snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
32
32
|
BatchInferenceKwargsTypedDict,
|
33
33
|
ScoreKwargsTypedDict
|
34
34
|
)
|
35
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
36
|
+
from snowflake.ml.model.model_signature import (
|
37
|
+
BaseFeatureSpec,
|
38
|
+
DataType,
|
39
|
+
FeatureSpec,
|
40
|
+
ModelSignature,
|
41
|
+
_infer_signature,
|
42
|
+
_rename_signature_with_snowflake_identifiers,
|
43
|
+
)
|
35
44
|
|
36
45
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
37
46
|
|
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
42
51
|
validate_sklearn_args,
|
43
52
|
)
|
44
53
|
|
45
|
-
from snowflake.ml.model.model_signature import (
|
46
|
-
DataType,
|
47
|
-
FeatureSpec,
|
48
|
-
ModelSignature,
|
49
|
-
_infer_signature,
|
50
|
-
_rename_signature_with_snowflake_identifiers,
|
51
|
-
BaseFeatureSpec,
|
52
|
-
)
|
53
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
54
|
-
|
55
54
|
_PROJECT = "ModelDevelopment"
|
56
55
|
# Derive subproject from module name by removing "sklearn"
|
57
56
|
# and converting module name from underscore to CamelCase
|
@@ -426,12 +425,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
426
425
|
)
|
427
426
|
return selected_cols
|
428
427
|
|
429
|
-
|
430
|
-
project=_PROJECT,
|
431
|
-
subproject=_SUBPROJECT,
|
432
|
-
custom_tags=dict([("autogen", True)]),
|
433
|
-
)
|
434
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
|
428
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
|
435
429
|
"""Fit gradient boosting classifier
|
436
430
|
For more details on this function, see [xgboost.XGBRFClassifier.fit]
|
437
431
|
(https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier.fit)
|
@@ -458,12 +452,14 @@ class XGBRFClassifier(BaseTransformer):
|
|
458
452
|
|
459
453
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
460
454
|
|
461
|
-
|
455
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
462
456
|
if SNOWML_SPROC_ENV in os.environ:
|
463
457
|
statement_params = telemetry.get_function_usage_statement_params(
|
464
458
|
project=_PROJECT,
|
465
459
|
subproject=_SUBPROJECT,
|
466
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
460
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
461
|
+
inspect.currentframe(), XGBRFClassifier.__class__.__name__
|
462
|
+
),
|
467
463
|
api_calls=[Session.call],
|
468
464
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
469
465
|
)
|
@@ -484,7 +480,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
484
480
|
)
|
485
481
|
self._sklearn_object = model_trainer.train()
|
486
482
|
self._is_fitted = True
|
487
|
-
self.
|
483
|
+
self._generate_model_signatures(dataset)
|
488
484
|
return self
|
489
485
|
|
490
486
|
def _batch_inference_validate_snowpark(
|
@@ -560,7 +556,9 @@ class XGBRFClassifier(BaseTransformer):
|
|
560
556
|
# when it is classifier, infer the datatype from label columns
|
561
557
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
562
558
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
563
|
-
label_cols_signatures = [
|
559
|
+
label_cols_signatures = [
|
560
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
561
|
+
]
|
564
562
|
if len(label_cols_signatures) == 0:
|
565
563
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
566
564
|
raise exceptions.SnowflakeMLException(
|
@@ -568,25 +566,22 @@ class XGBRFClassifier(BaseTransformer):
|
|
568
566
|
original_exception=ValueError(error_str),
|
569
567
|
)
|
570
568
|
|
571
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
572
|
-
label_cols_signatures[0].as_snowpark_type()
|
573
|
-
)
|
569
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
574
570
|
|
575
571
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
576
|
-
assert isinstance(
|
572
|
+
assert isinstance(
|
573
|
+
dataset._session, Session
|
574
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
577
575
|
|
578
576
|
transform_kwargs = dict(
|
579
|
-
session
|
580
|
-
dependencies
|
581
|
-
drop_input_cols
|
582
|
-
expected_output_cols_type
|
577
|
+
session=dataset._session,
|
578
|
+
dependencies=self._deps,
|
579
|
+
drop_input_cols=self._drop_input_cols,
|
580
|
+
expected_output_cols_type=expected_type_inferred,
|
583
581
|
)
|
584
582
|
|
585
583
|
elif isinstance(dataset, pd.DataFrame):
|
586
|
-
transform_kwargs = dict(
|
587
|
-
snowpark_input_cols = self._snowpark_cols,
|
588
|
-
drop_input_cols = self._drop_input_cols
|
589
|
-
)
|
584
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
590
585
|
|
591
586
|
transform_handlers = ModelTransformerBuilder.build(
|
592
587
|
dataset=dataset,
|
@@ -626,7 +621,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
626
621
|
Transformed dataset.
