snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -210,12 +209,7 @@ class RBFSampler(BaseTransformer):
|
|
210
209
|
)
|
211
210
|
return selected_cols
|
212
211
|
|
213
|
-
|
214
|
-
project=_PROJECT,
|
215
|
-
subproject=_SUBPROJECT,
|
216
|
-
custom_tags=dict([("autogen", True)]),
|
217
|
-
)
|
218
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RBFSampler":
|
212
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RBFSampler":
|
219
213
|
"""Fit the model with X
|
220
214
|
For more details on this function, see [sklearn.kernel_approximation.RBFSampler.fit]
|
221
215
|
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler.fit)
|
@@ -242,12 +236,14 @@ class RBFSampler(BaseTransformer):
|
|
242
236
|
|
243
237
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
238
|
|
245
|
-
|
239
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
240
|
if SNOWML_SPROC_ENV in os.environ:
|
247
241
|
statement_params = telemetry.get_function_usage_statement_params(
|
248
242
|
project=_PROJECT,
|
249
243
|
subproject=_SUBPROJECT,
|
250
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
244
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
245
|
+
inspect.currentframe(), RBFSampler.__class__.__name__
|
246
|
+
),
|
251
247
|
api_calls=[Session.call],
|
252
248
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
249
|
)
|
@@ -268,7 +264,7 @@ class RBFSampler(BaseTransformer):
|
|
268
264
|
)
|
269
265
|
self._sklearn_object = model_trainer.train()
|
270
266
|
self._is_fitted = True
|
271
|
-
self.
|
267
|
+
self._generate_model_signatures(dataset)
|
272
268
|
return self
|
273
269
|
|
274
270
|
def _batch_inference_validate_snowpark(
|
@@ -342,7 +338,9 @@ class RBFSampler(BaseTransformer):
|
|
342
338
|
# when it is classifier, infer the datatype from label columns
|
343
339
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
344
340
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
345
|
-
label_cols_signatures = [
|
341
|
+
label_cols_signatures = [
|
342
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
343
|
+
]
|
346
344
|
if len(label_cols_signatures) == 0:
|
347
345
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
348
346
|
raise exceptions.SnowflakeMLException(
|
@@ -350,25 +348,22 @@ class RBFSampler(BaseTransformer):
|
|
350
348
|
original_exception=ValueError(error_str),
|
351
349
|
)
|
352
350
|
|
353
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
354
|
-
label_cols_signatures[0].as_snowpark_type()
|
355
|
-
)
|
351
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
356
352
|
|
357
353
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
358
|
-
assert isinstance(
|
354
|
+
assert isinstance(
|
355
|
+
dataset._session, Session
|
356
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
359
357
|
|
360
358
|
transform_kwargs = dict(
|
361
|
-
session
|
362
|
-
dependencies
|
363
|
-
drop_input_cols
|
364
|
-
expected_output_cols_type
|
359
|
+
session=dataset._session,
|
360
|
+
dependencies=self._deps,
|
361
|
+
drop_input_cols=self._drop_input_cols,
|
362
|
+
expected_output_cols_type=expected_type_inferred,
|
365
363
|
)
|
366
364
|
|
367
365
|
elif isinstance(dataset, pd.DataFrame):
|
368
|
-
transform_kwargs = dict(
|
369
|
-
snowpark_input_cols = self._snowpark_cols,
|
370
|
-
drop_input_cols = self._drop_input_cols
|
371
|
-
)
|
366
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
372
367
|
|
373
368
|
transform_handlers = ModelTransformerBuilder.build(
|
374
369
|
dataset=dataset,
|
@@ -410,7 +405,7 @@ class RBFSampler(BaseTransformer):
|
|
410
405
|
Transformed dataset.
