snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -250,12 +249,7 @@ class DBSCAN(BaseTransformer):
|
|
250
249
|
)
|
251
250
|
return selected_cols
|
252
251
|
|
253
|
-
|
254
|
-
project=_PROJECT,
|
255
|
-
subproject=_SUBPROJECT,
|
256
|
-
custom_tags=dict([("autogen", True)]),
|
257
|
-
)
|
258
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
|
252
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
|
259
253
|
"""Perform DBSCAN clustering from features, or distance matrix
|
260
254
|
For more details on this function, see [sklearn.cluster.DBSCAN.fit]
|
261
255
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit)
|
@@ -282,12 +276,14 @@ class DBSCAN(BaseTransformer):
|
|
282
276
|
|
283
277
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
278
|
|
285
|
-
|
279
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
280
|
if SNOWML_SPROC_ENV in os.environ:
|
287
281
|
statement_params = telemetry.get_function_usage_statement_params(
|
288
282
|
project=_PROJECT,
|
289
283
|
subproject=_SUBPROJECT,
|
290
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
284
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
285
|
+
inspect.currentframe(), DBSCAN.__class__.__name__
|
286
|
+
),
|
291
287
|
api_calls=[Session.call],
|
292
288
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
289
|
)
|
@@ -308,7 +304,7 @@ class DBSCAN(BaseTransformer):
|
|
308
304
|
)
|
309
305
|
self._sklearn_object = model_trainer.train()
|
310
306
|
self._is_fitted = True
|
311
|
-
self.
|
307
|
+
self._generate_model_signatures(dataset)
|
312
308
|
return self
|
313
309
|
|
314
310
|
def _batch_inference_validate_snowpark(
|
@@ -382,7 +378,9 @@ class DBSCAN(BaseTransformer):
|
|
382
378
|
# when it is classifier, infer the datatype from label columns
|
383
379
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
380
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
381
|
+
label_cols_signatures = [
|
382
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
383
|
+
]
|
386
384
|
if len(label_cols_signatures) == 0:
|
387
385
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
386
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +388,22 @@ class DBSCAN(BaseTransformer):
|
|
390
388
|
original_exception=ValueError(error_str),
|
391
389
|
)
|
392
390
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
391
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
392
|
|
397
393
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
398
|
-
assert isinstance(
|
394
|
+
assert isinstance(
|
395
|
+
dataset._session, Session
|
396
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
397
|
|
400
398
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
399
|
+
session=dataset._session,
|
400
|
+
dependencies=self._deps,
|
401
|
+
drop_input_cols=self._drop_input_cols,
|
402
|
+
expected_output_cols_type=expected_type_inferred,
|
405
403
|
)
|
406
404
|
|
407
405
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
406
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
407
|
|
413
408
|
transform_handlers = ModelTransformerBuilder.build(
|
414
409
|
dataset=dataset,
|
@@ -448,7 +443,7 @@ class DBSCAN(BaseTransformer):
|
|
448
443
|
Transformed dataset.
|
449
444
|
"""
|
450
445
|
super()._check_dataset_type(dataset)
|
451
|
-
inference_method="transform"
|
446
|
+
inference_method = "transform"
|
452
447
|
|
453
448
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
454
449
|
# are specific to the type of dataset used.
|
@@ -485,17 +480,14 @@ class DBSCAN(BaseTransformer):
|
|
485
480
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
486
481
|
|
487
482
|
transform_kwargs = dict(
|
488
|
-
session
|
489
|
-
dependencies
|
490
|
-
drop_input_cols
|
491
|
-
expected_output_cols_type
|
483
|
+
session=dataset._session,
|
484
|
+
dependencies=self._deps,
|
485
|
+
drop_input_cols=self._drop_input_cols,
|
486
|
+
expected_output_cols_type=expected_dtype,
|
492
487
|
)
|
493
488
|
|
494
489
|
elif isinstance(dataset, pd.DataFrame):
|
495
|
-
transform_kwargs = dict(
|
496
|
-
snowpark_input_cols = self._snowpark_cols,
|
497
|
-
drop_input_cols = self._drop_input_cols
|
498
|
-
)
|
490
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
499
491
|
|
500
492
|
transform_handlers = ModelTransformerBuilder.build(
|
501
493
|
dataset=dataset,
|
@@ -514,7 +506,11 @@ class DBSCAN(BaseTransformer):
|
|
514
506
|
return output_df
|
515
507
|
|
516
508
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
517
|
-
def fit_predict(
|
509
|
+
def fit_predict(
|
510
|
+
self,
|
511
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
512
|
+
output_cols_prefix: str = "fit_predict_",
|
513
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
518
514
|
""" Compute clusters from a data or distance matrix and predict labels
|
519
515
|
For more details on this function, see [sklearn.cluster.DBSCAN.fit_predict]
|
520
516
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit_predict)
|
@@ -541,7 +537,9 @@ class DBSCAN(BaseTransformer):