|
627
622
|
"""
|
628
623
|
super()._check_dataset_type(dataset)
|
629
|
-
inference_method="transform"
|
624
|
+
inference_method = "transform"
|
630
625
|
|
631
626
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
632
627
|
# are specific to the type of dataset used.
|
@@ -663,17 +658,14 @@ class XGBRFClassifier(BaseTransformer):
|
|
663
658
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
664
659
|
|
665
660
|
transform_kwargs = dict(
|
666
|
-
session
|
667
|
-
dependencies
|
668
|
-
drop_input_cols
|
669
|
-
expected_output_cols_type
|
661
|
+
session=dataset._session,
|
662
|
+
dependencies=self._deps,
|
663
|
+
drop_input_cols=self._drop_input_cols,
|
664
|
+
expected_output_cols_type=expected_dtype,
|
670
665
|
)
|
671
666
|
|
672
667
|
elif isinstance(dataset, pd.DataFrame):
|
673
|
-
transform_kwargs = dict(
|
674
|
-
snowpark_input_cols = self._snowpark_cols,
|
675
|
-
drop_input_cols = self._drop_input_cols
|
676
|
-
)
|
668
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
677
669
|
|
678
670
|
transform_handlers = ModelTransformerBuilder.build(
|
679
671
|
dataset=dataset,
|
@@ -692,7 +684,11 @@ class XGBRFClassifier(BaseTransformer):
|
|
692
684
|
return output_df
|
693
685
|
|
694
686
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
695
|
-
def fit_predict(
|
687
|
+
def fit_predict(
|
688
|
+
self,
|
689
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
690
|
+
output_cols_prefix: str = "fit_predict_",
|
691
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
696
692
|
""" Method not supported for this class.
|
697
693
|
|
698
694
|
|
@@ -717,7 +713,9 @@ class XGBRFClassifier(BaseTransformer):
|
|
717
713
|
)
|
718
714
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
719
715
|
drop_input_cols=self._drop_input_cols,
|
720
|
-
expected_output_cols_list=
|
716
|
+
expected_output_cols_list=(
|
717
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
718
|
+
),
|
721
719
|
)
|
722
720
|
self._sklearn_object = fitted_estimator
|
723
721
|
self._is_fitted = True
|
@@ -734,6 +732,62 @@ class XGBRFClassifier(BaseTransformer):
|
|
734
732
|
assert self._sklearn_object is not None
|
735
733
|
return self._sklearn_object.embedding_
|
736
734
|
|
735
|
+
|
736
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
737
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
738
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
739
|
+
"""
|
740
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
741
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
742
|
+
if output_cols:
|
743
|
+
output_cols = [
|
744
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
745
|
+
for c in output_cols
|
746
|
+
]
|
747
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
748
|
+
output_cols = [output_cols_prefix]
|
749
|
+
elif self._sklearn_object is not None:
|
750
|
+
classes = self._sklearn_object.classes_
|
751
|
+
if isinstance(classes, numpy.ndarray):
|
752
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
753
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
754
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
755
|
+
output_cols = []
|
756
|
+
for i, cl in enumerate(classes):
|
757
|
+
# For binary classification, there is only one output column for each class
|
758
|
+
# ndarray as the two classes are complementary.
|
759
|
+
if len(cl) == 2:
|
760
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
761
|
+
else:
|
762
|
+
output_cols.extend([
|
763
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
764
|
+
])
|
765
|
+
else:
|
766
|
+
output_cols = []
|
767
|
+
|
768
|
+
# Make sure column names are valid snowflake identifiers.
|
769
|
+
assert output_cols is not None # Make MyPy happy
|
770
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
771
|
+
|
772
|
+
return rv
|
773
|
+
|
774
|
+
def _align_expected_output_names(
|
775
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
776
|
+
) -> List[str]:
|
777
|
+
# in case the inferred output column names dimension is different
|
778
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
779
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
780
|
+
output_df_columns = list(output_df_pd.columns)
|
781
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
782
|
+
if self.sample_weight_col:
|
783
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
784
|
+
# if the dimension of inferred output column names is correct; use it
|
785
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
786
|
+
return expected_output_cols_list
|
787
|
+
# otherwise, use the sklearn estimator's output
|
788
|
+
else:
|
789
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
790
|
+
|
737
791
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
738
792
|
@telemetry.send_api_usage_telemetry(
|
739
793
|
project=_PROJECT,
|
@@ -766,24 +820,28 @@ class XGBRFClassifier(BaseTransformer):
