeMLException(
|
@@ -1026,35 +1130,3 @@ class FactorAnalysis(BaseTransformer):
|
|
1026
1130
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1027
1131
|
)
|
1028
1132
|
return self._model_signature_dict
|
1029
|
-
|
1030
|
-
def to_sklearn(self) -> Any:
|
1031
|
-
"""Get sklearn.decomposition.FactorAnalysis object.
|
1032
|
-
"""
|
1033
|
-
if self._sklearn_object is None:
|
1034
|
-
self._sklearn_object = self._create_sklearn_object()
|
1035
|
-
return self._sklearn_object
|
1036
|
-
|
1037
|
-
def to_xgboost(self) -> Any:
|
1038
|
-
raise exceptions.SnowflakeMLException(
|
1039
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
-
original_exception=AttributeError(
|
1041
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
-
"to_xgboost()",
|
1043
|
-
"to_sklearn()"
|
1044
|
-
)
|
1045
|
-
),
|
1046
|
-
)
|
1047
|
-
|
1048
|
-
def to_lightgbm(self) -> Any:
|
1049
|
-
raise exceptions.SnowflakeMLException(
|
1050
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
-
original_exception=AttributeError(
|
1052
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
-
"to_lightgbm()",
|
1054
|
-
"to_sklearn()"
|
1055
|
-
)
|
1056
|
-
),
|
1057
|
-
)
|
1058
|
-
|
1059
|
-
def _get_dependencies(self) -> List[str]:
|
1060
|
-
return self._deps
|