|
|
541
537
|
)
|
542
538
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
539
|
drop_input_cols=self._drop_input_cols,
|
544
|
-
expected_output_cols_list=
|
540
|
+
expected_output_cols_list=(
|
541
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
542
|
+
),
|
545
543
|
)
|
546
544
|
self._sklearn_object = fitted_estimator
|
547
545
|
self._is_fitted = True
|
@@ -558,6 +556,62 @@ class DBSCAN(BaseTransformer):
|
|
558
556
|
assert self._sklearn_object is not None
|
559
557
|
return self._sklearn_object.embedding_
|
560
558
|
|
559
|
+
|
560
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
561
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
562
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
563
|
+
"""
|
564
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
565
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
566
|
+
if output_cols:
|
567
|
+
output_cols = [
|
568
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
569
|
+
for c in output_cols
|
570
|
+
]
|
571
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
572
|
+
output_cols = [output_cols_prefix]
|
573
|
+
elif self._sklearn_object is not None:
|
574
|
+
classes = self._sklearn_object.classes_
|
575
|
+
if isinstance(classes, numpy.ndarray):
|
576
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
577
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
578
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
579
|
+
output_cols = []
|
580
|
+
for i, cl in enumerate(classes):
|
581
|
+
# For binary classification, there is only one output column for each class
|
582
|
+
# ndarray as the two classes are complementary.
|
583
|
+
if len(cl) == 2:
|
584
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
585
|
+
else:
|
586
|
+
output_cols.extend([
|
587
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
588
|
+
])
|
589
|
+
else:
|
590
|
+
output_cols = []
|
591
|
+
|
592
|
+
# Make sure column names are valid snowflake identifiers.
|
593
|
+
assert output_cols is not None # Make MyPy happy
|
594
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
595
|
+
|
596
|
+
return rv
|
597
|
+
|
598
|
+
def _align_expected_output_names(
|
599
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
600
|
+
) -> List[str]:
|
601
|
+
# in case the inferred output column names dimension is different
|
602
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
603
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
604
|
+
output_df_columns = list(output_df_pd.columns)
|
605
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
606
|
+
if self.sample_weight_col:
|
607
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
608
|
+
# if the dimension of inferred output column names is correct; use it
|
609
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
610
|
+
return expected_output_cols_list
|
611
|
+
# otherwise, use the sklearn estimator's output
|
612
|
+
else:
|
613
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
614
|
+
|
561
615
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
562
616
|
@telemetry.send_api_usage_telemetry(
|
563
617
|
project=_PROJECT,
|
@@ -588,24 +642,28 @@ class DBSCAN(BaseTransformer):
|
|
588
642
|
# are specific to the type of dataset used.
|
589
643
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
590
644
|
|
645
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
646
|
+
|
591
647
|
if isinstance(dataset, DataFrame):
|
592
648
|
self._deps = self._batch_inference_validate_snowpark(
|
593
649
|
dataset=dataset,
|
594
650
|
inference_method=inference_method,
|
595
651
|
)
|
596
|
-
assert isinstance(
|
652
|
+
assert isinstance(
|
653
|
+
dataset._session, Session
|
654
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
597
655
|
transform_kwargs = dict(
|
598
656
|
session=dataset._session,
|
599
657
|
dependencies=self._deps,
|
600
|
-
drop_input_cols
|
658
|
+
drop_input_cols=self._drop_input_cols,
|
601
659
|
expected_output_cols_type="float",
|
602
660
|
)
|
661
|
+
expected_output_cols = self._align_expected_output_names(
|
662
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
663
|
+
)
|
603
664
|
|
604
665
|
elif isinstance(dataset, pd.DataFrame):
|
605
|
-
transform_kwargs = dict(
|
606
|
-
snowpark_input_cols = self._snowpark_cols,
|
607
|
-
drop_input_cols = self._drop_input_cols
|
608
|
-
)
|
666
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
609
667
|
|
610
668
|
transform_handlers = ModelTransformerBuilder.build(
|
611
669
|
dataset=dataset,
|
@@ -617,7 +675,7 @@ class DBSCAN(BaseTransformer):
|
|
617
675
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
618
676
|
inference_method=inference_method,
|
619
677
|
input_cols=self.input_cols,
|
620
|
-
expected_output_cols=
|
678
|
+
expected_output_cols=expected_output_cols,
|
621
679
|
**transform_kwargs
|
622
680
|
)
|
623
681
|
return output_df
|
@@ -647,7 +705,8 @@ class DBSCAN(BaseTransformer):
|
|
647
705
|
Output dataset with log probability of the sample for each class in the model.