|
|
766
820
|
# are specific to the type of dataset used.
|
767
821
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
768
822
|
|
823
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
824
|
+
|
769
825
|
if isinstance(dataset, DataFrame):
|
770
826
|
self._deps = self._batch_inference_validate_snowpark(
|
771
827
|
dataset=dataset,
|
772
828
|
inference_method=inference_method,
|
773
829
|
)
|
774
|
-
assert isinstance(
|
830
|
+
assert isinstance(
|
831
|
+
dataset._session, Session
|
832
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
775
833
|
transform_kwargs = dict(
|
776
834
|
session=dataset._session,
|
777
835
|
dependencies=self._deps,
|
778
|
-
drop_input_cols
|
836
|
+
drop_input_cols=self._drop_input_cols,
|
779
837
|
expected_output_cols_type="float",
|
780
838
|
)
|
839
|
+
expected_output_cols = self._align_expected_output_names(
|
840
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
841
|
+
)
|
781
842
|
|
782
843
|
elif isinstance(dataset, pd.DataFrame):
|
783
|
-
transform_kwargs = dict(
|
784
|
-
snowpark_input_cols = self._snowpark_cols,
|
785
|
-
drop_input_cols = self._drop_input_cols
|
786
|
-
)
|
844
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
787
845
|
|
788
846
|
transform_handlers = ModelTransformerBuilder.build(
|
789
847
|
dataset=dataset,
|
@@ -795,7 +853,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
795
853
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
796
854
|
inference_method=inference_method,
|
797
855
|
input_cols=self.input_cols,
|
798
|
-
expected_output_cols=
|
856
|
+
expected_output_cols=expected_output_cols,
|
799
857
|
**transform_kwargs
|
800
858
|
)
|
801
859
|
return output_df
|
@@ -827,7 +885,8 @@ class XGBRFClassifier(BaseTransformer):
|
|
827
885
|
Output dataset with log probability of the sample for each class in the model.
|
828
886
|
"""
|
829
887
|
super()._check_dataset_type(dataset)
|
830
|
-
inference_method="predict_log_proba"
|
888
|
+
inference_method = "predict_log_proba"
|
889
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
831
890
|
|
832
891
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
833
892
|
# are specific to the type of dataset used.
|
@@ -838,18 +897,20 @@ class XGBRFClassifier(BaseTransformer):
|
|
838
897
|
dataset=dataset,
|
839
898
|
inference_method=inference_method,
|
840
899
|
)
|
841
|
-
assert isinstance(
|
900
|
+
assert isinstance(
|
901
|
+
dataset._session, Session
|
902
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
842
903
|
transform_kwargs = dict(
|
843
904
|
session=dataset._session,
|
844
905
|
dependencies=self._deps,
|
845
|
-
drop_input_cols
|
906
|
+
drop_input_cols=self._drop_input_cols,
|
846
907
|
expected_output_cols_type="float",
|
847
908
|
)
|
909
|
+
expected_output_cols = self._align_expected_output_names(
|
910
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
911
|
+
)
|
848
912
|
elif isinstance(dataset, pd.DataFrame):
|
849
|
-
transform_kwargs = dict(
|
850
|
-
snowpark_input_cols = self._snowpark_cols,
|
851
|
-
drop_input_cols = self._drop_input_cols
|
852
|
-
)
|
913
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
853
914
|
|
854
915
|
transform_handlers = ModelTransformerBuilder.build(
|
855
916
|
dataset=dataset,
|
@@ -862,7 +923,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
862
923
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
863
924
|
inference_method=inference_method,
|
864
925
|
input_cols=self.input_cols,
|
865
|
-
expected_output_cols=
|
926
|
+
expected_output_cols=expected_output_cols,
|
866
927
|
**transform_kwargs
|
867
928
|
)
|
868
929
|
return output_df
|
@@ -888,30 +949,34 @@ class XGBRFClassifier(BaseTransformer):
|
|
888
949
|
Output dataset with results of the decision function for the samples in input dataset.
