snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -251,12 +250,7 @@ class FactorAnalysis(BaseTransformer):
251
250
  )
252
251
  return selected_cols
253
252
 
254
- @telemetry.send_api_usage_telemetry(
255
- project=_PROJECT,
256
- subproject=_SUBPROJECT,
257
- custom_tags=dict([("autogen", True)]),
258
- )
259
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
253
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
260
254
  """Fit the FactorAnalysis model to X using SVD based approach
261
255
  For more details on this function, see [sklearn.decomposition.FactorAnalysis.fit]
262
256
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html#sklearn.decomposition.FactorAnalysis.fit)
@@ -283,12 +277,14 @@ class FactorAnalysis(BaseTransformer):
283
277
 
284
278
  self._snowpark_cols = dataset.select(self.input_cols).columns
285
279
 
286
- # If we are already in a stored procedure, no need to kick off another one.
280
+ # If we are already in a stored procedure, no need to kick off another one.
287
281
  if SNOWML_SPROC_ENV in os.environ:
288
282
  statement_params = telemetry.get_function_usage_statement_params(
289
283
  project=_PROJECT,
290
284
  subproject=_SUBPROJECT,
291
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FactorAnalysis.__class__.__name__),
285
+ function_name=telemetry.get_statement_params_full_func_name(
286
+ inspect.currentframe(), FactorAnalysis.__class__.__name__
287
+ ),
292
288
  api_calls=[Session.call],
293
289
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
290
  )
@@ -309,7 +305,7 @@ class FactorAnalysis(BaseTransformer):
309
305
  )
310
306
  self._sklearn_object = model_trainer.train()
311
307
  self._is_fitted = True
312
- self._get_model_signatures(dataset)
308
+ self._generate_model_signatures(dataset)
313
309
  return self
314
310
 
315
311
  def _batch_inference_validate_snowpark(
@@ -383,7 +379,9 @@ class FactorAnalysis(BaseTransformer):
383
379
  # when it is classifier, infer the datatype from label columns
384
380
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
385
381
  # Batch inference takes a single expected output column type. Use the first columns type for now.
386
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
382
+ label_cols_signatures = [
383
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
384
+ ]
387
385
  if len(label_cols_signatures) == 0:
388
386
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
389
387
  raise exceptions.SnowflakeMLException(
@@ -391,25 +389,22 @@ class FactorAnalysis(BaseTransformer):
391
389
  original_exception=ValueError(error_str),
392
390
  )
393
391
 
394
- expected_type_inferred = convert_sp_to_sf_type(
395
- label_cols_signatures[0].as_snowpark_type()
396
- )
392
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
397
393
 
398
394
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
399
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
+ assert isinstance(
396
+ dataset._session, Session
397
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
400
398
 
401
399
  transform_kwargs = dict(
402
- session = dataset._session,
403
- dependencies = self._deps,
404
- drop_input_cols = self._drop_input_cols,
405
- expected_output_cols_type = expected_type_inferred,
400
+ session=dataset._session,
401
+ dependencies=self._deps,
402
+ drop_input_cols=self._drop_input_cols,
403
+ expected_output_cols_type=expected_type_inferred,
406
404
  )
407
405
 
408
406
  elif isinstance(dataset, pd.DataFrame):
409
- transform_kwargs = dict(
410
- snowpark_input_cols = self._snowpark_cols,
411
- drop_input_cols = self._drop_input_cols
412
- )
407
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
413
408
 
414
409
  transform_handlers = ModelTransformerBuilder.build(
415
410
  dataset=dataset,
@@ -451,7 +446,7 @@ class FactorAnalysis(BaseTransformer):
451
446
  Transformed dataset.
452
447
  """
453
448
  super()._check_dataset_type(dataset)
454
- inference_method="transform"
449
+ inference_method = "transform"
455
450
 
456
451
  # This dictionary contains optional kwargs for batch inference. These kwargs
457
452
  # are specific to the type of dataset used.
@@ -488,17 +483,14 @@ class FactorAnalysis(BaseTransformer):
488
483
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
489
484
 
490
485
  transform_kwargs = dict(
491
- session = dataset._session,
492
- dependencies = self._deps,
493
- drop_input_cols = self._drop_input_cols,
494
- expected_output_cols_type = expected_dtype,
486
+ session=dataset._session,
487
+ dependencies=self._deps,
488
+ drop_input_cols=self._drop_input_cols,
489
+ expected_output_cols_type=expected_dtype,
495
490
  )
496
491
 
497
492
  elif isinstance(dataset, pd.DataFrame):
498
- transform_kwargs = dict(
499
- snowpark_input_cols = self._snowpark_cols,
500
- drop_input_cols = self._drop_input_cols
501
- )
493
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
502
494
 