|
411
406
|
"""
|
412
407
|
super()._check_dataset_type(dataset)
|
413
|
-
inference_method="transform"
|
408
|
+
inference_method = "transform"
|
414
409
|
|
415
410
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
416
411
|
# are specific to the type of dataset used.
|
@@ -447,17 +442,14 @@ class RBFSampler(BaseTransformer):
|
|
447
442
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
448
443
|
|
449
444
|
transform_kwargs = dict(
|
450
|
-
session
|
451
|
-
dependencies
|
452
|
-
drop_input_cols
|
453
|
-
expected_output_cols_type
|
445
|
+
session=dataset._session,
|
446
|
+
dependencies=self._deps,
|
447
|
+
drop_input_cols=self._drop_input_cols,
|
448
|
+
expected_output_cols_type=expected_dtype,
|
454
449
|
)
|
455
450
|
|
456
451
|
elif isinstance(dataset, pd.DataFrame):
|
457
|
-
transform_kwargs = dict(
|
458
|
-
snowpark_input_cols = self._snowpark_cols,
|
459
|
-
drop_input_cols = self._drop_input_cols
|
460
|
-
)
|
452
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
461
453
|
|
462
454
|
transform_handlers = ModelTransformerBuilder.build(
|
463
455
|
dataset=dataset,
|
@@ -476,7 +468,11 @@ class RBFSampler(BaseTransformer):
|
|
476
468
|
return output_df
|
477
469
|
|
478
470
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
479
|
-
def fit_predict(
|
471
|
+
def fit_predict(
|
472
|
+
self,
|
473
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
474
|
+
output_cols_prefix: str = "fit_predict_",
|
475
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
480
476
|
""" Method not supported for this class.
|
481
477
|
|
482
478
|
|
@@ -501,7 +497,9 @@ class RBFSampler(BaseTransformer):
|
|
501
497
|
)
|
502
498
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
503
499
|
drop_input_cols=self._drop_input_cols,
|
504
|
-
expected_output_cols_list=
|
500
|
+
expected_output_cols_list=(
|
501
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
502
|
+
),
|
505
503
|
)
|
506
504
|
self._sklearn_object = fitted_estimator
|
507
505
|
self._is_fitted = True
|
@@ -518,6 +516,62 @@ class RBFSampler(BaseTransformer):
|
|
518
516
|
assert self._sklearn_object is not None
|
519
517
|
return self._sklearn_object.embedding_
|
520
518
|
|
519
|
+
|
520
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
521
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
522
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
523
|
+
"""
|
524
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
525
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
526
|
+
if output_cols:
|
527
|
+
output_cols = [
|
528
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
529
|
+
for c in output_cols
|
530
|
+
]
|
531
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
532
|
+
output_cols = [output_cols_prefix]
|
533
|
+
elif self._sklearn_object is not None:
|
534
|
+
classes = self._sklearn_object.classes_
|
535
|
+
if isinstance(classes, numpy.ndarray):
|
536
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
537
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
538
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
539
|
+
output_cols = []
|
540
|
+
for i, cl in enumerate(classes):
|
541
|
+
# For binary classification, there is only one output column for each class
|
542
|
+
# ndarray as the two classes are complementary.
|
543
|
+
if len(cl) == 2:
|
544
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
545
|
+
else:
|
546
|
+
output_cols.extend([
|
547
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
548
|
+
])
|
549
|
+
else:
|
550
|
+
output_cols = []
|
551
|
+
|
552
|
+
# Make sure column names are valid snowflake identifiers.
|
553
|
+
assert output_cols is not None # Make MyPy happy
|
554
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
555
|
+
|
556
|
+
return rv
|
557
|
+
|
558
|
+
def _align_expected_output_names(
|
559
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
560
|
+
) -> List[str]:
|
561
|
+
# in case the inferred output column names dimension is different
|
562
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
563
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
564
|
+
output_df_columns = list(output_df_pd.columns)
|
565
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
566
|
+
if self.sample_weight_col:
|
567
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
568
|
+
# if the dimension of inferred output column names is correct; use it
|
569
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
570
|
+
return expected_output_cols_list
|
571
|
+
# otherwise, use the sklearn estimator's output
|
572
|
+
else:
|
573
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
574
|
+
|
521
575
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
522
576
|
@telemetry.send_api_usage_telemetry(
|
523
577
|
project=_PROJECT,
|
@@ -548,24 +602,28 @@ class RBFSampler(BaseTransformer):
