snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
32
  BatchInferenceKwargsTypedDict,
33
33
  ScoreKwargsTypedDict
34
34
  )
35
+ from snowflake.ml.model._signatures import utils as model_signature_utils
36
+ from snowflake.ml.model.model_signature import (
37
+ BaseFeatureSpec,
38
+ DataType,
39
+ FeatureSpec,
40
+ ModelSignature,
41
+ _infer_signature,
42
+ _rename_signature_with_snowflake_identifiers,
43
+ )
35
44
 
36
45
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
46
 
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
51
  validate_sklearn_args,
43
52
  )
44
53
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
54
  _PROJECT = "ModelDevelopment"
56
55
  # Derive subproject from module name by removing "sklearn"
57
56
  # and converting module name from underscore to CamelCase
@@ -426,12 +425,7 @@ class XGBRFClassifier(BaseTransformer):
426
425
  )
427
426
  return selected_cols
428
427
 
429
- @telemetry.send_api_usage_telemetry(
430
- project=_PROJECT,
431
- subproject=_SUBPROJECT,
432
- custom_tags=dict([("autogen", True)]),
433
- )
434
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
428
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
435
429
  """Fit gradient boosting classifier
436
430
  For more details on this function, see [xgboost.XGBRFClassifier.fit]
437
431
  (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier.fit)
@@ -458,12 +452,14 @@ class XGBRFClassifier(BaseTransformer):
458
452
 
459
453
  self._snowpark_cols = dataset.select(self.input_cols).columns
460
454
 
461
- # If we are already in a stored procedure, no need to kick off another one.
455
+ # If we are already in a stored procedure, no need to kick off another one.
462
456
  if SNOWML_SPROC_ENV in os.environ:
463
457
  statement_params = telemetry.get_function_usage_statement_params(
464
458
  project=_PROJECT,
465
459
  subproject=_SUBPROJECT,
466
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFClassifier.__class__.__name__),
460
+ function_name=telemetry.get_statement_params_full_func_name(
461
+ inspect.currentframe(), XGBRFClassifier.__class__.__name__
462
+ ),
467
463
  api_calls=[Session.call],
468
464
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
469
465
  )
@@ -484,7 +480,7 @@ class XGBRFClassifier(BaseTransformer):
484
480
  )
485
481
  self._sklearn_object = model_trainer.train()
486
482
  self._is_fitted = True
487
- self._get_model_signatures(dataset)
483
+ self._generate_model_signatures(dataset)
488
484
  return self
489
485
 
490
486
  def _batch_inference_validate_snowpark(
@@ -560,7 +556,9 @@ class XGBRFClassifier(BaseTransformer):
560
556
  # when it is classifier, infer the datatype from label columns
561
557
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
562
558
  # Batch inference takes a single expected output column type. Use the first columns type for now.
563
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
559
+ label_cols_signatures = [
560
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
561
+ ]
564
562
  if len(label_cols_signatures) == 0:
565
563
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
566
564
  raise exceptions.SnowflakeMLException(
@@ -568,25 +566,22 @@ class XGBRFClassifier(BaseTransformer):
568
566
  original_exception=ValueError(error_str),
569
567
  )
570
568
 
571
- expected_type_inferred = convert_sp_to_sf_type(
572
- label_cols_signatures[0].as_snowpark_type()
573
- )
569
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
574
570
 
575
571
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
576
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
572
+ assert isinstance(
573
+ dataset._session, Session
574
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
575
 
578
576
  transform_kwargs = dict(
579
- session = dataset._session,
580
- dependencies = self._deps,
581
- drop_input_cols = self._drop_input_cols,
582
- expected_output_cols_type = expected_type_inferred,
577
+ session=dataset._session,
578
+ dependencies=self._deps,
579
+ drop_input_cols=self._drop_input_cols,
580
+ expected_output_cols_type=expected_type_inferred,
583
581
  )
584
582
 
585
583
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
584
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
585
 