503
495
  transform_handlers = ModelTransformerBuilder.build(
504
496
  dataset=dataset,
@@ -517,7 +509,11 @@ class FactorAnalysis(BaseTransformer):
517
509
  return output_df
518
510
 
519
511
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
520
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
512
+ def fit_predict(
513
+ self,
514
+ dataset: Union[DataFrame, pd.DataFrame],
515
+ output_cols_prefix: str = "fit_predict_",
516
+ ) -> Union[DataFrame, pd.DataFrame]:
521
517
  """ Method not supported for this class.
522
518
 
523
519
 
@@ -542,7 +538,9 @@ class FactorAnalysis(BaseTransformer):
542
538
  )
543
539
  output_result, fitted_estimator = model_trainer.train_fit_predict(
544
540
  drop_input_cols=self._drop_input_cols,
545
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
541
+ expected_output_cols_list=(
542
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
543
+ ),
546
544
  )
547
545
  self._sklearn_object = fitted_estimator
548
546
  self._is_fitted = True
@@ -559,6 +557,62 @@ class FactorAnalysis(BaseTransformer):
559
557
  assert self._sklearn_object is not None
560
558
  return self._sklearn_object.embedding_
561
559
 
560
+
561
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
562
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
563
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
564
+ """
565
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
566
+ # The following condition is introduced for kneighbors methods, and not used in other methods
567
+ if output_cols:
568
+ output_cols = [
569
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
570
+ for c in output_cols
571
+ ]
572
+ elif getattr(self._sklearn_object, "classes_", None) is None:
573
+ output_cols = [output_cols_prefix]
574
+ elif self._sklearn_object is not None:
575
+ classes = self._sklearn_object.classes_
576
+ if isinstance(classes, numpy.ndarray):
577
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
578
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
579
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
580
+ output_cols = []
581
+ for i, cl in enumerate(classes):
582
+ # For binary classification, there is only one output column for each class
583
+ # ndarray as the two classes are complementary.
584
+ if len(cl) == 2:
585
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
586
+ else:
587
+ output_cols.extend([
588
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
589
+ ])
590
+ else:
591
+ output_cols = []
592
+
593
+ # Make sure column names are valid snowflake identifiers.
594
+ assert output_cols is not None # Make MyPy happy
595
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
596
+
597
+ return rv
598
+
599
+ def _align_expected_output_names(
600
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
601
+ ) -> List[str]:
602
+ # in case the inferred output column names dimension is different
603
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
604
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
605
+ output_df_columns = list(output_df_pd.columns)
606
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
607
+ if self.sample_weight_col:
608
+ output_df_columns_set -= set(self.sample_weight_col)
609
+ # if the dimension of inferred output column names is correct; use it
610
+ if len(expected_output_cols_list) == len(output_df_columns_set):
611
+ return expected_output_cols_list
612
+ # otherwise, use the sklearn estimator's output
613
+ else:
614
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
615
+
562
616
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
563
617
  @telemetry.send_api_usage_telemetry(
564
618
  project=_PROJECT,
@@ -589,24 +643,28 @@ class FactorAnalysis(BaseTransformer):
589
643
  # are specific to the type of dataset used.
590
644
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
591
645
 
646
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
647
+
592
648
  if isinstance(dataset, DataFrame):
593
649
  self._deps = self._batch_inference_validate_snowpark(
594
650
  dataset=dataset,
595
651
  inference_method=inference_method,
596
652
  )
597
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
653
+ assert isinstance(
654
+ dataset._session, Session
655
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
598
656
  transform_kwargs = dict(
599
657
  session=dataset._session,
600
658
  dependencies=self._deps,
601
- drop_input_cols = self._drop_input_cols,
659
+ drop_input_cols=self._drop_input_cols,
602
660
  expected_output_cols_type="float",
603
661
  )
662
+ expected_output_cols = self._align_expected_output_names(
663
+ inference_method, dataset, expected_output_cols, output_cols_prefix
664
+ )
604
665
 
605
666
  elif isinstance(dataset, pd.DataFrame):
606
- transform_kwargs = dict(
607
- snowpark_input_cols = self._snowpark_cols,
608
- drop_input_cols = self._drop_input_cols
609
- )
667
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
610
668
 
611
669
  transform_handlers = ModelTransformerBuilder.build(
612
670
  dataset=dataset,
@@ -618,7 +676,7 @@ class FactorAnalysis(BaseTransformer):
618
676
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
619
677
  inference_method=inference_method,
620
678
  input_cols=self.input_cols,
621
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
679
+ expected_output_cols=expected_output_cols,
622
680
  **transform_kwargs
623
681
  )
624
682
  return output_df
@@ -648,7 +706,8 @@ class FactorAnalysis(BaseTransformer):
648
706
  Output dataset with log probability of the sample for each class in the model.
649
707
  """
650
708
  super()._check_dataset_type(dataset)
651
- inference_method="predict_log_proba"
709
+ inference_method = "predict_log_proba"
710
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
652
711
 
