snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -286,12 +285,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
286
285
|
)
|
287
286
|
return selected_cols
|
288
287
|
|
289
|
-
|
290
|
-
project=_PROJECT,
|
291
|
-
subproject=_SUBPROJECT,
|
292
|
-
custom_tags=dict([("autogen", True)]),
|
293
|
-
)
|
294
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
|
288
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
|
295
289
|
"""Fit linear One-Class SVM with Stochastic Gradient Descent
|
296
290
|
For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit]
|
297
291
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit)
|
@@ -318,12 +312,14 @@ class SGDOneClassSVM(BaseTransformer):
|
|
318
312
|
|
319
313
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
320
314
|
|
321
|
-
|
315
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
322
316
|
if SNOWML_SPROC_ENV in os.environ:
|
323
317
|
statement_params = telemetry.get_function_usage_statement_params(
|
324
318
|
project=_PROJECT,
|
325
319
|
subproject=_SUBPROJECT,
|
326
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
320
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
321
|
+
inspect.currentframe(), SGDOneClassSVM.__class__.__name__
|
322
|
+
),
|
327
323
|
api_calls=[Session.call],
|
328
324
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
329
325
|
)
|
@@ -344,7 +340,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
344
340
|
)
|
345
341
|
self._sklearn_object = model_trainer.train()
|
346
342
|
self._is_fitted = True
|
347
|
-
self.
|
343
|
+
self._generate_model_signatures(dataset)
|
348
344
|
return self
|
349
345
|
|
350
346
|
def _batch_inference_validate_snowpark(
|
@@ -420,7 +416,9 @@ class SGDOneClassSVM(BaseTransformer):
|
|
420
416
|
# when it is classifier, infer the datatype from label columns
|
421
417
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
422
418
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
423
|
-
label_cols_signatures = [
|
419
|
+
label_cols_signatures = [
|
420
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
421
|
+
]
|
424
422
|
if len(label_cols_signatures) == 0:
|
425
423
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
426
424
|
raise exceptions.SnowflakeMLException(
|
@@ -428,25 +426,22 @@ class SGDOneClassSVM(BaseTransformer):
|
|
428
426
|
original_exception=ValueError(error_str),
|
429
427
|
)
|
430
428
|
|
431
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
432
|
-
label_cols_signatures[0].as_snowpark_type()
|
433
|
-
)
|
429
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
434
430
|
|
435
431
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
436
|
-
assert isinstance(
|
432
|
+
assert isinstance(
|
433
|
+
dataset._session, Session
|
434
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
437
435
|
|
438
436
|
transform_kwargs = dict(
|
439
|
-
session
|
440
|
-
dependencies
|
441
|
-
drop_input_cols
|
442
|
-
expected_output_cols_type
|
437
|
+
session=dataset._session,
|
438
|
+
dependencies=self._deps,
|
439
|
+
drop_input_cols=self._drop_input_cols,
|
440
|
+
expected_output_cols_type=expected_type_inferred,
|
443
441
|
)
|
444
442
|
|
445
443
|
elif isinstance(dataset, pd.DataFrame):
|
446
|
-
transform_kwargs = dict(
|
447
|
-
snowpark_input_cols = self._snowpark_cols,
|
448
|
-
drop_input_cols = self._drop_input_cols
|
449
|
-
)
|
444
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
450
445
|
|
451
446
|
transform_handlers = ModelTransformerBuilder.build(
|
452
447
|
dataset=dataset,
|
@@ -486,7 +481,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
486
481
|
Transformed dataset.
|
487
482
|
"""
|
488
483
|
super()._check_dataset_type(dataset)
|
489
|
-
inference_method="transform"
|
484
|
+
inference_method = "transform"