|
|
548
602
|
# are specific to the type of dataset used.
|
549
603
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
550
604
|
|
605
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
606
|
+
|
551
607
|
if isinstance(dataset, DataFrame):
|
552
608
|
self._deps = self._batch_inference_validate_snowpark(
|
553
609
|
dataset=dataset,
|
554
610
|
inference_method=inference_method,
|
555
611
|
)
|
556
|
-
assert isinstance(
|
612
|
+
assert isinstance(
|
613
|
+
dataset._session, Session
|
614
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
557
615
|
transform_kwargs = dict(
|
558
616
|
session=dataset._session,
|
559
617
|
dependencies=self._deps,
|
560
|
-
drop_input_cols
|
618
|
+
drop_input_cols=self._drop_input_cols,
|
561
619
|
expected_output_cols_type="float",
|
562
620
|
)
|
621
|
+
expected_output_cols = self._align_expected_output_names(
|
622
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
623
|
+
)
|
563
624
|
|
564
625
|
elif isinstance(dataset, pd.DataFrame):
|
565
|
-
transform_kwargs = dict(
|
566
|
-
snowpark_input_cols = self._snowpark_cols,
|
567
|
-
drop_input_cols = self._drop_input_cols
|
568
|
-
)
|
626
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
569
627
|
|
570
628
|
transform_handlers = ModelTransformerBuilder.build(
|
571
629
|
dataset=dataset,
|
@@ -577,7 +635,7 @@ class RBFSampler(BaseTransformer):
|
|
577
635
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
578
636
|
inference_method=inference_method,
|
579
637
|
input_cols=self.input_cols,
|
580
|
-
expected_output_cols=
|
638
|
+
expected_output_cols=expected_output_cols,
|
581
639
|
**transform_kwargs
|
582
640
|
)
|
583
641
|
return output_df
|
@@ -607,7 +665,8 @@ class RBFSampler(BaseTransformer):
|
|
607
665
|
Output dataset with log probability of the sample for each class in the model.
|
608
666
|
"""
|
609
667
|
super()._check_dataset_type(dataset)
|
610
|
-
inference_method="predict_log_proba"
|
668
|
+
inference_method = "predict_log_proba"
|
669
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
611
670
|
|
612
671
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
613
672
|
# are specific to the type of dataset used.
|
@@ -618,18 +677,20 @@ class RBFSampler(BaseTransformer):
|
|
618
677
|
dataset=dataset,
|
619
678
|
inference_method=inference_method,
|
620
679
|
)
|
621
|
-
assert isinstance(
|
680
|
+
assert isinstance(
|
681
|
+
dataset._session, Session
|
682
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
622
683
|
transform_kwargs = dict(
|
623
684
|
session=dataset._session,
|
624
685
|
dependencies=self._deps,
|
625
|
-
drop_input_cols
|
686
|
+
drop_input_cols=self._drop_input_cols,
|
626
687
|
expected_output_cols_type="float",
|
627
688
|
)
|
689
|
+
expected_output_cols = self._align_expected_output_names(
|
690
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
691
|
+
)
|
628
692
|
elif isinstance(dataset, pd.DataFrame):
|
629
|
-
transform_kwargs = dict(
|
630
|
-
snowpark_input_cols = self._snowpark_cols,
|
631
|
-
drop_input_cols = self._drop_input_cols
|
632
|
-
)
|
693
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
633
694
|
|
634
695
|
transform_handlers = ModelTransformerBuilder.build(
|
635
696
|
dataset=dataset,
|
@@ -642,7 +703,7 @@ class RBFSampler(BaseTransformer):
|
|
642
703
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
643
704
|
inference_method=inference_method,
|
644
705
|
input_cols=self.input_cols,
|
645
|
-
expected_output_cols=
|
706
|
+
expected_output_cols=expected_output_cols,
|
646
707
|
**transform_kwargs
|
647
708
|
)
|
648
709
|
return output_df
|
@@ -668,30 +729,34 @@ class RBFSampler(BaseTransformer):
|
|
668
729
|
Output dataset with results of the decision function for the samples in input dataset.
