snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -266,12 +265,7 @@ class LassoLarsIC(BaseTransformer):
266
265
  )
267
266
  return selected_cols
268
267
 
269
- @telemetry.send_api_usage_telemetry(
270
- project=_PROJECT,
271
- subproject=_SUBPROJECT,
272
- custom_tags=dict([("autogen", True)]),
273
- )
274
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsIC":
268
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsIC":
275
269
  """Fit the model using X, y as training data
276
270
  For more details on this function, see [sklearn.linear_model.LassoLarsIC.fit]
277
271
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC.fit)
@@ -298,12 +292,14 @@ class LassoLarsIC(BaseTransformer):
298
292
 
299
293
  self._snowpark_cols = dataset.select(self.input_cols).columns
300
294
 
301
- # If we are already in a stored procedure, no need to kick off another one.
295
+ # If we are already in a stored procedure, no need to kick off another one.
302
296
  if SNOWML_SPROC_ENV in os.environ:
303
297
  statement_params = telemetry.get_function_usage_statement_params(
304
298
  project=_PROJECT,
305
299
  subproject=_SUBPROJECT,
306
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsIC.__class__.__name__),
300
+ function_name=telemetry.get_statement_params_full_func_name(
301
+ inspect.currentframe(), LassoLarsIC.__class__.__name__
302
+ ),
307
303
  api_calls=[Session.call],
308
304
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
309
305
  )
@@ -324,7 +320,7 @@ class LassoLarsIC(BaseTransformer):
324
320
  )
325
321
  self._sklearn_object = model_trainer.train()
326
322
  self._is_fitted = True
327
- self._get_model_signatures(dataset)
323
+ self._generate_model_signatures(dataset)
328
324
  return self
329
325
 
330
326
  def _batch_inference_validate_snowpark(
@@ -400,7 +396,9 @@ class LassoLarsIC(BaseTransformer):
400
396
  # when it is classifier, infer the datatype from label columns
401
397
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
402
398
  # Batch inference takes a single expected output column type. Use the first columns type for now.
403
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
399
+ label_cols_signatures = [
400
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
401
+ ]
404
402
  if len(label_cols_signatures) == 0:
405
403
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
406
404
  raise exceptions.SnowflakeMLException(
@@ -408,25 +406,22 @@ class LassoLarsIC(BaseTransformer):
408
406
  original_exception=ValueError(error_str),
409
407
  )
410
408
 
411
- expected_type_inferred = convert_sp_to_sf_type(
412
- label_cols_signatures[0].as_snowpark_type()
413
- )
409
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
414
410
 
415
411
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
416
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
412
+ assert isinstance(
413
+ dataset._session, Session
414
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
417
415
 
418
416
  transform_kwargs = dict(
419
- session = dataset._session,
420
- dependencies = self._deps,
421
- drop_input_cols = self._drop_input_cols,
422
- expected_output_cols_type = expected_type_inferred,
417
+ session=dataset._session,
418
+ dependencies=self._deps,
419
+ drop_input_cols=self._drop_input_cols,
420
+ expected_output_cols_type=expected_type_inferred,
423
421
  )
424
422
 
425
423
  elif isinstance(dataset, pd.DataFrame):
426
- transform_kwargs = dict(
427
- snowpark_input_cols = self._snowpark_cols,
428
- drop_input_cols = self._drop_input_cols
429
- )
424
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
430
425
 
431
426
  transform_handlers = ModelTransformerBuilder.build(
432
427
  dataset=dataset,
@@ -466,7 +461,7 @@ class LassoLarsIC(BaseTransformer):
466
461
  Transformed dataset.
467
462
  """
468
463
  super()._check_dataset_type(dataset)
469
- inference_method="transform"
464
+ inference_method = "transform"
470
465
 
471
466
  # This dictionary contains optional kwargs for batch inference. These kwargs
472
467
  # are specific to the type of dataset used.
@@ -503,17 +498,14 @@ class LassoLarsIC(BaseTransformer):
503
498
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
504
499
 
505
500
  transform_kwargs = dict(
506
- session = dataset._session,
507
- dependencies = self._deps,
508
- drop_input_cols = self._drop_input_cols,
509
- expected_output_cols_type = expected_dtype,
501
+ session=dataset._session,
502
+ dependencies=self._deps,
503
+ drop_input_cols=self._drop_input_cols,
504
+ expected_output_cols_type=expected_dtype,
510
505
  )
511
506
 
512
507
  elif isinstance(dataset, pd.DataFrame):
513
- transform_kwargs = dict(
514
- snowpark_input_cols = self._snowpark_cols,
515
- drop_input_cols = self._drop_input_cols
516
- )
508
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
517
509
 
518
510
  transform_handlers = ModelTransformerBuilder.build(
519
511
  dataset=dataset,
@@ -532,7 +524,11 @@ class LassoLarsIC(BaseTransformer):
532
524
  return output_df
533
525
 
