snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -286,12 +285,7 @@ class SGDOneClassSVM(BaseTransformer):
286
285
  )
287
286
  return selected_cols
288
287
 
289
- @telemetry.send_api_usage_telemetry(
290
- project=_PROJECT,
291
- subproject=_SUBPROJECT,
292
- custom_tags=dict([("autogen", True)]),
293
- )
294
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
288
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
295
289
  """Fit linear One-Class SVM with Stochastic Gradient Descent
296
290
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit]
297
291
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit)
@@ -318,12 +312,14 @@ class SGDOneClassSVM(BaseTransformer):
318
312
 
319
313
  self._snowpark_cols = dataset.select(self.input_cols).columns
320
314
 
321
- # If we are already in a stored procedure, no need to kick off another one.
315
+ # If we are already in a stored procedure, no need to kick off another one.
322
316
  if SNOWML_SPROC_ENV in os.environ:
323
317
  statement_params = telemetry.get_function_usage_statement_params(
324
318
  project=_PROJECT,
325
319
  subproject=_SUBPROJECT,
326
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
320
+ function_name=telemetry.get_statement_params_full_func_name(
321
+ inspect.currentframe(), SGDOneClassSVM.__class__.__name__
322
+ ),
327
323
  api_calls=[Session.call],
328
324
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
325
  )
@@ -344,7 +340,7 @@ class SGDOneClassSVM(BaseTransformer):
344
340
  )
345
341
  self._sklearn_object = model_trainer.train()
346
342
  self._is_fitted = True
347
- self._get_model_signatures(dataset)
343
+ self._generate_model_signatures(dataset)
348
344
  return self
349
345
 
350
346
  def _batch_inference_validate_snowpark(
@@ -420,7 +416,9 @@ class SGDOneClassSVM(BaseTransformer):
420
416
  # when it is classifier, infer the datatype from label columns
421
417
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
422
418
  # Batch inference takes a single expected output column type. Use the first columns type for now.
423
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
419
+ label_cols_signatures = [
420
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
421
+ ]
424
422
  if len(label_cols_signatures) == 0:
425
423
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
426
424
  raise exceptions.SnowflakeMLException(
@@ -428,25 +426,22 @@ class SGDOneClassSVM(BaseTransformer):
428
426
  original_exception=ValueError(error_str),
429
427
  )
430
428
 
431
- expected_type_inferred = convert_sp_to_sf_type(
432
- label_cols_signatures[0].as_snowpark_type()
433
- )
429
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
434
430
 
435
431
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
436
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
432
+ assert isinstance(
433
+ dataset._session, Session
434
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
437
435
 
438
436
  transform_kwargs = dict(
439
- session = dataset._session,
440
- dependencies = self._deps,
441
- drop_input_cols = self._drop_input_cols,
442
- expected_output_cols_type = expected_type_inferred,
437
+ session=dataset._session,
438
+ dependencies=self._deps,
439
+ drop_input_cols=self._drop_input_cols,
440
+ expected_output_cols_type=expected_type_inferred,
443
441
  )
444
442
 
445
443
  elif isinstance(dataset, pd.DataFrame):
446
- transform_kwargs = dict(
447
- snowpark_input_cols = self._snowpark_cols,
448
- drop_input_cols = self._drop_input_cols
449
- )
444
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
450
445
 
451
446
  transform_handlers = ModelTransformerBuilder.build(
452
447
  dataset=dataset,
@@ -486,7 +481,7 @@ class SGDOneClassSVM(BaseTransformer):
486
481
  Transformed dataset.
487
482
  """
488
483
  super()._check_dataset_type(dataset)
489
- inference_method="transform"
484
+ inference_method = "transform"
490
485
 
491
486
  # This dictionary contains optional kwargs for batch inference. These kwargs
492
487
  # are specific to the type of dataset used.
@@ -523,17 +518,14 @@ class SGDOneClassSVM(BaseTransformer):
523
518
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
524
519
 
525
520
  transform_kwargs = dict(
526
- session = dataset._session,
527
- dependencies = self._deps,
528
- drop_input_cols = self._drop_input_cols,
529
- expected_output_cols_type = expected_dtype,
521
+ session=dataset._session,
522
+ dependencies=self._deps,
523
+ drop_input_cols=self._drop_input_cols,
524
+ expected_output_cols_type=expected_dtype,
530
525
  )
531
526
 
532
527
  elif isinstance(dataset, pd.DataFrame):
533
- transform_kwargs = dict(
534
- snowpark_input_cols = self._snowpark_cols,
535
- drop_input_cols = self._drop_input_cols
536
- )
528
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
537
529
 
538
530
  transform_handlers = ModelTransformerBuilder.build(
539
531
  dataset=dataset,
@@ -552,7 +544,11 @@ class SGDOneClassSVM(BaseTransformer):
552
544
  return output_df
553
545
 