|
490
485
|
|
491
486
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
492
487
|
# are specific to the type of dataset used.
|
@@ -523,17 +518,14 @@ class SGDOneClassSVM(BaseTransformer):
|
|
523
518
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
524
519
|
|
525
520
|
transform_kwargs = dict(
|
526
|
-
session
|
527
|
-
dependencies
|
528
|
-
drop_input_cols
|
529
|
-
expected_output_cols_type
|
521
|
+
session=dataset._session,
|
522
|
+
dependencies=self._deps,
|
523
|
+
drop_input_cols=self._drop_input_cols,
|
524
|
+
expected_output_cols_type=expected_dtype,
|
530
525
|
)
|
531
526
|
|
532
527
|
elif isinstance(dataset, pd.DataFrame):
|
533
|
-
transform_kwargs = dict(
|
534
|
-
snowpark_input_cols = self._snowpark_cols,
|
535
|
-
drop_input_cols = self._drop_input_cols
|
536
|
-
)
|
528
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
537
529
|
|
538
530
|
transform_handlers = ModelTransformerBuilder.build(
|
539
531
|
dataset=dataset,
|
@@ -552,7 +544,11 @@ class SGDOneClassSVM(BaseTransformer):
|
|
552
544
|
return output_df
|
553
545
|
|
554
546
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
555
|
-
def fit_predict(
|
547
|
+
def fit_predict(
|
548
|
+
self,
|
549
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
550
|
+
output_cols_prefix: str = "fit_predict_",
|
551
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
556
552
|
""" Perform fit on X and returns labels for X
|
557
553
|
For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit_predict]
|
558
554
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit_predict)
|
@@ -579,7 +575,9 @@ class SGDOneClassSVM(BaseTransformer):
|
|
579
575
|
)
|
580
576
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
581
577
|
drop_input_cols=self._drop_input_cols,
|
582
|
-
expected_output_cols_list=
|
578
|
+
expected_output_cols_list=(
|
579
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
580
|
+
),
|
583
581
|
)
|
584
582
|
self._sklearn_object = fitted_estimator
|
585
583
|
self._is_fitted = True
|
@@ -596,6 +594,62 @@ class SGDOneClassSVM(BaseTransformer):
|
|
596
594
|
assert self._sklearn_object is not None
|
597
595
|
return self._sklearn_object.embedding_
|
598
596
|
|
597
|
+
|
598
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
599
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
600
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
601
|
+
"""
|
602
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
603
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
604
|
+
if output_cols:
|
605
|
+
output_cols = [
|
606
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
607
|
+
for c in output_cols
|
608
|
+
]
|
609
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
610
|
+
output_cols = [output_cols_prefix]
|
611
|
+
elif self._sklearn_object is not None:
|
612
|
+
classes = self._sklearn_object.classes_
|
613
|
+
if isinstance(classes, numpy.ndarray):
|
614
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
615
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
616
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
617
|
+
output_cols = []
|
618
|
+
for i, cl in enumerate(classes):
|
619
|
+
# For binary classification, there is only one output column for each class
|
620
|
+
# ndarray as the two classes are complementary.
|
621
|
+
if len(cl) == 2:
|
622
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
623
|
+
else:
|
624
|
+
output_cols.extend([
|
625
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
626
|
+
])
|
627
|
+
else:
|
628
|
+
output_cols = []
|
629
|
+
|
630
|
+
# Make sure column names are valid snowflake identifiers.
|
631
|
+
assert output_cols is not None # Make MyPy happy
|
632
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
633
|
+
|
634
|
+
return rv
|
635
|
+
|
636
|
+
def _align_expected_output_names(
|
637
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
638
|
+
) -> List[str]:
|
639
|
+
# in case the inferred output column names dimension is different
|
640
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
641
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
642
|
+
output_df_columns = list(output_df_pd.columns)
|
643
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
644
|
+
if self.sample_weight_col:
|
645
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
646
|
+
# if the dimension of inferred output column names is correct; use it
|
647
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
648
|
+
return expected_output_cols_list
|
649
|
+
# otherwise, use the sklearn estimator's output
|
650
|
+
else:
|
651
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
652
|
+
|
599
653
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
600
654
|
@telemetry.send_api_usage_telemetry(
|
601
655
|
project=_PROJECT,
|
@@ -626,24 +680,28 @@ class SGDOneClassSVM(BaseTransformer):