534
526
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
535
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
527
+ def fit_predict(
528
+ self,
529
+ dataset: Union[DataFrame, pd.DataFrame],
530
+ output_cols_prefix: str = "fit_predict_",
531
+ ) -> Union[DataFrame, pd.DataFrame]:
536
532
  """ Method not supported for this class.
537
533
 
538
534
 
@@ -557,7 +553,9 @@ class LassoLarsIC(BaseTransformer):
557
553
  )
558
554
  output_result, fitted_estimator = model_trainer.train_fit_predict(
559
555
  drop_input_cols=self._drop_input_cols,
560
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
556
+ expected_output_cols_list=(
557
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
558
+ ),
561
559
  )
562
560
  self._sklearn_object = fitted_estimator
563
561
  self._is_fitted = True
@@ -574,6 +572,62 @@ class LassoLarsIC(BaseTransformer):
574
572
  assert self._sklearn_object is not None
575
573
  return self._sklearn_object.embedding_
576
574
 
575
+
576
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
577
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
578
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
579
+ """
580
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
581
+ # The following condition is introduced for kneighbors methods, and not used in other methods
582
+ if output_cols:
583
+ output_cols = [
584
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
585
+ for c in output_cols
586
+ ]
587
+ elif getattr(self._sklearn_object, "classes_", None) is None:
588
+ output_cols = [output_cols_prefix]
589
+ elif self._sklearn_object is not None:
590
+ classes = self._sklearn_object.classes_
591
+ if isinstance(classes, numpy.ndarray):
592
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
593
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
594
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
595
+ output_cols = []
596
+ for i, cl in enumerate(classes):
597
+ # For binary classification, there is only one output column for each class
598
+ # ndarray as the two classes are complementary.
599
+ if len(cl) == 2:
600
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
601
+ else:
602
+ output_cols.extend([
603
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
604
+ ])
605
+ else:
606
+ output_cols = []
607
+
608
+ # Make sure column names are valid snowflake identifiers.
609
+ assert output_cols is not None # Make MyPy happy
610
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
611
+
612
+ return rv
613
+
614
+ def _align_expected_output_names(
615
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
616
+ ) -> List[str]:
617
+ # in case the inferred output column names dimension is different
618
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
619
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
620
+ output_df_columns = list(output_df_pd.columns)
621
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
622
+ if self.sample_weight_col:
623
+ output_df_columns_set -= set(self.sample_weight_col)
624
+ # if the dimension of inferred output column names is correct; use it
625
+ if len(expected_output_cols_list) == len(output_df_columns_set):
626
+ return expected_output_cols_list
627
+ # otherwise, use the sklearn estimator's output
628
+ else:
629
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
630
+
577
631
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
578
632
  @telemetry.send_api_usage_telemetry(
579
633
  project=_PROJECT,
@@ -604,24 +658,28 @@ class LassoLarsIC(BaseTransformer):
604
658
  # are specific to the type of dataset used.
605
659
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
606
660
 
661
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
662
+
607
663
  if isinstance(dataset, DataFrame):
608
664
  self._deps = self._batch_inference_validate_snowpark(
609
665
  dataset=dataset,
610
666
  inference_method=inference_method,
611
667
  )
612
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
668
+ assert isinstance(
669
+ dataset._session, Session
670
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
613
671
  transform_kwargs = dict(
614
672
  session=dataset._session,
615
673
  dependencies=self._deps,
616
- drop_input_cols = self._drop_input_cols,
674
+ drop_input_cols=self._drop_input_cols,
617
675
  expected_output_cols_type="float",
618
676
  )
677
+ expected_output_cols = self._align_expected_output_names(
678
+ inference_method, dataset, expected_output_cols, output_cols_prefix
679
+ )
619
680
 
620
681
  elif isinstance(dataset, pd.DataFrame):
621
- transform_kwargs = dict(
622
- snowpark_input_cols = self._snowpark_cols,
623
- drop_input_cols = self._drop_input_cols
624
- )
682
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
625
683
 
626
684
  transform_handlers = ModelTransformerBuilder.build(
627
685
  dataset=dataset,
@@ -633,7 +691,7 @@ class LassoLarsIC(BaseTransformer):
633
691
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
634
692
  inference_method=inference_method,
635
693
  input_cols=self.input_cols,
636
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
694
+ expected_output_cols=expected_output_cols,
637
695
  **transform_kwargs
638
696
  )
639
697
  return output_df
@@ -663,7 +721,8 @@ class LassoLarsIC(BaseTransformer):
663
721
  Output dataset with log probability of the sample for each class in the model.
664
722
  """
665
723
  super()._check_dataset_type(dataset)
666
- inference_method="predict_log_proba"
724
+ inference_method = "predict_log_proba"
725
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
667
726
 