554
546
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
555
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
547
+ def fit_predict(
548
+ self,
549
+ dataset: Union[DataFrame, pd.DataFrame],
550
+ output_cols_prefix: str = "fit_predict_",
551
+ ) -> Union[DataFrame, pd.DataFrame]:
556
552
  """ Perform fit on X and returns labels for X
557
553
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit_predict]
558
554
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit_predict)
@@ -579,7 +575,9 @@ class SGDOneClassSVM(BaseTransformer):
579
575
  )
580
576
  output_result, fitted_estimator = model_trainer.train_fit_predict(
581
577
  drop_input_cols=self._drop_input_cols,
582
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
578
+ expected_output_cols_list=(
579
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
580
+ ),
583
581
  )
584
582
  self._sklearn_object = fitted_estimator
585
583
  self._is_fitted = True
@@ -596,6 +594,62 @@ class SGDOneClassSVM(BaseTransformer):
596
594
  assert self._sklearn_object is not None
597
595
  return self._sklearn_object.embedding_
598
596
 
597
+
598
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
599
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
600
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
601
+ """
602
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
603
+ # The following condition is introduced for kneighbors methods, and not used in other methods
604
+ if output_cols:
605
+ output_cols = [
606
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
607
+ for c in output_cols
608
+ ]
609
+ elif getattr(self._sklearn_object, "classes_", None) is None:
610
+ output_cols = [output_cols_prefix]
611
+ elif self._sklearn_object is not None:
612
+ classes = self._sklearn_object.classes_
613
+ if isinstance(classes, numpy.ndarray):
614
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
615
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
616
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
617
+ output_cols = []
618
+ for i, cl in enumerate(classes):
619
+ # For binary classification, there is only one output column for each class
620
+ # ndarray as the two classes are complementary.
621
+ if len(cl) == 2:
622
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
623
+ else:
624
+ output_cols.extend([
625
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
626
+ ])
627
+ else:
628
+ output_cols = []
629
+
630
+ # Make sure column names are valid snowflake identifiers.
631
+ assert output_cols is not None # Make MyPy happy
632
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
633
+
634
+ return rv
635
+
636
+ def _align_expected_output_names(
637
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
638
+ ) -> List[str]:
639
+ # in case the inferred output column names dimension is different
640
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
641
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
642
+ output_df_columns = list(output_df_pd.columns)
643
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
644
+ if self.sample_weight_col:
645
+ output_df_columns_set -= set(self.sample_weight_col)
646
+ # if the dimension of inferred output column names is correct; use it
647
+ if len(expected_output_cols_list) == len(output_df_columns_set):
648
+ return expected_output_cols_list
649
+ # otherwise, use the sklearn estimator's output
650
+ else:
651
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
652
+
599
653
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
600
654
  @telemetry.send_api_usage_telemetry(
601
655
  project=_PROJECT,
@@ -626,24 +680,28 @@ class SGDOneClassSVM(BaseTransformer):
626
680
  # are specific to the type of dataset used.
627
681
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
628
682
 
683
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
684
+
629
685
  if isinstance(dataset, DataFrame):
630
686
  self._deps = self._batch_inference_validate_snowpark(
631
687
  dataset=dataset,
632
688
  inference_method=inference_method,
633
689
  )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
690
+ assert isinstance(
691
+ dataset._session, Session
692
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
693
  transform_kwargs = dict(
636
694
  session=dataset._session,
637
695
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
696
+ drop_input_cols=self._drop_input_cols,
639
697
  expected_output_cols_type="float",
640
698
  )
699
+ expected_output_cols = self._align_expected_output_names(
700
+ inference_method, dataset, expected_output_cols, output_cols_prefix
701
+ )
641
702
 
642
703
  elif isinstance(dataset, pd.DataFrame):
643
- transform_kwargs = dict(
644
- snowpark_input_cols = self._snowpark_cols,
645
- drop_input_cols = self._drop_input_cols
646
- )
704
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
647
705
 
648
706
  transform_handlers = ModelTransformerBuilder.build(
649
707
  dataset=dataset,
@@ -655,7 +713,7 @@ class SGDOneClassSVM(BaseTransformer):
655
713
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
714
  inference_method=inference_method,
657
715
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols=expected_output_cols,
659
717
  **transform_kwargs
660
718
  )
661
719
  return output_df
@@ -685,7 +743,8 @@ class SGDOneClassSVM(BaseTransformer):
685
743
  Output dataset with log probability of the sample for each class in the model.
686
744
  """
687
745
  super()._check_dataset_type(dataset)
688
- inference_method="predict_log_proba"
746
+ inference_method = "predict_log_proba"
747
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
689
748
 