|
669
730
|
"""
|
670
731
|
super()._check_dataset_type(dataset)
|
671
|
-
inference_method="decision_function"
|
732
|
+
inference_method = "decision_function"
|
672
733
|
|
673
734
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
674
735
|
# are specific to the type of dataset used.
|
675
736
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
676
737
|
|
738
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
739
|
+
|
677
740
|
if isinstance(dataset, DataFrame):
|
678
741
|
self._deps = self._batch_inference_validate_snowpark(
|
679
742
|
dataset=dataset,
|
680
743
|
inference_method=inference_method,
|
681
744
|
)
|
682
|
-
assert isinstance(
|
745
|
+
assert isinstance(
|
746
|
+
dataset._session, Session
|
747
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
683
748
|
transform_kwargs = dict(
|
684
749
|
session=dataset._session,
|
685
750
|
dependencies=self._deps,
|
686
|
-
drop_input_cols
|
751
|
+
drop_input_cols=self._drop_input_cols,
|
687
752
|
expected_output_cols_type="float",
|
688
753
|
)
|
754
|
+
expected_output_cols = self._align_expected_output_names(
|
755
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
756
|
+
)
|
689
757
|
|
690
758
|
elif isinstance(dataset, pd.DataFrame):
|
691
|
-
transform_kwargs = dict(
|
692
|
-
snowpark_input_cols = self._snowpark_cols,
|
693
|
-
drop_input_cols = self._drop_input_cols
|
694
|
-
)
|
759
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
695
760
|
|
696
761
|
transform_handlers = ModelTransformerBuilder.build(
|
697
762
|
dataset=dataset,
|
@@ -704,7 +769,7 @@ class RBFSampler(BaseTransformer):
|
|
704
769
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
705
770
|
inference_method=inference_method,
|
706
771
|
input_cols=self.input_cols,
|
707
|
-
expected_output_cols=
|
772
|
+
expected_output_cols=expected_output_cols,
|
708
773
|
**transform_kwargs
|
709
774
|
)
|
710
775
|
return output_df
|
@@ -733,12 +798,14 @@ class RBFSampler(BaseTransformer):
|
|
733
798
|
Output dataset with probability of the sample for each class in the model.
|
734
799
|
"""
|
735
800
|
super()._check_dataset_type(dataset)
|
736
|
-
inference_method="score_samples"
|
801
|
+
inference_method = "score_samples"
|
737
802
|
|
738
803
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
739
804
|
# are specific to the type of dataset used.
|
740
805
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
741
806
|
|
807
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
808
|
+
|
742
809
|
if isinstance(dataset, DataFrame):
|
743
810
|
self._deps = self._batch_inference_validate_snowpark(
|
744
811
|
dataset=dataset,
|
@@ -751,6 +818,9 @@ class RBFSampler(BaseTransformer):
|
|
751
818
|
drop_input_cols = self._drop_input_cols,
|
752
819
|
expected_output_cols_type="float",
|
753
820
|
)
|
821
|
+
expected_output_cols = self._align_expected_output_names(
|
822
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
823
|
+
)
|
754
824
|
|
755
825
|
elif isinstance(dataset, pd.DataFrame):
|
756
826
|
transform_kwargs = dict(
|
@@ -769,7 +839,7 @@ class RBFSampler(BaseTransformer):
|
|
769
839
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
770
840
|
inference_method=inference_method,
|
771
841
|
input_cols=self.input_cols,
|
772
|
-
expected_output_cols=
|
842
|
+
expected_output_cols=expected_output_cols,
|
773
843
|
**transform_kwargs
|
774
844
|
)
|
775
845
|
return output_df
|
@@ -914,50 +984,84 @@ class RBFSampler(BaseTransformer):
|
|
914
984
|
)
|
915
985
|
return output_df
|
916
986
|
|
987
|
+
|
988
|
+
|
989
|
+
def to_sklearn(self) -> Any:
|
990
|
+
"""Get sklearn.kernel_approximation.RBFSampler object.
