snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -276,12 +275,7 @@ class BaggingRegressor(BaseTransformer):
|
|
276
275
|
)
|
277
276
|
return selected_cols
|
278
277
|
|
279
|
-
|
280
|
-
project=_PROJECT,
|
281
|
-
subproject=_SUBPROJECT,
|
282
|
-
custom_tags=dict([("autogen", True)]),
|
283
|
-
)
|
284
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
|
278
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
|
285
279
|
"""Build a Bagging ensemble of estimators from the training set (X, y)
|
286
280
|
For more details on this function, see [sklearn.ensemble.BaggingRegressor.fit]
|
287
281
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor.fit)
|
@@ -308,12 +302,14 @@ class BaggingRegressor(BaseTransformer):
|
|
308
302
|
|
309
303
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
310
304
|
|
311
|
-
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
312
306
|
if SNOWML_SPROC_ENV in os.environ:
|
313
307
|
statement_params = telemetry.get_function_usage_statement_params(
|
314
308
|
project=_PROJECT,
|
315
309
|
subproject=_SUBPROJECT,
|
316
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
311
|
+
inspect.currentframe(), BaggingRegressor.__class__.__name__
|
312
|
+
),
|
317
313
|
api_calls=[Session.call],
|
318
314
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
319
315
|
)
|
@@ -334,7 +330,7 @@ class BaggingRegressor(BaseTransformer):
|
|
334
330
|
)
|
335
331
|
self._sklearn_object = model_trainer.train()
|
336
332
|
self._is_fitted = True
|
337
|
-
self.
|
333
|
+
self._generate_model_signatures(dataset)
|
338
334
|
return self
|
339
335
|
|
340
336
|
def _batch_inference_validate_snowpark(
|
@@ -410,7 +406,9 @@ class BaggingRegressor(BaseTransformer):
|
|
410
406
|
# when it is classifier, infer the datatype from label columns
|
411
407
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
412
408
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
413
|
-
label_cols_signatures = [
|
409
|
+
label_cols_signatures = [
|
410
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
411
|
+
]
|
414
412
|
if len(label_cols_signatures) == 0:
|
415
413
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
416
414
|
raise exceptions.SnowflakeMLException(
|
@@ -418,25 +416,22 @@ class BaggingRegressor(BaseTransformer):
|
|
418
416
|
original_exception=ValueError(error_str),
|
419
417
|
)
|
420
418
|
|
421
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
422
|
-
label_cols_signatures[0].as_snowpark_type()
|
423
|
-
)
|
419
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
424
420
|
|
425
421
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
426
|
-
assert isinstance(
|
422
|
+
assert isinstance(
|
423
|
+
dataset._session, Session
|
424
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
427
425
|
|
428
426
|
transform_kwargs = dict(
|
429
|
-
session
|
430
|
-
dependencies
|
431
|
-
drop_input_cols
|
432
|
-
expected_output_cols_type
|
427
|
+
session=dataset._session,
|
428
|
+
dependencies=self._deps,
|
429
|
+
drop_input_cols=self._drop_input_cols,
|
430
|
+
expected_output_cols_type=expected_type_inferred,
|
433
431
|
)
|
434
432
|
|
435
433
|
elif isinstance(dataset, pd.DataFrame):
|
436
|
-
transform_kwargs = dict(
|
437
|
-
snowpark_input_cols = self._snowpark_cols,
|
438
|
-
drop_input_cols = self._drop_input_cols
|
439
|
-
)
|
434
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
440
435
|
|
441
436
|
transform_handlers = ModelTransformerBuilder.build(
|
442
437
|
dataset=dataset,
|
@@ -476,7 +471,7 @@ class BaggingRegressor(BaseTransformer):
|
|
476
471
|
Transformed dataset.