|
889
950
|
"""
|
890
951
|
super()._check_dataset_type(dataset)
|
891
|
-
inference_method="decision_function"
|
952
|
+
inference_method = "decision_function"
|
892
953
|
|
893
954
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
894
955
|
# are specific to the type of dataset used.
|
895
956
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
896
957
|
|
958
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
959
|
+
|
897
960
|
if isinstance(dataset, DataFrame):
|
898
961
|
self._deps = self._batch_inference_validate_snowpark(
|
899
962
|
dataset=dataset,
|
900
963
|
inference_method=inference_method,
|
901
964
|
)
|
902
|
-
assert isinstance(
|
965
|
+
assert isinstance(
|
966
|
+
dataset._session, Session
|
967
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
903
968
|
transform_kwargs = dict(
|
904
969
|
session=dataset._session,
|
905
970
|
dependencies=self._deps,
|
906
|
-
drop_input_cols
|
971
|
+
drop_input_cols=self._drop_input_cols,
|
907
972
|
expected_output_cols_type="float",
|
908
973
|
)
|
974
|
+
expected_output_cols = self._align_expected_output_names(
|
975
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
976
|
+
)
|
909
977
|
|
910
978
|
elif isinstance(dataset, pd.DataFrame):
|
911
|
-
transform_kwargs = dict(
|
912
|
-
snowpark_input_cols = self._snowpark_cols,
|
913
|
-
drop_input_cols = self._drop_input_cols
|
914
|
-
)
|
979
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
915
980
|
|
916
981
|
transform_handlers = ModelTransformerBuilder.build(
|
917
982
|
dataset=dataset,
|
@@ -924,7 +989,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
924
989
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
925
990
|
inference_method=inference_method,
|
926
991
|
input_cols=self.input_cols,
|
927
|
-
expected_output_cols=
|
992
|
+
expected_output_cols=expected_output_cols,
|
928
993
|
**transform_kwargs
|
929
994
|
)
|
930
995
|
return output_df
|
@@ -953,12 +1018,14 @@ class XGBRFClassifier(BaseTransformer):
|
|
953
1018
|
Output dataset with probability of the sample for each class in the model.
|
954
1019
|
"""
|
955
1020
|
super()._check_dataset_type(dataset)
|
956
|
-
inference_method="score_samples"
|
1021
|
+
inference_method = "score_samples"
|
957
1022
|
|
958
1023
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
959
1024
|
# are specific to the type of dataset used.
|
960
1025
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
961
1026
|
|
1027
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
1028
|
+
|
962
1029
|
if isinstance(dataset, DataFrame):
|
963
1030
|
self._deps = self._batch_inference_validate_snowpark(
|
964
1031
|
dataset=dataset,
|
@@ -971,6 +1038,9 @@ class XGBRFClassifier(BaseTransformer):
|
|
971
1038
|
drop_input_cols = self._drop_input_cols,
|
972
1039
|
expected_output_cols_type="float",
|
973
1040
|
)
|
1041
|
+
expected_output_cols = self._align_expected_output_names(
|
1042
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
1043
|
+
)
|
974
1044
|
|
975
1045
|
elif isinstance(dataset, pd.DataFrame):
|
976
1046
|
transform_kwargs = dict(
|
@@ -989,7 +1059,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
989
1059
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
990
1060
|
inference_method=inference_method,
|
991
1061
|
input_cols=self.input_cols,
|
992
|
-
expected_output_cols=
|
1062
|
+
expected_output_cols=expected_output_cols,
|
993
1063
|
**transform_kwargs
|
994
1064
|
)
|
995
1065
|
return output_df
|
@@ -1136,50 +1206,84 @@ class XGBRFClassifier(BaseTransformer):
|
|
1136
1206
|
)
|
1137
1207
|
return output_df
|
1138
1208
|
|
1209
|
+
|
1210
|
+
|
1211
|
+
def to_xgboost(self) -> Any:
|
1212
|
+
"""Get xgboost.XGBRFClassifier object.