|
648
706
|
"""
|
649
707
|
super()._check_dataset_type(dataset)
|
650
|
-
inference_method="predict_log_proba"
|
708
|
+
inference_method = "predict_log_proba"
|
709
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
651
710
|
|
652
711
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
653
712
|
# are specific to the type of dataset used.
|
@@ -658,18 +717,20 @@ class DBSCAN(BaseTransformer):
|
|
658
717
|
dataset=dataset,
|
659
718
|
inference_method=inference_method,
|
660
719
|
)
|
661
|
-
assert isinstance(
|
720
|
+
assert isinstance(
|
721
|
+
dataset._session, Session
|
722
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
662
723
|
transform_kwargs = dict(
|
663
724
|
session=dataset._session,
|
664
725
|
dependencies=self._deps,
|
665
|
-
drop_input_cols
|
726
|
+
drop_input_cols=self._drop_input_cols,
|
666
727
|
expected_output_cols_type="float",
|
667
728
|
)
|
729
|
+
expected_output_cols = self._align_expected_output_names(
|
730
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
731
|
+
)
|
668
732
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
733
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
734
|
|
674
735
|
transform_handlers = ModelTransformerBuilder.build(
|
675
736
|
dataset=dataset,
|
@@ -682,7 +743,7 @@ class DBSCAN(BaseTransformer):
|
|
682
743
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
683
744
|
inference_method=inference_method,
|
684
745
|
input_cols=self.input_cols,
|
685
|
-
expected_output_cols=
|
746
|
+
expected_output_cols=expected_output_cols,
|
686
747
|
**transform_kwargs
|
687
748
|
)
|
688
749
|
return output_df
|
@@ -708,30 +769,34 @@ class DBSCAN(BaseTransformer):
|
|
708
769
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
770
|
"""
|
710
771
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
772
|
+
inference_method = "decision_function"
|
712
773
|
|
713
774
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
775
|
# are specific to the type of dataset used.
|
715
776
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
777
|
|
778
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
779
|
+
|
717
780
|
if isinstance(dataset, DataFrame):
|
718
781
|
self._deps = self._batch_inference_validate_snowpark(
|
719
782
|
dataset=dataset,
|
720
783
|
inference_method=inference_method,
|
721
784
|
)
|
722
|
-
assert isinstance(
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
788
|
transform_kwargs = dict(
|
724
789
|
session=dataset._session,
|
725
790
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
727
792
|
expected_output_cols_type="float",
|
728
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
729
797
|
|
730
798
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
800
|
|
736
801
|
transform_handlers = ModelTransformerBuilder.build(
|
737
802
|
dataset=dataset,
|
@@ -744,7 +809,7 @@ class DBSCAN(BaseTransformer):
|
|
744
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
810
|
inference_method=inference_method,
|
746
811
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
748
813
|
**transform_kwargs
|
749
814
|
)
|
750
815
|
return output_df
|
@@ -773,12 +838,14 @@ class DBSCAN(BaseTransformer):
|
|
773
838
|
Output dataset with probability of the sample for each class in the model.
|
774
839
|
"""
|
775
840
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
841
|
+
inference_method = "score_samples"
|
777
842
|
|
778
843
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
844
|
# are specific to the type of dataset used.
|
780
845
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
846
|
|
847
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
848
|
+
|
782
849
|
if isinstance(dataset, DataFrame):
|
783
850
|
self._deps = self._batch_inference_validate_snowpark(
|
784
851
|
dataset=dataset,
|
@@ -791,6 +858,9 @@ class DBSCAN(BaseTransformer):
|
|
791
858
|
drop_input_cols = self._drop_input_cols,
|
792
859
|
expected_output_cols_type="float",
|
793
860
|
)
|
861
|
+
expected_output_cols = self._align_expected_output_names(
|
862
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
863
|
+
)
|
794
864
|
|
795
865
|
elif isinstance(dataset, pd.DataFrame):
|
796
866
|
transform_kwargs = dict(
|
@@ -809,7 +879,7 @@ class DBSCAN(BaseTransformer):
|
|
809
879
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
880
|
inference_method=inference_method,
|
811
881
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
882
|
+
expected_output_cols=expected_output_cols,
|
813
883
|
**transform_kwargs
|
814
884
|
)
|
815
885
|
return output_df
|
@@ -954,50 +1024,84 @@ class DBSCAN(BaseTransformer):
|
|
954
1024
|
)
|
955
1025
|
return output_df
|
956
1026
|
|
1027
|
+
|
1028
|
+
|
1029
|
+
def to_sklearn(self) -> Any:
|
1030
|
+
"""Get sklearn.cluster.DBSCAN object.