591
586
  transform_handlers = ModelTransformerBuilder.build(
592
587
  dataset=dataset,
@@ -626,7 +621,7 @@ class XGBRFClassifier(BaseTransformer):
626
621
  Transformed dataset.
627
622
  """
628
623
  super()._check_dataset_type(dataset)
629
- inference_method="transform"
624
+ inference_method = "transform"
630
625
 
631
626
  # This dictionary contains optional kwargs for batch inference. These kwargs
632
627
  # are specific to the type of dataset used.
@@ -663,17 +658,14 @@ class XGBRFClassifier(BaseTransformer):
663
658
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
659
 
665
660
  transform_kwargs = dict(
666
- session = dataset._session,
667
- dependencies = self._deps,
668
- drop_input_cols = self._drop_input_cols,
669
- expected_output_cols_type = expected_dtype,
661
+ session=dataset._session,
662
+ dependencies=self._deps,
663
+ drop_input_cols=self._drop_input_cols,
664
+ expected_output_cols_type=expected_dtype,
670
665
  )
671
666
 
672
667
  elif isinstance(dataset, pd.DataFrame):
673
- transform_kwargs = dict(
674
- snowpark_input_cols = self._snowpark_cols,
675
- drop_input_cols = self._drop_input_cols
676
- )
668
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
677
669
 
678
670
  transform_handlers = ModelTransformerBuilder.build(
679
671
  dataset=dataset,
@@ -692,7 +684,11 @@ class XGBRFClassifier(BaseTransformer):
692
684
  return output_df
693
685
 
694
686
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
695
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
687
+ def fit_predict(
688
+ self,
689
+ dataset: Union[DataFrame, pd.DataFrame],
690
+ output_cols_prefix: str = "fit_predict_",
691
+ ) -> Union[DataFrame, pd.DataFrame]:
696
692
  """ Method not supported for this class.
697
693
 
698
694
 
@@ -717,7 +713,9 @@ class XGBRFClassifier(BaseTransformer):
717
713
  )
718
714
  output_result, fitted_estimator = model_trainer.train_fit_predict(
719
715
  drop_input_cols=self._drop_input_cols,
720
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols_list=(
717
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
718
+ ),
721
719
  )
722
720
  self._sklearn_object = fitted_estimator
723
721
  self._is_fitted = True
@@ -734,6 +732,62 @@ class XGBRFClassifier(BaseTransformer):
734
732
  assert self._sklearn_object is not None
735
733
  return self._sklearn_object.embedding_
736
734
 
735
+
736
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
737
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
738
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
739
+ """
740
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
741
+ # The following condition is introduced for kneighbors methods, and not used in other methods
742
+ if output_cols:
743
+ output_cols = [
744
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
745
+ for c in output_cols
746
+ ]
747
+ elif getattr(self._sklearn_object, "classes_", None) is None:
748
+ output_cols = [output_cols_prefix]
749
+ elif self._sklearn_object is not None:
750
+ classes = self._sklearn_object.classes_
751
+ if isinstance(classes, numpy.ndarray):
752
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
753
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
754
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
755
+ output_cols = []
756
+ for i, cl in enumerate(classes):
757
+ # For binary classification, there is only one output column for each class
758
+ # ndarray as the two classes are complementary.
759
+ if len(cl) == 2:
760
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
761
+ else:
762
+ output_cols.extend([
763
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
764
+ ])
765
+ else:
766
+ output_cols = []
767
+
768
+ # Make sure column names are valid snowflake identifiers.
769
+ assert output_cols is not None # Make MyPy happy
770
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
771
+
772
+ return rv
773
+
774
+ def _align_expected_output_names(
775
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
776
+ ) -> List[str]:
777
+ # in case the inferred output column names dimension is different
778
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
779
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
780
+ output_df_columns = list(output_df_pd.columns)
781
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
782
+ if self.sample_weight_col:
783
+ output_df_columns_set -= set(self.sample_weight_col)
784
+ # if the dimension of inferred output column names is correct; use it
785
+ if len(expected_output_cols_list) == len(output_df_columns_set):
786
+ return expected_output_cols_list
787
+ # otherwise, use the sklearn estimator's output
788
+ else:
789
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
790
+
737
791
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
738
792
  @telemetry.send_api_usage_telemetry(
739
793
  project=_PROJECT,
@@ -766,24 +820,28 @@ class XGBRFClassifier(BaseTransformer):
766
820
  # are specific to the type of dataset used.
767
821
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
822
 