|
1213
|
+
"""
|
1214
|
+
if self._sklearn_object is None:
|
1215
|
+
self._sklearn_object = self._create_sklearn_object()
|
1216
|
+
return self._sklearn_object
|
1217
|
+
|
1218
|
+
def to_sklearn(self) -> Any:
|
1219
|
+
raise exceptions.SnowflakeMLException(
|
1220
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1221
|
+
original_exception=AttributeError(
|
1222
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1223
|
+
"to_sklearn()",
|
1224
|
+
"to_xgboost()"
|
1225
|
+
)
|
1226
|
+
),
|
1227
|
+
)
|
1228
|
+
|
1229
|
+
def to_lightgbm(self) -> Any:
|
1230
|
+
raise exceptions.SnowflakeMLException(
|
1231
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1232
|
+
original_exception=AttributeError(
|
1233
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1234
|
+
"to_lightgbm()",
|
1235
|
+
"to_xgboost()"
|
1236
|
+
)
|
1237
|
+
),
|
1238
|
+
)
|
1139
1239
|
|
1140
|
-
def
|
1240
|
+
def _get_dependencies(self) -> List[str]:
|
1241
|
+
return self._deps
|
1242
|
+
|
1243
|
+
|
1244
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1141
1245
|
self._model_signature_dict = dict()
|
1142
1246
|
|
1143
1247
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1144
1248
|
|
1145
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1249
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1146
1250
|
outputs: List[BaseFeatureSpec] = []
|
1147
1251
|
if hasattr(self, "predict"):
|
1148
1252
|
# keep mypy happy
|
1149
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1253
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1150
1254
|
# For classifier, the type of predict is the same as the type of label
|
1151
|
-
if self._sklearn_object._estimator_type ==
|
1152
|
-
|
1255
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1256
|
+
# label columns is the desired type for output
|
1153
1257
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1154
1258
|
# rename the output columns
|
1155
1259
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1156
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1157
|
-
|
1158
|
-
|
1260
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1261
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1262
|
+
)
|
1159
1263
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1160
1264
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1161
|
-
# Clusterer returns int64 cluster labels.
|
1265
|
+
# Clusterer returns int64 cluster labels.
|
1162
1266
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1163
1267
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1164
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1165
|
-
|
1166
|
-
|
1167
|
-
|
1268
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1269
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1270
|
+
)
|
1271
|
+
|
1168
1272
|
# For regressor, the type of predict is float64
|
1169
|
-
elif self._sklearn_object._estimator_type ==
|
1273
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1170
1274
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1171
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1172
|
-
|
1173
|
-
|
1174
|
-
|
1275
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1276
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1277
|
+
)
|
1278
|
+
|
1175
1279
|
for prob_func in PROB_FUNCTIONS:
|
1176
1280
|
if hasattr(self, prob_func):
|
1177
1281
|
output_cols_prefix: str = f"{prob_func}_"
|
1178
1282
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1179
1283
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1180
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1181
|
-
|
1182
|
-
|
1284
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1285
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1286
|
+
)
|
1183
1287
|
|
1184
1288
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1185
1289
|
items = list(self._model_signature_dict.items())
|
@@ -1192,10 +1296,10 @@ class XGBRFClassifier(BaseTransformer):
|
|
1192
1296
|
"""Returns model signature of current class.
|
1193
1297
|
|
1194
1298
|
Raises:
|
1195
|
-
|
1299
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1196
1300
|
|
1197
1301
|
Returns:
|
1198
|
-
Dict
|
1302
|
+
Dict with each method and its input output signature
|
1199
1303
|
"""
|
1200
1304
|
if self._model_signature_dict is None:
|
1201
1305
|
raise exceptions.SnowflakeMLException(
|
@@ -1203,35 +1307,3 @@ class XGBRFClassifier(BaseTransformer):
|
|
1203
1307
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1204
1308
|
)
|
1205
1309
|
return self._model_signature_dict
|
1206
|
-
|
1207
|
-
def to_xgboost(self) -> Any:
|
1208
|
-
"""Get xgboost.XGBRFClassifier object.
|
1209
|
-
"""
|
1210
|
-
if self._sklearn_object is None:
|
1211
|
-
self._sklearn_object = self._create_sklearn_object()
|
1212
|
-
return self._sklearn_object
|
1213
|
-
|
1214
|
-
def to_sklearn(self) -> Any:
|
1215
|
-
raise exceptions.SnowflakeMLException(
|
1216
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1217
|
-
original_exception=AttributeError(
|
1218
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1219
|
-
"to_sklearn()",
|
1220
|
-
"to_xgboost()"
|
1221
|
-
)
|
1222
|
-
),
|
1223
|
-
)
|
1224
|
-
|
1225
|
-
def to_lightgbm(self) -> Any:
|
1226
|
-
raise exceptions.SnowflakeMLException(
|
1227
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1228
|
-
original_exception=AttributeError(
|
1229
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1230
|
-
"to_lightgbm()",
|
1231
|
-
"to_xgboost()"
|
1232
|
-
)
|
1233
|
-
),
|
1234
|
-
)
|
1235
|
-
|
1236
|
-
def _get_dependencies(self) -> List[str]:
|
1237
|
-
return self._deps
|