|
1031
|
+
"""
|
1032
|
+
if self._sklearn_object is None:
|
1033
|
+
self._sklearn_object = self._create_sklearn_object()
|
1034
|
+
return self._sklearn_object
|
1035
|
+
|
1036
|
+
def to_xgboost(self) -> Any:
|
1037
|
+
raise exceptions.SnowflakeMLException(
|
1038
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
+
original_exception=AttributeError(
|
1040
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
+
"to_xgboost()",
|
1042
|
+
"to_sklearn()"
|
1043
|
+
)
|
1044
|
+
),
|
1045
|
+
)
|
1046
|
+
|
1047
|
+
def to_lightgbm(self) -> Any:
|
1048
|
+
raise exceptions.SnowflakeMLException(
|
1049
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
+
original_exception=AttributeError(
|
1051
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
+
"to_lightgbm()",
|
1053
|
+
"to_sklearn()"
|
1054
|
+
)
|
1055
|
+
),
|
1056
|
+
)
|
957
1057
|
|
958
|
-
def
|
1058
|
+
def _get_dependencies(self) -> List[str]:
|
1059
|
+
return self._deps
|
1060
|
+
|
1061
|
+
|
1062
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
959
1063
|
self._model_signature_dict = dict()
|
960
1064
|
|
961
1065
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
962
1066
|
|
963
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1067
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
964
1068
|
outputs: List[BaseFeatureSpec] = []
|
965
1069
|
if hasattr(self, "predict"):
|
966
1070
|
# keep mypy happy
|
967
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1071
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
968
1072
|
# For classifier, the type of predict is the same as the type of label
|
969
|
-
if self._sklearn_object._estimator_type ==
|
970
|
-
|
1073
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1074
|
+
# label columns is the desired type for output
|
971
1075
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
1076
|
# rename the output columns
|
973
1077
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
975
|
-
|
976
|
-
|
1078
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1079
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1080
|
+
)
|
977
1081
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
978
1082
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
979
|
-
# Clusterer returns int64 cluster labels.
|
1083
|
+
# Clusterer returns int64 cluster labels.
|
980
1084
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
981
1085
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
1089
|
+
|
986
1090
|
# For regressor, the type of predict is float64
|
987
|
-
elif self._sklearn_object._estimator_type ==
|
1091
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
988
1092
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
992
|
-
|
1093
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1094
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1095
|
+
)
|
1096
|
+
|
993
1097
|
for prob_func in PROB_FUNCTIONS:
|
994
1098
|
if hasattr(self, prob_func):
|
995
1099
|
output_cols_prefix: str = f"{prob_func}_"
|
996
1100
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
997
1101
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
998
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1102
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1103
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1104
|
+
)
|
1001
1105
|
|
1002
1106
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1003
1107
|
items = list(self._model_signature_dict.items())
|
@@ -1010,10 +1114,10 @@ class DBSCAN(BaseTransformer):
|
|
1010
1114
|
"""Returns model signature of current class.
|
1011
1115
|
|
1012
1116
|
Raises:
|
1013
|
-
|
1117
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1014
1118
|
|
1015
1119
|
Returns:
|
1016
|
-
Dict
|
1120
|
+
Dict with each method and its input output signature
|
1017
1121
|
"""
|
1018
1122
|
if self._model_signature_dict is None:
|
1019
1123
|
raise exceptions.SnowflakeMLException(
|
@@ -1021,35 +1125,3 @@ class DBSCAN(BaseTransformer):
|
|
1021
1125
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1022
1126
|
)
|
1023
1127
|
return self._model_signature_dict
|
1024
|
-
|
1025
|
-
def to_sklearn(self) -> Any:
|
1026
|
-
"""Get sklearn.cluster.DBSCAN object.
|
1027
|
-
"""
|
1028
|
-
if self._sklearn_object is None:
|
1029
|
-
self._sklearn_object = self._create_sklearn_object()
|
1030
|
-
return self._sklearn_object
|
1031
|
-
|
1032
|
-
def to_xgboost(self) -> Any:
|
1033
|
-
raise exceptions.SnowflakeMLException(
|
1034
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
-
original_exception=AttributeError(
|
1036
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
-
"to_xgboost()",
|
1038
|
-
"to_sklearn()"
|
1039
|
-
)
|
1040
|
-
),
|
1041
|
-
)
|
1042
|
-
|
1043
|
-
def to_lightgbm(self) -> Any:
|
1044
|
-
raise exceptions.SnowflakeMLException(
|
1045
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
-
original_exception=AttributeError(
|
1047
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
-
"to_lightgbm()",
|
1049
|
-
"to_sklearn()"
|
1050
|
-
)
|
1051
|
-
),
|
1052
|
-
)
|
1053
|
-
|
1054
|
-
def _get_dependencies(self) -> List[str]:
|
1055
|
-
return self._deps
|