653
712
  # This dictionary contains optional kwargs for batch inference. These kwargs
654
713
  # are specific to the type of dataset used.
@@ -659,18 +718,20 @@ class FactorAnalysis(BaseTransformer):
659
718
  dataset=dataset,
660
719
  inference_method=inference_method,
661
720
  )
662
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
721
+ assert isinstance(
722
+ dataset._session, Session
723
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
663
724
  transform_kwargs = dict(
664
725
  session=dataset._session,
665
726
  dependencies=self._deps,
666
- drop_input_cols = self._drop_input_cols,
727
+ drop_input_cols=self._drop_input_cols,
667
728
  expected_output_cols_type="float",
668
729
  )
730
+ expected_output_cols = self._align_expected_output_names(
731
+ inference_method, dataset, expected_output_cols, output_cols_prefix
732
+ )
669
733
  elif isinstance(dataset, pd.DataFrame):
670
- transform_kwargs = dict(
671
- snowpark_input_cols = self._snowpark_cols,
672
- drop_input_cols = self._drop_input_cols
673
- )
734
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
674
735
 
675
736
  transform_handlers = ModelTransformerBuilder.build(
676
737
  dataset=dataset,
@@ -683,7 +744,7 @@ class FactorAnalysis(BaseTransformer):
683
744
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
684
745
  inference_method=inference_method,
685
746
  input_cols=self.input_cols,
686
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
747
+ expected_output_cols=expected_output_cols,
687
748
  **transform_kwargs
688
749
  )
689
750
  return output_df
@@ -709,30 +770,34 @@ class FactorAnalysis(BaseTransformer):
709
770
  Output dataset with results of the decision function for the samples in input dataset.
710
771
  """
711
772
  super()._check_dataset_type(dataset)
712
- inference_method="decision_function"
773
+ inference_method = "decision_function"
713
774
 
714
775
  # This dictionary contains optional kwargs for batch inference. These kwargs
715
776
  # are specific to the type of dataset used.
716
777
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
717
778
 
779
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
780
+
718
781
  if isinstance(dataset, DataFrame):
719
782
  self._deps = self._batch_inference_validate_snowpark(
720
783
  dataset=dataset,
721
784
  inference_method=inference_method,
722
785
  )
723
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
786
+ assert isinstance(
787
+ dataset._session, Session
788
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
789
  transform_kwargs = dict(
725
790
  session=dataset._session,
726
791
  dependencies=self._deps,
727
- drop_input_cols = self._drop_input_cols,
792
+ drop_input_cols=self._drop_input_cols,
728
793
  expected_output_cols_type="float",
729
794
  )
795
+ expected_output_cols = self._align_expected_output_names(
796
+ inference_method, dataset, expected_output_cols, output_cols_prefix
797
+ )
730
798
 
731
799
  elif isinstance(dataset, pd.DataFrame):
732
- transform_kwargs = dict(
733
- snowpark_input_cols = self._snowpark_cols,
734
- drop_input_cols = self._drop_input_cols
735
- )
800
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
736
801
 
737
802
  transform_handlers = ModelTransformerBuilder.build(
738
803
  dataset=dataset,
@@ -745,7 +810,7 @@ class FactorAnalysis(BaseTransformer):
745
810
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
746
811
  inference_method=inference_method,
747
812
  input_cols=self.input_cols,
748
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
813
+ expected_output_cols=expected_output_cols,
749
814
  **transform_kwargs
750
815
  )
751
816
  return output_df
@@ -776,12 +841,14 @@ class FactorAnalysis(BaseTransformer):
776
841
  Output dataset with probability of the sample for each class in the model.
777
842
  """
778
843
  super()._check_dataset_type(dataset)
779
- inference_method="score_samples"
844
+ inference_method = "score_samples"
780
845
 
781
846
  # This dictionary contains optional kwargs for batch inference. These kwargs
782
847
  # are specific to the type of dataset used.
783
848
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
784
849
 
850
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
851
+
785
852
  if isinstance(dataset, DataFrame):
786
853
  self._deps = self._batch_inference_validate_snowpark(
787
854
  dataset=dataset,
@@ -794,6 +861,9 @@ class FactorAnalysis(BaseTransformer):
794
861
  drop_input_cols = self._drop_input_cols,
795
862
  expected_output_cols_type="float",
796
863
  )
864
+ expected_output_cols = self._align_expected_output_names(
865
+ inference_method, dataset, expected_output_cols, output_cols_prefix
866
+ )
797
867
 