|
477
472
|
"""
|
478
473
|
super()._check_dataset_type(dataset)
|
479
|
-
inference_method="transform"
|
474
|
+
inference_method = "transform"
|
480
475
|
|
481
476
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
482
477
|
# are specific to the type of dataset used.
|
@@ -513,17 +508,14 @@ class BaggingRegressor(BaseTransformer):
|
|
513
508
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
514
509
|
|
515
510
|
transform_kwargs = dict(
|
516
|
-
session
|
517
|
-
dependencies
|
518
|
-
drop_input_cols
|
519
|
-
expected_output_cols_type
|
511
|
+
session=dataset._session,
|
512
|
+
dependencies=self._deps,
|
513
|
+
drop_input_cols=self._drop_input_cols,
|
514
|
+
expected_output_cols_type=expected_dtype,
|
520
515
|
)
|
521
516
|
|
522
517
|
elif isinstance(dataset, pd.DataFrame):
|
523
|
-
transform_kwargs = dict(
|
524
|
-
snowpark_input_cols = self._snowpark_cols,
|
525
|
-
drop_input_cols = self._drop_input_cols
|
526
|
-
)
|
518
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
527
519
|
|
528
520
|
transform_handlers = ModelTransformerBuilder.build(
|
529
521
|
dataset=dataset,
|
@@ -542,7 +534,11 @@ class BaggingRegressor(BaseTransformer):
|
|
542
534
|
return output_df
|
543
535
|
|
544
536
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
545
|
-
def fit_predict(
|
537
|
+
def fit_predict(
|
538
|
+
self,
|
539
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
540
|
+
output_cols_prefix: str = "fit_predict_",
|
541
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
546
542
|
""" Method not supported for this class.
|
547
543
|
|
548
544
|
|
@@ -567,7 +563,9 @@ class BaggingRegressor(BaseTransformer):
|
|
567
563
|
)
|
568
564
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
569
565
|
drop_input_cols=self._drop_input_cols,
|
570
|
-
expected_output_cols_list=
|
566
|
+
expected_output_cols_list=(
|
567
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
568
|
+
),
|
571
569
|
)
|
572
570
|
self._sklearn_object = fitted_estimator
|
573
571
|
self._is_fitted = True
|
@@ -584,6 +582,62 @@ class BaggingRegressor(BaseTransformer):
|
|
584
582
|
assert self._sklearn_object is not None
|
585
583
|
return self._sklearn_object.embedding_
|
586
584
|
|
585
|
+
|
586
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
587
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
588
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
589
|
+
"""
|
590
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
591
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
592
|
+
if output_cols:
|
593
|
+
output_cols = [
|
594
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
595
|
+
for c in output_cols
|
596
|
+
]
|
597
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
598
|
+
output_cols = [output_cols_prefix]
|
599
|
+
elif self._sklearn_object is not None:
|
600
|
+
classes = self._sklearn_object.classes_
|
601
|
+
if isinstance(classes, numpy.ndarray):
|
602
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
603
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
604
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
605
|
+
output_cols = []
|
606
|
+
for i, cl in enumerate(classes):
|
607
|
+
# For binary classification, there is only one output column for each class
|
608
|
+
# ndarray as the two classes are complementary.
|
609
|
+
if len(cl) == 2:
|
610
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
611
|
+
else:
|
612
|
+
output_cols.extend([
|
613
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
614
|
+
])
|
615
|
+
else:
|
616
|
+
output_cols = []
|
617
|
+
|
618
|
+
# Make sure column names are valid snowflake identifiers.
|
619
|
+
assert output_cols is not None # Make MyPy happy
|
620
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
621
|
+
|
622
|
+
return rv
|
623
|
+
|
624
|
+
def _align_expected_output_names(
|
625
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
626
|
+
) -> List[str]:
|
627
|
+
# in case the inferred output column names dimension is different
|
628
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
629
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
630
|
+
output_df_columns = list(output_df_pd.columns)
|
631
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
632
|
+
if self.sample_weight_col:
|
633
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
634
|
+
# if the dimension of inferred output column names is correct; use it
|
635
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
636
|
+
return expected_output_cols_list
|
637
|
+
# otherwise, use the sklearn estimator's output
|
638
|
+
else:
|
639
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
640
|
+
|
587
641
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
588
642
|
@telemetry.send_api_usage_telemetry(
|
589
643
|
project=_PROJECT,
|
@@ -614,24 +668,28 @@ class BaggingRegressor(BaseTransformer):