|
|
626
680
|
# are specific to the type of dataset used.
|
627
681
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
628
682
|
|
683
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
684
|
+
|
629
685
|
if isinstance(dataset, DataFrame):
|
630
686
|
self._deps = self._batch_inference_validate_snowpark(
|
631
687
|
dataset=dataset,
|
632
688
|
inference_method=inference_method,
|
633
689
|
)
|
634
|
-
assert isinstance(
|
690
|
+
assert isinstance(
|
691
|
+
dataset._session, Session
|
692
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
635
693
|
transform_kwargs = dict(
|
636
694
|
session=dataset._session,
|
637
695
|
dependencies=self._deps,
|
638
|
-
drop_input_cols
|
696
|
+
drop_input_cols=self._drop_input_cols,
|
639
697
|
expected_output_cols_type="float",
|
640
698
|
)
|
699
|
+
expected_output_cols = self._align_expected_output_names(
|
700
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
701
|
+
)
|
641
702
|
|
642
703
|
elif isinstance(dataset, pd.DataFrame):
|
643
|
-
transform_kwargs = dict(
|
644
|
-
snowpark_input_cols = self._snowpark_cols,
|
645
|
-
drop_input_cols = self._drop_input_cols
|
646
|
-
)
|
704
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
647
705
|
|
648
706
|
transform_handlers = ModelTransformerBuilder.build(
|
649
707
|
dataset=dataset,
|
@@ -655,7 +713,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
655
713
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
656
714
|
inference_method=inference_method,
|
657
715
|
input_cols=self.input_cols,
|
658
|
-
expected_output_cols=
|
716
|
+
expected_output_cols=expected_output_cols,
|
659
717
|
**transform_kwargs
|
660
718
|
)
|
661
719
|
return output_df
|
@@ -685,7 +743,8 @@ class SGDOneClassSVM(BaseTransformer):
|
|
685
743
|
Output dataset with log probability of the sample for each class in the model.
|
686
744
|
"""
|
687
745
|
super()._check_dataset_type(dataset)
|
688
|
-
inference_method="predict_log_proba"
|
746
|
+
inference_method = "predict_log_proba"
|
747
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
689
748
|
|
690
749
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
691
750
|
# are specific to the type of dataset used.
|
@@ -696,18 +755,20 @@ class SGDOneClassSVM(BaseTransformer):
|
|
696
755
|
dataset=dataset,
|
697
756
|
inference_method=inference_method,
|
698
757
|
)
|
699
|
-
assert isinstance(
|
758
|
+
assert isinstance(
|
759
|
+
dataset._session, Session
|
760
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
700
761
|
transform_kwargs = dict(
|
701
762
|
session=dataset._session,
|
702
763
|
dependencies=self._deps,
|
703
|
-
drop_input_cols
|
764
|
+
drop_input_cols=self._drop_input_cols,
|
704
765
|
expected_output_cols_type="float",
|
705
766
|
)
|
767
|
+
expected_output_cols = self._align_expected_output_names(
|
768
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
769
|
+
)
|
706
770
|
elif isinstance(dataset, pd.DataFrame):
|
707
|
-
transform_kwargs = dict(
|
708
|
-
snowpark_input_cols = self._snowpark_cols,
|
709
|
-
drop_input_cols = self._drop_input_cols
|
710
|
-
)
|
771
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
711
772
|
|
712
773
|
transform_handlers = ModelTransformerBuilder.build(
|
713
774
|
dataset=dataset,
|
@@ -720,7 +781,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
720
781
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
721
782
|
inference_method=inference_method,
|
722
783
|
input_cols=self.input_cols,
|
723
|
-
expected_output_cols=
|
784
|
+
expected_output_cols=expected_output_cols,
|
724
785
|
**transform_kwargs
|
725
786
|
)
|
726
787
|
return output_df
|
@@ -748,30 +809,34 @@ class SGDOneClassSVM(BaseTransformer):
|
|
748
809
|
Output dataset with results of the decision function for the samples in input dataset.