690
749
  # This dictionary contains optional kwargs for batch inference. These kwargs
691
750
  # are specific to the type of dataset used.
@@ -696,18 +755,20 @@ class SGDOneClassSVM(BaseTransformer):
696
755
  dataset=dataset,
697
756
  inference_method=inference_method,
698
757
  )
699
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ assert isinstance(
759
+ dataset._session, Session
760
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
700
761
  transform_kwargs = dict(
701
762
  session=dataset._session,
702
763
  dependencies=self._deps,
703
- drop_input_cols = self._drop_input_cols,
764
+ drop_input_cols=self._drop_input_cols,
704
765
  expected_output_cols_type="float",
705
766
  )
767
+ expected_output_cols = self._align_expected_output_names(
768
+ inference_method, dataset, expected_output_cols, output_cols_prefix
769
+ )
706
770
  elif isinstance(dataset, pd.DataFrame):
707
- transform_kwargs = dict(
708
- snowpark_input_cols = self._snowpark_cols,
709
- drop_input_cols = self._drop_input_cols
710
- )
771
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
711
772
 
712
773
  transform_handlers = ModelTransformerBuilder.build(
713
774
  dataset=dataset,
@@ -720,7 +781,7 @@ class SGDOneClassSVM(BaseTransformer):
720
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
721
782
  inference_method=inference_method,
722
783
  input_cols=self.input_cols,
723
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
724
785
  **transform_kwargs
725
786
  )
726
787
  return output_df
@@ -748,30 +809,34 @@ class SGDOneClassSVM(BaseTransformer):
748
809
  Output dataset with results of the decision function for the samples in input dataset.
749
810
  """
750
811
  super()._check_dataset_type(dataset)
751
- inference_method="decision_function"
812
+ inference_method = "decision_function"
752
813
 
753
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
754
815
  # are specific to the type of dataset used.
755
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
756
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
757
820
  if isinstance(dataset, DataFrame):
758
821
  self._deps = self._batch_inference_validate_snowpark(
759
822
  dataset=dataset,
760
823
  inference_method=inference_method,
761
824
  )
762
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
825
+ assert isinstance(
826
+ dataset._session, Session
827
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
828
  transform_kwargs = dict(
764
829
  session=dataset._session,
765
830
  dependencies=self._deps,
766
- drop_input_cols = self._drop_input_cols,
831
+ drop_input_cols=self._drop_input_cols,
767
832
  expected_output_cols_type="float",
768
833
  )
834
+ expected_output_cols = self._align_expected_output_names(
835
+ inference_method, dataset, expected_output_cols, output_cols_prefix
836
+ )
769
837
 
770
838
  elif isinstance(dataset, pd.DataFrame):
771
- transform_kwargs = dict(
772
- snowpark_input_cols = self._snowpark_cols,
773
- drop_input_cols = self._drop_input_cols
774
- )
839
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
775
840
 
776
841
  transform_handlers = ModelTransformerBuilder.build(
777
842
  dataset=dataset,
@@ -784,7 +849,7 @@ class SGDOneClassSVM(BaseTransformer):
784
849
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
785
850
  inference_method=inference_method,
786
851
  input_cols=self.input_cols,
787
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
852
+ expected_output_cols=expected_output_cols,
788
853
  **transform_kwargs
789
854
  )
790
855
  return output_df
@@ -815,12 +880,14 @@ class SGDOneClassSVM(BaseTransformer):
815
880
  Output dataset with probability of the sample for each class in the model.
816
881
  """
817
882
  super()._check_dataset_type(dataset)
818
- inference_method="score_samples"
883
+ inference_method = "score_samples"
819
884
 
820
885
  # This dictionary contains optional kwargs for batch inference. These kwargs
821
886
  # are specific to the type of dataset used.
822
887
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
823
888
 
889
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
890
+
824
891
  if isinstance(dataset, DataFrame):
825
892
  self._deps = self._batch_inference_validate_snowpark(
826
893
  dataset=dataset,
@@ -833,6 +900,9 @@ class SGDOneClassSVM(BaseTransformer):
833
900
  drop_input_cols = self._drop_input_cols,
834
901
  expected_output_cols_type="float",
835
902
  )
903
+ expected_output_cols = self._align_expected_output_names(
904
+ inference_method, dataset, expected_output_cols, output_cols_prefix
905
+ )
836
906
 
837
907
  elif isinstance(dataset, pd.DataFrame):
838
908
  transform_kwargs = dict(
@@ -851,7 +921,7 @@ class SGDOneClassSVM(BaseTransformer):
851
921
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
852
922
  inference_method=inference_method,
853
923
  input_cols=self.input_cols,
854
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
924
+ expected_output_cols=expected_output_cols,
855
925
  **transform_kwargs
856
926
  )
857
927
  return output_df
@@ -996,50 +1066,84 @@ class SGDOneClassSVM(BaseTransformer):
996
1066
  )
997
1067
  return output_df
998
1068
 