823
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
824
+
769
825
  if isinstance(dataset, DataFrame):
770
826
  self._deps = self._batch_inference_validate_snowpark(
771
827
  dataset=dataset,
772
828
  inference_method=inference_method,
773
829
  )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
830
+ assert isinstance(
831
+ dataset._session, Session
832
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
833
  transform_kwargs = dict(
776
834
  session=dataset._session,
777
835
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
836
+ drop_input_cols=self._drop_input_cols,
779
837
  expected_output_cols_type="float",
780
838
  )
839
+ expected_output_cols = self._align_expected_output_names(
840
+ inference_method, dataset, expected_output_cols, output_cols_prefix
841
+ )
781
842
 
782
843
  elif isinstance(dataset, pd.DataFrame):
783
- transform_kwargs = dict(
784
- snowpark_input_cols = self._snowpark_cols,
785
- drop_input_cols = self._drop_input_cols
786
- )
844
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
787
845
 
788
846
  transform_handlers = ModelTransformerBuilder.build(
789
847
  dataset=dataset,
@@ -795,7 +853,7 @@ class XGBRFClassifier(BaseTransformer):
795
853
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
796
854
  inference_method=inference_method,
797
855
  input_cols=self.input_cols,
798
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
856
+ expected_output_cols=expected_output_cols,
799
857
  **transform_kwargs
800
858
  )
801
859
  return output_df
@@ -827,7 +885,8 @@ class XGBRFClassifier(BaseTransformer):
827
885
  Output dataset with log probability of the sample for each class in the model.
828
886
  """
829
887
  super()._check_dataset_type(dataset)
830
- inference_method="predict_log_proba"
888
+ inference_method = "predict_log_proba"
889
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
831
890
 
832
891
  # This dictionary contains optional kwargs for batch inference. These kwargs
833
892
  # are specific to the type of dataset used.
@@ -838,18 +897,20 @@ class XGBRFClassifier(BaseTransformer):
838
897
  dataset=dataset,
839
898
  inference_method=inference_method,
840
899
  )
841
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
900
+ assert isinstance(
901
+ dataset._session, Session
902
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
842
903
  transform_kwargs = dict(
843
904
  session=dataset._session,
844
905
  dependencies=self._deps,
845
- drop_input_cols = self._drop_input_cols,
906
+ drop_input_cols=self._drop_input_cols,
846
907
  expected_output_cols_type="float",
847
908
  )
909
+ expected_output_cols = self._align_expected_output_names(
910
+ inference_method, dataset, expected_output_cols, output_cols_prefix
911
+ )
848
912
  elif isinstance(dataset, pd.DataFrame):
849
- transform_kwargs = dict(
850
- snowpark_input_cols = self._snowpark_cols,
851
- drop_input_cols = self._drop_input_cols
852
- )
913
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
853
914
 
854
915
  transform_handlers = ModelTransformerBuilder.build(
855
916
  dataset=dataset,
@@ -862,7 +923,7 @@ class XGBRFClassifier(BaseTransformer):
862
923
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
863
924
  inference_method=inference_method,
864
925
  input_cols=self.input_cols,
865
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
926
+ expected_output_cols=expected_output_cols,
866
927
  **transform_kwargs
867
928
  )
868
929
  return output_df
@@ -888,30 +949,34 @@ class XGBRFClassifier(BaseTransformer):
888
949
  Output dataset with results of the decision function for the samples in input dataset.
889
950
  """
890
951
  super()._check_dataset_type(dataset)
891
- inference_method="decision_function"
952
+ inference_method = "decision_function"
892
953
 
893
954
  # This dictionary contains optional kwargs for batch inference. These kwargs
894
955
  # are specific to the type of dataset used.
895
956
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
896
957
 