|
749
810
|
"""
|
750
811
|
super()._check_dataset_type(dataset)
|
751
|
-
inference_method="decision_function"
|
812
|
+
inference_method = "decision_function"
|
752
813
|
|
753
814
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
754
815
|
# are specific to the type of dataset used.
|
755
816
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
756
817
|
|
818
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
819
|
+
|
757
820
|
if isinstance(dataset, DataFrame):
|
758
821
|
self._deps = self._batch_inference_validate_snowpark(
|
759
822
|
dataset=dataset,
|
760
823
|
inference_method=inference_method,
|
761
824
|
)
|
762
|
-
assert isinstance(
|
825
|
+
assert isinstance(
|
826
|
+
dataset._session, Session
|
827
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
763
828
|
transform_kwargs = dict(
|
764
829
|
session=dataset._session,
|
765
830
|
dependencies=self._deps,
|
766
|
-
drop_input_cols
|
831
|
+
drop_input_cols=self._drop_input_cols,
|
767
832
|
expected_output_cols_type="float",
|
768
833
|
)
|
834
|
+
expected_output_cols = self._align_expected_output_names(
|
835
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
836
|
+
)
|
769
837
|
|
770
838
|
elif isinstance(dataset, pd.DataFrame):
|
771
|
-
transform_kwargs = dict(
|
772
|
-
snowpark_input_cols = self._snowpark_cols,
|
773
|
-
drop_input_cols = self._drop_input_cols
|
774
|
-
)
|
839
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
775
840
|
|
776
841
|
transform_handlers = ModelTransformerBuilder.build(
|
777
842
|
dataset=dataset,
|
@@ -784,7 +849,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
784
849
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
785
850
|
inference_method=inference_method,
|
786
851
|
input_cols=self.input_cols,
|
787
|
-
expected_output_cols=
|
852
|
+
expected_output_cols=expected_output_cols,
|
788
853
|
**transform_kwargs
|
789
854
|
)
|
790
855
|
return output_df
|
@@ -815,12 +880,14 @@ class SGDOneClassSVM(BaseTransformer):
|
|
815
880
|
Output dataset with probability of the sample for each class in the model.
|
816
881
|
"""
|
817
882
|
super()._check_dataset_type(dataset)
|
818
|
-
inference_method="score_samples"
|
883
|
+
inference_method = "score_samples"
|
819
884
|
|
820
885
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
821
886
|
# are specific to the type of dataset used.
|
822
887
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
823
888
|
|
889
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
890
|
+
|
824
891
|
if isinstance(dataset, DataFrame):
|
825
892
|
self._deps = self._batch_inference_validate_snowpark(
|
826
893
|
dataset=dataset,
|
@@ -833,6 +900,9 @@ class SGDOneClassSVM(BaseTransformer):
|
|
833
900
|
drop_input_cols = self._drop_input_cols,
|
834
901
|
expected_output_cols_type="float",
|
835
902
|
)
|
903
|
+
expected_output_cols = self._align_expected_output_names(
|
904
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
905
|
+
)
|
836
906
|
|
837
907
|
elif isinstance(dataset, pd.DataFrame):
|
838
908
|
transform_kwargs = dict(
|
@@ -851,7 +921,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
851
921
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
852
922
|
inference_method=inference_method,
|
853
923
|
input_cols=self.input_cols,
|
854
|
-
expected_output_cols=
|
924
|
+
expected_output_cols=expected_output_cols,
|
855
925
|
**transform_kwargs
|
856
926
|
)
|
857
927
|
return output_df
|
@@ -996,50 +1066,84 @@ class SGDOneClassSVM(BaseTransformer):
|
|
996
1066
|
)
|
997
1067
|
return output_df
|
998
1068
|
|
1069
|
+
|
1070
|
+
|
1071
|
+
def to_sklearn(self) -> Any:
|
1072
|
+
"""Get sklearn.linear_model.SGDOneClassSVM object.