1069
+
1070
+
1071
+ def to_sklearn(self) -> Any:
1072
+ """Get sklearn.linear_model.SGDOneClassSVM object.
1073
+ """
1074
+ if self._sklearn_object is None:
1075
+ self._sklearn_object = self._create_sklearn_object()
1076
+ return self._sklearn_object
1077
+
1078
+ def to_xgboost(self) -> Any:
1079
+ raise exceptions.SnowflakeMLException(
1080
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1081
+ original_exception=AttributeError(
1082
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1083
+ "to_xgboost()",
1084
+ "to_sklearn()"
1085
+ )
1086
+ ),
1087
+ )
1088
+
1089
+ def to_lightgbm(self) -> Any:
1090
+ raise exceptions.SnowflakeMLException(
1091
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1092
+ original_exception=AttributeError(
1093
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
+ "to_lightgbm()",
1095
+ "to_sklearn()"
1096
+ )
1097
+ ),
1098
+ )
999
1099
 
1000
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1100
+ def _get_dependencies(self) -> List[str]:
1101
+ return self._deps
1102
+
1103
+
1104
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1001
1105
  self._model_signature_dict = dict()
1002
1106
 
1003
1107
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1004
1108
 
1005
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1109
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1006
1110
  outputs: List[BaseFeatureSpec] = []
1007
1111
  if hasattr(self, "predict"):
1008
1112
  # keep mypy happy
1009
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1113
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1010
1114
  # For classifier, the type of predict is the same as the type of label
1011
- if self._sklearn_object._estimator_type == 'classifier':
1012
- # label columns is the desired type for output
1115
+ if self._sklearn_object._estimator_type == "classifier":
1116
+ # label columns is the desired type for output
1013
1117
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1014
1118
  # rename the output columns
1015
1119
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1019
1123
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1020
1124
  # For outlier models, returns -1 for outliers and 1 for inliers.
1021
- # Clusterer returns int64 cluster labels.
1125
+ # Clusterer returns int64 cluster labels.
1022
1126
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1023
1127
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1024
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1025
- ([] if self._drop_input_cols else inputs)
1026
- + outputs)
1027
-
1128
+ self._model_signature_dict["predict"] = ModelSignature(
1129
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1130
+ )
1131
+
1028
1132
  # For regressor, the type of predict is float64
1029
- elif self._sklearn_object._estimator_type == 'regressor':
1133
+ elif self._sklearn_object._estimator_type == "regressor":
1030
1134
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1034
-
1135
+ self._model_signature_dict["predict"] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1138
+
1035
1139
  for prob_func in PROB_FUNCTIONS:
1036
1140
  if hasattr(self, prob_func):
1037
1141
  output_cols_prefix: str = f"{prob_func}_"
1038
1142
  output_column_names = self._get_output_column_names(output_cols_prefix)
1039
1143
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1040
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1144
+ self._model_signature_dict[prob_func] = ModelSignature(
1145
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1146
+ )
1043
1147
 
1044
1148
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1045
1149
  items = list(self._model_signature_dict.items())
@@ -1052,10 +1156,10 @@ class SGDOneClassSVM(BaseTransformer):
1052
1156
  """Returns model signature of current class.
1053
1157
 
1054
1158
  Raises:
1055
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1159
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1056
1160
 
1057
1161
  Returns:
1058
- Dict[str, ModelSignature]: each method and its input output signature
1162
+ Dict with each method and its input output signature
1059
1163
  """
1060
1164
  if self._model_signature_dict is None:
1061
1165
  raise exceptions.SnowflakeMLException(
@@ -1063,35 +1167,3 @@ class SGDOneClassSVM(BaseTransformer):
1063
1167
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1064
1168
  )
1065
1169
  return self._model_signature_dict
1066
-
1067
- def to_sklearn(self) -> Any:
1068
- """Get sklearn.linear_model.SGDOneClassSVM object.
1069
- """
1070
- if self._sklearn_object is None:
1071
- self._sklearn_object = self._create_sklearn_object()
1072
- return self._sklearn_object
1073
-
1074
- def to_xgboost(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_xgboost()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def to_lightgbm(self) -> Any:
1086
- raise exceptions.SnowflakeMLException(
1087
- error_code=error_codes.METHOD_NOT_ALLOWED,
1088
- original_exception=AttributeError(
1089
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
- "to_lightgbm()",
1091
- "to_sklearn()"
1092
- )
1093
- ),
1094
- )
1095
-
1096
- def _get_dependencies(self) -> List[str]:
1097
- return self._deps