798
868
  elif isinstance(dataset, pd.DataFrame):
799
869
  transform_kwargs = dict(
@@ -812,7 +882,7 @@ class FactorAnalysis(BaseTransformer):
812
882
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
813
883
  inference_method=inference_method,
814
884
  input_cols=self.input_cols,
815
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
885
+ expected_output_cols=expected_output_cols,
816
886
  **transform_kwargs
817
887
  )
818
888
  return output_df
@@ -959,50 +1029,84 @@ class FactorAnalysis(BaseTransformer):
959
1029
  )
960
1030
  return output_df
961
1031
 
1032
+
1033
+
1034
+ def to_sklearn(self) -> Any:
1035
+ """Get sklearn.decomposition.FactorAnalysis object.
1036
+ """
1037
+ if self._sklearn_object is None:
1038
+ self._sklearn_object = self._create_sklearn_object()
1039
+ return self._sklearn_object
1040
+
1041
+ def to_xgboost(self) -> Any:
1042
+ raise exceptions.SnowflakeMLException(
1043
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1044
+ original_exception=AttributeError(
1045
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
+ "to_xgboost()",
1047
+ "to_sklearn()"
1048
+ )
1049
+ ),
1050
+ )
1051
+
1052
+ def to_lightgbm(self) -> Any:
1053
+ raise exceptions.SnowflakeMLException(
1054
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1055
+ original_exception=AttributeError(
1056
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
+ "to_lightgbm()",
1058
+ "to_sklearn()"
1059
+ )
1060
+ ),
1061
+ )
962
1062
 
963
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1063
+ def _get_dependencies(self) -> List[str]:
1064
+ return self._deps
1065
+
1066
+
1067
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
964
1068
  self._model_signature_dict = dict()
965
1069
 
966
1070
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
967
1071
 
968
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1072
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
969
1073
  outputs: List[BaseFeatureSpec] = []
970
1074
  if hasattr(self, "predict"):
971
1075
  # keep mypy happy
972
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1076
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
973
1077
  # For classifier, the type of predict is the same as the type of label
974
- if self._sklearn_object._estimator_type == 'classifier':
975
- # label columns is the desired type for output
1078
+ if self._sklearn_object._estimator_type == "classifier":
1079
+ # label columns is the desired type for output
976
1080
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
977
1081
  # rename the output columns
978
1082
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
1083
+ self._model_signature_dict["predict"] = ModelSignature(
1084
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1085
+ )
982
1086
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
983
1087
  # For outlier models, returns -1 for outliers and 1 for inliers.
984
- # Clusterer returns int64 cluster labels.
1088
+ # Clusterer returns int64 cluster labels.
985
1089
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
986
1090
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
990
-
1091
+ self._model_signature_dict["predict"] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
1094
+
991
1095
  # For regressor, the type of predict is float64
992
- elif self._sklearn_object._estimator_type == 'regressor':
1096
+ elif self._sklearn_object._estimator_type == "regressor":
993
1097
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
1101
+
998
1102
  for prob_func in PROB_FUNCTIONS:
999
1103
  if hasattr(self, prob_func):
1000
1104
  output_cols_prefix: str = f"{prob_func}_"
1001
1105
  output_column_names = self._get_output_column_names(output_cols_prefix)
1002
1106
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1003
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1107
+ self._model_signature_dict[prob_func] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1006
1110
 
1007
1111
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1008
1112
  items = list(self._model_signature_dict.items())
@@ -1015,10 +1119,10 @@ class FactorAnalysis(BaseTransformer):
1015
1119
  """Returns model signature of current class.
1016
1120
 
1017
1121
  Raises:
1018
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1122
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1019
1123
 
1020
1124
  Returns:
1021
- Dict[str, ModelSignature]: each method and its input output signature
1125
+ Dict with each method and its input output signature
1022
1126
  """
1023
1127
  if self._model_signature_dict is None:
1024
1128
  raise exceptions.SnowflakeMLException(
@@ -1026,35 +1130,3 @@ class FactorAnalysis(BaseTransformer):
1026
1130
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1027
1131
  )
1028
1132
  return self._model_signature_dict
1029
-
1030
- def to_sklearn(self) -> Any:
1031
- """Get sklearn.decomposition.FactorAnalysis object.
1032
- """
1033
- if self._sklearn_object is None:
1034
- self._sklearn_object = self._create_sklearn_object()
1035
- return self._sklearn_object
1036
-
1037
- def to_xgboost(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_xgboost()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def to_lightgbm(self) -> Any:
1049
- raise exceptions.SnowflakeMLException(
1050
- error_code=error_codes.METHOD_NOT_ALLOWED,
1051
- original_exception=AttributeError(
1052
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
- "to_lightgbm()",
1054
- "to_sklearn()"
1055
- )
1056
- ),
1057
- )
1058
-
1059
- def _get_dependencies(self) -> List[str]:
1060
- return self._deps