|
|
614
668
|
# are specific to the type of dataset used.
|
615
669
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
616
670
|
|
671
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
672
|
+
|
617
673
|
if isinstance(dataset, DataFrame):
|
618
674
|
self._deps = self._batch_inference_validate_snowpark(
|
619
675
|
dataset=dataset,
|
620
676
|
inference_method=inference_method,
|
621
677
|
)
|
622
|
-
assert isinstance(
|
678
|
+
assert isinstance(
|
679
|
+
dataset._session, Session
|
680
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
623
681
|
transform_kwargs = dict(
|
624
682
|
session=dataset._session,
|
625
683
|
dependencies=self._deps,
|
626
|
-
drop_input_cols
|
684
|
+
drop_input_cols=self._drop_input_cols,
|
627
685
|
expected_output_cols_type="float",
|
628
686
|
)
|
687
|
+
expected_output_cols = self._align_expected_output_names(
|
688
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
689
|
+
)
|
629
690
|
|
630
691
|
elif isinstance(dataset, pd.DataFrame):
|
631
|
-
transform_kwargs = dict(
|
632
|
-
snowpark_input_cols = self._snowpark_cols,
|
633
|
-
drop_input_cols = self._drop_input_cols
|
634
|
-
)
|
692
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
635
693
|
|
636
694
|
transform_handlers = ModelTransformerBuilder.build(
|
637
695
|
dataset=dataset,
|
@@ -643,7 +701,7 @@ class BaggingRegressor(BaseTransformer):
|
|
643
701
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
644
702
|
inference_method=inference_method,
|
645
703
|
input_cols=self.input_cols,
|
646
|
-
expected_output_cols=
|
704
|
+
expected_output_cols=expected_output_cols,
|
647
705
|
**transform_kwargs
|
648
706
|
)
|
649
707
|
return output_df
|
@@ -673,7 +731,8 @@ class BaggingRegressor(BaseTransformer):
|
|
673
731
|
Output dataset with log probability of the sample for each class in the model.
|
674
732
|
"""
|
675
733
|
super()._check_dataset_type(dataset)
|
676
|
-
inference_method="predict_log_proba"
|
734
|
+
inference_method = "predict_log_proba"
|
735
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
677
736
|
|
678
737
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
679
738
|
# are specific to the type of dataset used.
|
@@ -684,18 +743,20 @@ class BaggingRegressor(BaseTransformer):
|
|
684
743
|
dataset=dataset,
|
685
744
|
inference_method=inference_method,
|
686
745
|
)
|
687
|
-
assert isinstance(
|
746
|
+
assert isinstance(
|
747
|
+
dataset._session, Session
|
748
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
688
749
|
transform_kwargs = dict(
|
689
750
|
session=dataset._session,
|
690
751
|
dependencies=self._deps,
|
691
|
-
drop_input_cols
|
752
|
+
drop_input_cols=self._drop_input_cols,
|
692
753
|
expected_output_cols_type="float",
|
693
754
|
)
|
755
|
+
expected_output_cols = self._align_expected_output_names(
|
756
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
757
|
+
)
|
694
758
|
elif isinstance(dataset, pd.DataFrame):
|
695
|
-
transform_kwargs = dict(
|
696
|
-
snowpark_input_cols = self._snowpark_cols,
|
697
|
-
drop_input_cols = self._drop_input_cols
|
698
|
-
)
|
759
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
699
760
|
|
700
761
|
transform_handlers = ModelTransformerBuilder.build(
|
701
762
|
dataset=dataset,
|
@@ -708,7 +769,7 @@ class BaggingRegressor(BaseTransformer):
|
|
708
769
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
709
770
|
inference_method=inference_method,
|
710
771
|
input_cols=self.input_cols,
|
711
|
-
expected_output_cols=
|
772
|
+
expected_output_cols=expected_output_cols,
|
712
773
|
**transform_kwargs
|
713
774
|
)
|
714
775
|
return output_df
|
@@ -734,30 +795,34 @@ class BaggingRegressor(BaseTransformer):
|
|
734
795
|
Output dataset with results of the decision function for the samples in input dataset.