958
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
959
+
897
960
  if isinstance(dataset, DataFrame):
898
961
  self._deps = self._batch_inference_validate_snowpark(
899
962
  dataset=dataset,
900
963
  inference_method=inference_method,
901
964
  )
902
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
965
+ assert isinstance(
966
+ dataset._session, Session
967
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
903
968
  transform_kwargs = dict(
904
969
  session=dataset._session,
905
970
  dependencies=self._deps,
906
- drop_input_cols = self._drop_input_cols,
971
+ drop_input_cols=self._drop_input_cols,
907
972
  expected_output_cols_type="float",
908
973
  )
974
+ expected_output_cols = self._align_expected_output_names(
975
+ inference_method, dataset, expected_output_cols, output_cols_prefix
976
+ )
909
977
 
910
978
  elif isinstance(dataset, pd.DataFrame):
911
- transform_kwargs = dict(
912
- snowpark_input_cols = self._snowpark_cols,
913
- drop_input_cols = self._drop_input_cols
914
- )
979
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
915
980
 
916
981
  transform_handlers = ModelTransformerBuilder.build(
917
982
  dataset=dataset,
@@ -924,7 +989,7 @@ class XGBRFClassifier(BaseTransformer):
924
989
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
925
990
  inference_method=inference_method,
926
991
  input_cols=self.input_cols,
927
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
992
+ expected_output_cols=expected_output_cols,
928
993
  **transform_kwargs
929
994
  )
930
995
  return output_df
@@ -953,12 +1018,14 @@ class XGBRFClassifier(BaseTransformer):
953
1018
  Output dataset with probability of the sample for each class in the model.
954
1019
  """
955
1020
  super()._check_dataset_type(dataset)
956
- inference_method="score_samples"
1021
+ inference_method = "score_samples"
957
1022
 
958
1023
  # This dictionary contains optional kwargs for batch inference. These kwargs
959
1024
  # are specific to the type of dataset used.
960
1025
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
961
1026
 
1027
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
1028
+
962
1029
  if isinstance(dataset, DataFrame):
963
1030
  self._deps = self._batch_inference_validate_snowpark(
964
1031
  dataset=dataset,
@@ -971,6 +1038,9 @@ class XGBRFClassifier(BaseTransformer):
971
1038
  drop_input_cols = self._drop_input_cols,
972
1039
  expected_output_cols_type="float",
973
1040
  )
1041
+ expected_output_cols = self._align_expected_output_names(
1042
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1043
+ )
974
1044
 
975
1045
  elif isinstance(dataset, pd.DataFrame):
976
1046
  transform_kwargs = dict(
@@ -989,7 +1059,7 @@ class XGBRFClassifier(BaseTransformer):
989
1059
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
990
1060
  inference_method=inference_method,
991
1061
  input_cols=self.input_cols,
992
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1062
+ expected_output_cols=expected_output_cols,
993
1063
  **transform_kwargs
994
1064
  )
995
1065
  return output_df
@@ -1136,50 +1206,84 @@ class XGBRFClassifier(BaseTransformer):
1136
1206
  )
1137
1207
  return output_df
1138
1208
 
1209
+
1210
+
1211
+ def to_xgboost(self) -> Any:
1212
+ """Get xgboost.XGBRFClassifier object.
1213
+ """
1214
+ if self._sklearn_object is None:
1215
+ self._sklearn_object = self._create_sklearn_object()
1216
+ return self._sklearn_object
1217
+
1218
+ def to_sklearn(self) -> Any:
1219
+ raise exceptions.SnowflakeMLException(
1220
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1221
+ original_exception=AttributeError(
1222
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1223
+ "to_sklearn()",
1224
+ "to_xgboost()"
1225
+ )
1226
+ ),
1227
+ )
1228
+
1229
+ def to_lightgbm(self) -> Any:
1230
+ raise exceptions.SnowflakeMLException(
1231
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1232
+ original_exception=AttributeError(
1233
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1234
+ "to_lightgbm()",
1235
+ "to_xgboost()"
1236
+ )
1237
+ ),
1238
+ )
1139
1239
 
1140
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1240
+ def _get_dependencies(self) -> List[str]:
1241
+ return self._deps
1242
+
1243
+
1244
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1141
1245
  self._model_signature_dict = dict()
1142
1246
 