|
991
|
+
"""
|
992
|
+
if self._sklearn_object is None:
|
993
|
+
self._sklearn_object = self._create_sklearn_object()
|
994
|
+
return self._sklearn_object
|
995
|
+
|
996
|
+
def to_xgboost(self) -> Any:
|
997
|
+
raise exceptions.SnowflakeMLException(
|
998
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
999
|
+
original_exception=AttributeError(
|
1000
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1001
|
+
"to_xgboost()",
|
1002
|
+
"to_sklearn()"
|
1003
|
+
)
|
1004
|
+
),
|
1005
|
+
)
|
1006
|
+
|
1007
|
+
def to_lightgbm(self) -> Any:
|
1008
|
+
raise exceptions.SnowflakeMLException(
|
1009
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1010
|
+
original_exception=AttributeError(
|
1011
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1012
|
+
"to_lightgbm()",
|
1013
|
+
"to_sklearn()"
|
1014
|
+
)
|
1015
|
+
),
|
1016
|
+
)
|
917
1017
|
|
918
|
-
def
|
1018
|
+
def _get_dependencies(self) -> List[str]:
|
1019
|
+
return self._deps
|
1020
|
+
|
1021
|
+
|
1022
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
919
1023
|
self._model_signature_dict = dict()
|
920
1024
|
|
921
1025
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
922
1026
|
|
923
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1027
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
924
1028
|
outputs: List[BaseFeatureSpec] = []
|
925
1029
|
if hasattr(self, "predict"):
|
926
1030
|
# keep mypy happy
|
927
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1031
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
928
1032
|
# For classifier, the type of predict is the same as the type of label
|
929
|
-
if self._sklearn_object._estimator_type ==
|
930
|
-
|
1033
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1034
|
+
# label columns is the desired type for output
|
931
1035
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
932
1036
|
# rename the output columns
|
933
1037
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
934
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
935
|
-
|
936
|
-
|
1038
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1039
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1040
|
+
)
|
937
1041
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
938
1042
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
939
|
-
# Clusterer returns int64 cluster labels.
|
1043
|
+
# Clusterer returns int64 cluster labels.
|
940
1044
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
941
1045
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
942
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
943
|
-
|
944
|
-
|
945
|
-
|
1046
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1047
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1048
|
+
)
|
1049
|
+
|
946
1050
|
# For regressor, the type of predict is float64
|
947
|
-
elif self._sklearn_object._estimator_type ==
|
1051
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
948
1052
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
949
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
950
|
-
|
951
|
-
|
952
|
-
|
1053
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1054
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1055
|
+
)
|
1056
|
+
|
953
1057
|
for prob_func in PROB_FUNCTIONS:
|
954
1058
|
if hasattr(self, prob_func):
|
955
1059
|
output_cols_prefix: str = f"{prob_func}_"
|
956
1060
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
957
1061
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
958
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
959
|
-
|
960
|
-
|
1062
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1063
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1064
|
+
)
|
961
1065
|
|
962
1066
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
963
1067
|
items = list(self._model_signature_dict.items())
|
@@ -970,10 +1074,10 @@ class RBFSampler(BaseTransformer):
|
|
970
1074
|
"""Returns model signature of current class.
|
971
1075
|
|
972
1076
|
Raises:
|
973
|
-
|
1077
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
974
1078
|
|
975
1079
|
Returns:
|
976
|
-
Dict
|
1080
|
+
Dict with each method and its input output signature
|
977
1081
|
"""
|
978
1082
|
if self._model_signature_dict is None:
|
979
1083
|
raise exceptions.SnowflakeMLException(
|
@@ -981,35 +1085,3 @@ class RBFSampler(BaseTransformer):
|
|
981
1085
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
982
1086
|
)
|
983
1087
|
return self._model_signature_dict
|
984
|
-
|
985
|
-
def to_sklearn(self) -> Any:
|
986
|
-
"""Get sklearn.kernel_approximation.RBFSampler object.
|
987
|
-
"""
|
988
|
-
if self._sklearn_object is None:
|
989
|
-
self._sklearn_object = self._create_sklearn_object()
|
990
|
-
return self._sklearn_object
|
991
|
-
|
992
|
-
def to_xgboost(self) -> Any:
|
993
|
-
raise exceptions.SnowflakeMLException(
|
994
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
995
|
-
original_exception=AttributeError(
|
996
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
997
|
-
"to_xgboost()",
|
998
|
-
"to_sklearn()"
|
999
|
-
)
|
1000
|
-
),
|
1001
|
-
)
|
1002
|
-
|
1003
|
-
def to_lightgbm(self) -> Any:
|
1004
|
-
raise exceptions.SnowflakeMLException(
|
1005
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1006
|
-
original_exception=AttributeError(
|
1007
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1008
|
-
"to_lightgbm()",
|
1009
|
-
"to_sklearn()"
|
1010
|
-
)
|
1011
|
-
),
|
1012
|
-
)
|
1013
|
-
|
1014
|
-
def _get_dependencies(self) -> List[str]:
|
1015
|
-
return self._deps
|