|
735
796
|
"""
|
736
797
|
super()._check_dataset_type(dataset)
|
737
|
-
inference_method="decision_function"
|
798
|
+
inference_method = "decision_function"
|
738
799
|
|
739
800
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
740
801
|
# are specific to the type of dataset used.
|
741
802
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
742
803
|
|
804
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
805
|
+
|
743
806
|
if isinstance(dataset, DataFrame):
|
744
807
|
self._deps = self._batch_inference_validate_snowpark(
|
745
808
|
dataset=dataset,
|
746
809
|
inference_method=inference_method,
|
747
810
|
)
|
748
|
-
assert isinstance(
|
811
|
+
assert isinstance(
|
812
|
+
dataset._session, Session
|
813
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
749
814
|
transform_kwargs = dict(
|
750
815
|
session=dataset._session,
|
751
816
|
dependencies=self._deps,
|
752
|
-
drop_input_cols
|
817
|
+
drop_input_cols=self._drop_input_cols,
|
753
818
|
expected_output_cols_type="float",
|
754
819
|
)
|
820
|
+
expected_output_cols = self._align_expected_output_names(
|
821
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
822
|
+
)
|
755
823
|
|
756
824
|
elif isinstance(dataset, pd.DataFrame):
|
757
|
-
transform_kwargs = dict(
|
758
|
-
snowpark_input_cols = self._snowpark_cols,
|
759
|
-
drop_input_cols = self._drop_input_cols
|
760
|
-
)
|
825
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
761
826
|
|
762
827
|
transform_handlers = ModelTransformerBuilder.build(
|
763
828
|
dataset=dataset,
|
@@ -770,7 +835,7 @@ class BaggingRegressor(BaseTransformer):
|
|
770
835
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
771
836
|
inference_method=inference_method,
|
772
837
|
input_cols=self.input_cols,
|
773
|
-
expected_output_cols=
|
838
|
+
expected_output_cols=expected_output_cols,
|
774
839
|
**transform_kwargs
|
775
840
|
)
|
776
841
|
return output_df
|
@@ -799,12 +864,14 @@ class BaggingRegressor(BaseTransformer):
|
|
799
864
|
Output dataset with probability of the sample for each class in the model.
|
800
865
|
"""
|
801
866
|
super()._check_dataset_type(dataset)
|
802
|
-
inference_method="score_samples"
|
867
|
+
inference_method = "score_samples"
|
803
868
|
|
804
869
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
805
870
|
# are specific to the type of dataset used.
|
806
871
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
807
872
|
|
873
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
874
|
+
|
808
875
|
if isinstance(dataset, DataFrame):
|
809
876
|
self._deps = self._batch_inference_validate_snowpark(
|
810
877
|
dataset=dataset,
|
@@ -817,6 +884,9 @@ class BaggingRegressor(BaseTransformer):
|
|
817
884
|
drop_input_cols = self._drop_input_cols,
|
818
885
|
expected_output_cols_type="float",
|
819
886
|
)
|
887
|
+
expected_output_cols = self._align_expected_output_names(
|
888
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
889
|
+
)
|
820
890
|
|
821
891
|
elif isinstance(dataset, pd.DataFrame):
|
822
892
|
transform_kwargs = dict(
|
@@ -835,7 +905,7 @@ class BaggingRegressor(BaseTransformer):
|
|
835
905
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
836
906
|
inference_method=inference_method,
|
837
907
|
input_cols=self.input_cols,
|
838
|
-
expected_output_cols=
|
908
|
+
expected_output_cols=expected_output_cols,
|
839
909
|
**transform_kwargs
|
840
910
|
)
|
841
911
|
return output_df
|
@@ -982,50 +1052,84 @@ class BaggingRegressor(BaseTransformer):
|
|
982
1052
|
)
|
983
1053
|
return output_df
|
984
1054
|
|
1055
|
+
|
1056
|
+
|
1057
|
+
def to_sklearn(self) -> Any:
|
1058
|
+
"""Get sklearn.ensemble.BaggingRegressor object.