1143
1247
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1144
1248
 
1145
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1249
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1146
1250
  outputs: List[BaseFeatureSpec] = []
1147
1251
  if hasattr(self, "predict"):
1148
1252
  # keep mypy happy
1149
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1253
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1150
1254
  # For classifier, the type of predict is the same as the type of label
1151
- if self._sklearn_object._estimator_type == 'classifier':
1152
- # label columns is the desired type for output
1255
+ if self._sklearn_object._estimator_type == "classifier":
1256
+ # label columns is the desired type for output
1153
1257
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1154
1258
  # rename the output columns
1155
1259
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1156
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1157
- ([] if self._drop_input_cols else inputs)
1158
- + outputs)
1260
+ self._model_signature_dict["predict"] = ModelSignature(
1261
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1262
+ )
1159
1263
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1160
1264
  # For outlier models, returns -1 for outliers and 1 for inliers.
1161
- # Clusterer returns int64 cluster labels.
1265
+ # Clusterer returns int64 cluster labels.
1162
1266
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1163
1267
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1164
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1165
- ([] if self._drop_input_cols else inputs)
1166
- + outputs)
1167
-
1268
+ self._model_signature_dict["predict"] = ModelSignature(
1269
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1270
+ )
1271
+
1168
1272
  # For regressor, the type of predict is float64
1169
- elif self._sklearn_object._estimator_type == 'regressor':
1273
+ elif self._sklearn_object._estimator_type == "regressor":
1170
1274
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1171
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1172
- ([] if self._drop_input_cols else inputs)
1173
- + outputs)
1174
-
1275
+ self._model_signature_dict["predict"] = ModelSignature(
1276
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1277
+ )
1278
+
1175
1279
  for prob_func in PROB_FUNCTIONS:
1176
1280
  if hasattr(self, prob_func):
1177
1281
  output_cols_prefix: str = f"{prob_func}_"
1178
1282
  output_column_names = self._get_output_column_names(output_cols_prefix)
1179
1283
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1180
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1181
- ([] if self._drop_input_cols else inputs)
1182
- + outputs)
1284
+ self._model_signature_dict[prob_func] = ModelSignature(
1285
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1286
+ )
1183
1287
 
1184
1288
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1185
1289
  items = list(self._model_signature_dict.items())
@@ -1192,10 +1296,10 @@ class XGBRFClassifier(BaseTransformer):
1192
1296
  """Returns model signature of current class.
1193
1297
 
1194
1298
  Raises:
1195
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1299
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1196
1300
 
1197
1301
  Returns:
1198
- Dict[str, ModelSignature]: each method and its input output signature
1302
+ Dict with each method and its input output signature
1199
1303
  """
1200
1304
  if self._model_signature_dict is None:
1201
1305
  raise exceptions.SnowflakeMLException(
@@ -1203,35 +1307,3 @@ class XGBRFClassifier(BaseTransformer):
1203
1307
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1204
1308
  )
1205
1309
  return self._model_signature_dict
1206
-
1207
- def to_xgboost(self) -> Any:
1208
- """Get xgboost.XGBRFClassifier object.
1209
- """
1210
- if self._sklearn_object is None:
1211
- self._sklearn_object = self._create_sklearn_object()
1212
- return self._sklearn_object
1213
-
1214
- def to_sklearn(self) -> Any:
1215
- raise exceptions.SnowflakeMLException(
1216
- error_code=error_codes.METHOD_NOT_ALLOWED,
1217
- original_exception=AttributeError(
1218
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1219
- "to_sklearn()",
1220
- "to_xgboost()"
1221
- )
1222
- ),
1223
- )
1224
-
1225
- def to_lightgbm(self) -> Any:
1226
- raise exceptions.SnowflakeMLException(
1227
- error_code=error_codes.METHOD_NOT_ALLOWED,
1228
- original_exception=AttributeError(
1229
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1230
- "to_lightgbm()",
1231
- "to_xgboost()"
1232
- )
1233
- ),
1234
- )
1235
-
1236
- def _get_dependencies(self) -> List[str]:
1237
- return self._deps