|
1073
|
+
"""
|
1074
|
+
if self._sklearn_object is None:
|
1075
|
+
self._sklearn_object = self._create_sklearn_object()
|
1076
|
+
return self._sklearn_object
|
1077
|
+
|
1078
|
+
def to_xgboost(self) -> Any:
|
1079
|
+
raise exceptions.SnowflakeMLException(
|
1080
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1081
|
+
original_exception=AttributeError(
|
1082
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1083
|
+
"to_xgboost()",
|
1084
|
+
"to_sklearn()"
|
1085
|
+
)
|
1086
|
+
),
|
1087
|
+
)
|
1088
|
+
|
1089
|
+
def to_lightgbm(self) -> Any:
|
1090
|
+
raise exceptions.SnowflakeMLException(
|
1091
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1092
|
+
original_exception=AttributeError(
|
1093
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1094
|
+
"to_lightgbm()",
|
1095
|
+
"to_sklearn()"
|
1096
|
+
)
|
1097
|
+
),
|
1098
|
+
)
|
999
1099
|
|
1000
|
-
def
|
1100
|
+
def _get_dependencies(self) -> List[str]:
|
1101
|
+
return self._deps
|
1102
|
+
|
1103
|
+
|
1104
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1001
1105
|
self._model_signature_dict = dict()
|
1002
1106
|
|
1003
1107
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1004
1108
|
|
1005
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1109
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1006
1110
|
outputs: List[BaseFeatureSpec] = []
|
1007
1111
|
if hasattr(self, "predict"):
|
1008
1112
|
# keep mypy happy
|
1009
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1113
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1010
1114
|
# For classifier, the type of predict is the same as the type of label
|
1011
|
-
if self._sklearn_object._estimator_type ==
|
1012
|
-
|
1115
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1116
|
+
# label columns is the desired type for output
|
1013
1117
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1014
1118
|
# rename the output columns
|
1015
1119
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1016
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1017
|
-
|
1018
|
-
|
1120
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1019
1123
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1020
1124
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1021
|
-
# Clusterer returns int64 cluster labels.
|
1125
|
+
# Clusterer returns int64 cluster labels.
|
1022
1126
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1023
1127
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1024
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1025
|
-
|
1026
|
-
|
1027
|
-
|
1128
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1129
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1130
|
+
)
|
1131
|
+
|
1028
1132
|
# For regressor, the type of predict is float64
|
1029
|
-
elif self._sklearn_object._estimator_type ==
|
1133
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1030
1134
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1031
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1135
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1136
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1137
|
+
)
|
1138
|
+
|
1035
1139
|
for prob_func in PROB_FUNCTIONS:
|
1036
1140
|
if hasattr(self, prob_func):
|
1037
1141
|
output_cols_prefix: str = f"{prob_func}_"
|
1038
1142
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1039
1143
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1040
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1041
|
-
|
1042
|
-
|
1144
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1145
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1146
|
+
)
|
1043
1147
|
|
1044
1148
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1045
1149
|
items = list(self._model_signature_dict.items())
|
@@ -1052,10 +1156,10 @@ class SGDOneClassSVM(BaseTransformer):
|
|
1052
1156
|
"""Returns model signature of current class.
|
1053
1157
|
|
1054
1158
|
Raises:
|
1055
|
-
|
1159
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1056
1160
|
|
1057
1161
|
Returns:
|
1058
|
-
Dict
|
1162
|
+
Dict with each method and its input output signature
|
1059
1163
|
"""
|
1060
1164
|
if self._model_signature_dict is None:
|
1061
1165
|
raise exceptions.SnowflakeMLException(
|
@@ -1063,35 +1167,3 @@ class SGDOneClassSVM(BaseTransformer):
|
|
1063
1167
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1064
1168
|
)
|
1065
1169
|
return self._model_signature_dict
|
1066
|
-
|
1067
|
-
def to_sklearn(self) -> Any:
|
1068
|
-
"""Get sklearn.linear_model.SGDOneClassSVM object.
|
1069
|
-
"""
|
1070
|
-
if self._sklearn_object is None:
|
1071
|
-
self._sklearn_object = self._create_sklearn_object()
|
1072
|
-
return self._sklearn_object
|
1073
|
-
|
1074
|
-
def to_xgboost(self) -> Any:
|
1075
|
-
raise exceptions.SnowflakeMLException(
|
1076
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1077
|
-
original_exception=AttributeError(
|
1078
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1079
|
-
"to_xgboost()",
|
1080
|
-
"to_sklearn()"
|
1081
|
-
)
|
1082
|
-
),
|
1083
|
-
)
|
1084
|
-
|
1085
|
-
def to_lightgbm(self) -> Any:
|
1086
|
-
raise exceptions.SnowflakeMLException(
|
1087
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1088
|
-
original_exception=AttributeError(
|
1089
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1090
|
-
"to_lightgbm()",
|
1091
|
-
"to_sklearn()"
|
1092
|
-
)
|
1093
|
-
),
|
1094
|
-
)
|
1095
|
-
|
1096
|
-
def _get_dependencies(self) -> List[str]:
|
1097
|
-
return self._deps
|