|
1059
|
+
"""
|
1060
|
+
if self._sklearn_object is None:
|
1061
|
+
self._sklearn_object = self._create_sklearn_object()
|
1062
|
+
return self._sklearn_object
|
1063
|
+
|
1064
|
+
def to_xgboost(self) -> Any:
|
1065
|
+
raise exceptions.SnowflakeMLException(
|
1066
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1067
|
+
original_exception=AttributeError(
|
1068
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1069
|
+
"to_xgboost()",
|
1070
|
+
"to_sklearn()"
|
1071
|
+
)
|
1072
|
+
),
|
1073
|
+
)
|
1074
|
+
|
1075
|
+
def to_lightgbm(self) -> Any:
|
1076
|
+
raise exceptions.SnowflakeMLException(
|
1077
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1078
|
+
original_exception=AttributeError(
|
1079
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1080
|
+
"to_lightgbm()",
|
1081
|
+
"to_sklearn()"
|
1082
|
+
)
|
1083
|
+
),
|
1084
|
+
)
|
985
1085
|
|
986
|
-
def
|
1086
|
+
def _get_dependencies(self) -> List[str]:
|
1087
|
+
return self._deps
|
1088
|
+
|
1089
|
+
|
1090
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
987
1091
|
self._model_signature_dict = dict()
|
988
1092
|
|
989
1093
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
990
1094
|
|
991
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1095
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
992
1096
|
outputs: List[BaseFeatureSpec] = []
|
993
1097
|
if hasattr(self, "predict"):
|
994
1098
|
# keep mypy happy
|
995
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1099
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
996
1100
|
# For classifier, the type of predict is the same as the type of label
|
997
|
-
if self._sklearn_object._estimator_type ==
|
998
|
-
|
1101
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1102
|
+
# label columns is the desired type for output
|
999
1103
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1000
1104
|
# rename the output columns
|
1001
1105
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1106
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1005
1109
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1006
1110
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1007
|
-
# Clusterer returns int64 cluster labels.
|
1111
|
+
# Clusterer returns int64 cluster labels.
|
1008
1112
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1009
1113
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1010
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1114
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1117
|
+
|
1014
1118
|
# For regressor, the type of predict is float64
|
1015
|
-
elif self._sklearn_object._estimator_type ==
|
1119
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1016
1120
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1017
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1121
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1122
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1123
|
+
)
|
1124
|
+
|
1021
1125
|
for prob_func in PROB_FUNCTIONS:
|
1022
1126
|
if hasattr(self, prob_func):
|
1023
1127
|
output_cols_prefix: str = f"{prob_func}_"
|
1024
1128
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1025
1129
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1026
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1027
|
-
|
1028
|
-
|
1130
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1131
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1132
|
+
)
|
1029
1133
|
|
1030
1134
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1031
1135
|
items = list(self._model_signature_dict.items())
|
@@ -1038,10 +1142,10 @@ class BaggingRegressor(BaseTransformer):
|
|
1038
1142
|
"""Returns model signature of current class.
|
1039
1143
|
|
1040
1144
|
Raises:
|
1041
|
-
|
1145
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1042
1146
|
|
1043
1147
|
Returns:
|
1044
|
-
Dict
|
1148
|
+
Dict with each method and its input output signature
|
1045
1149
|
"""
|
1046
1150
|
if self._model_signature_dict is None:
|
1047
1151
|
raise exceptions.SnowflakeMLException(
|
@@ -1049,35 +1153,3 @@ class BaggingRegressor(BaseTransformer):
|
|
1049
1153
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1050
1154
|
)
|
1051
1155
|
return self._model_signature_dict
|
1052
|
-
|
1053
|
-
def to_sklearn(self) -> Any:
|
1054
|
-
"""Get sklearn.ensemble.BaggingRegressor object.
|
1055
|
-
"""
|
1056
|
-
if self._sklearn_object is None:
|
1057
|
-
self._sklearn_object = self._create_sklearn_object()
|
1058
|
-
return self._sklearn_object
|
1059
|
-
|
1060
|
-
def to_xgboost(self) -> Any:
|
1061
|
-
raise exceptions.SnowflakeMLException(
|
1062
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
-
original_exception=AttributeError(
|
1064
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
-
"to_xgboost()",
|
1066
|
-
"to_sklearn()"
|
1067
|
-
)
|
1068
|
-
),
|
1069
|
-
)
|
1070
|
-
|
1071
|
-
def to_lightgbm(self) -> Any:
|
1072
|
-
raise exceptions.SnowflakeMLException(
|
1073
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1074
|
-
original_exception=AttributeError(
|
1075
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1076
|
-
"to_lightgbm()",
|
1077
|
-
"to_sklearn()"
|
1078
|
-
)
|
1079
|
-
),
|
1080
|
-
)
|
1081
|
-
|
1082
|
-
def _get_dependencies(self) -> List[str]:
|
1083
|
-
return self._deps
|