668
727
  # This dictionary contains optional kwargs for batch inference. These kwargs
669
728
  # are specific to the type of dataset used.
@@ -674,18 +733,20 @@ class LassoLarsIC(BaseTransformer):
674
733
  dataset=dataset,
675
734
  inference_method=inference_method,
676
735
  )
677
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
+ assert isinstance(
737
+ dataset._session, Session
738
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
739
  transform_kwargs = dict(
679
740
  session=dataset._session,
680
741
  dependencies=self._deps,
681
- drop_input_cols = self._drop_input_cols,
742
+ drop_input_cols=self._drop_input_cols,
682
743
  expected_output_cols_type="float",
683
744
  )
745
+ expected_output_cols = self._align_expected_output_names(
746
+ inference_method, dataset, expected_output_cols, output_cols_prefix
747
+ )
684
748
  elif isinstance(dataset, pd.DataFrame):
685
- transform_kwargs = dict(
686
- snowpark_input_cols = self._snowpark_cols,
687
- drop_input_cols = self._drop_input_cols
688
- )
749
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
689
750
 
690
751
  transform_handlers = ModelTransformerBuilder.build(
691
752
  dataset=dataset,
@@ -698,7 +759,7 @@ class LassoLarsIC(BaseTransformer):
698
759
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
699
760
  inference_method=inference_method,
700
761
  input_cols=self.input_cols,
701
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
762
+ expected_output_cols=expected_output_cols,
702
763
  **transform_kwargs
703
764
  )
704
765
  return output_df
@@ -724,30 +785,34 @@ class LassoLarsIC(BaseTransformer):
724
785
  Output dataset with results of the decision function for the samples in input dataset.
725
786
  """
726
787
  super()._check_dataset_type(dataset)
727
- inference_method="decision_function"
788
+ inference_method = "decision_function"
728
789
 
729
790
  # This dictionary contains optional kwargs for batch inference. These kwargs
730
791
  # are specific to the type of dataset used.
731
792
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
732
793
 
794
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
795
+
733
796
  if isinstance(dataset, DataFrame):
734
797
  self._deps = self._batch_inference_validate_snowpark(
735
798
  dataset=dataset,
736
799
  inference_method=inference_method,
737
800
  )
738
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
801
+ assert isinstance(
802
+ dataset._session, Session
803
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
804
  transform_kwargs = dict(
740
805
  session=dataset._session,
741
806
  dependencies=self._deps,
742
- drop_input_cols = self._drop_input_cols,
807
+ drop_input_cols=self._drop_input_cols,
743
808
  expected_output_cols_type="float",
744
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
745
813
 
746
814
  elif isinstance(dataset, pd.DataFrame):
747
- transform_kwargs = dict(
748
- snowpark_input_cols = self._snowpark_cols,
749
- drop_input_cols = self._drop_input_cols
750
- )
815
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
751
816
 
752
817
  transform_handlers = ModelTransformerBuilder.build(
753
818
  dataset=dataset,
@@ -760,7 +825,7 @@ class LassoLarsIC(BaseTransformer):
760
825
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
761
826
  inference_method=inference_method,
762
827
  input_cols=self.input_cols,
763
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
828
+ expected_output_cols=expected_output_cols,
764
829
  **transform_kwargs
765
830
  )
766
831
  return output_df
@@ -789,12 +854,14 @@ class LassoLarsIC(BaseTransformer):
789
854
  Output dataset with probability of the sample for each class in the model.
790
855
  """
791
856
  super()._check_dataset_type(dataset)
792
- inference_method="score_samples"
857
+ inference_method = "score_samples"
793
858
 
794
859
  # This dictionary contains optional kwargs for batch inference. These kwargs
795
860
  # are specific to the type of dataset used.
796
861
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
797
862
 
863
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
864
+
798
865
  if isinstance(dataset, DataFrame):
799
866
  self._deps = self._batch_inference_validate_snowpark(
800
867
  dataset=dataset,
@@ -807,6 +874,9 @@ class LassoLarsIC(BaseTransformer):
807
874
  drop_input_cols = self._drop_input_cols,
808
875
  expected_output_cols_type="float",
809
876
  )
877
+ expected_output_cols = self._align_expected_output_names(
878
+ inference_method, dataset, expected_output_cols, output_cols_prefix
879
+ )
810
880
 
811
881
  elif isinstance(dataset, pd.DataFrame):
812
882
  transform_kwargs = dict(
@@ -825,7 +895,7 @@ class LassoLarsIC(BaseTransformer):
825
895
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
826
896
  inference_method=inference_method,
827
897
  input_cols=self.input_cols,
828
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
898
+ expected_output_cols=expected_output_cols,
829
899
  **transform_kwargs
830
900
  )
831
901
  return output_df
@@ -972,50 +1042,84 @@ class LassoLarsIC(BaseTransformer):
972
1042
  )
973
1043
  return output_df
974
1044
 
1045
+
1046
+
1047
+ def to_sklearn(self) -> Any:
1048
+ """Get sklearn.linear_model.LassoLarsIC object.
1049
+ """
1050
+ if self._sklearn_object is None:
1051
+ self._sklearn_object = self._create_sklearn_object()
1052
+ return self._sklearn_object
1053
+
1054
+ def to_xgboost(self) -> Any:
1055
+ raise exceptions.SnowflakeMLException(
1056
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1057
+ original_exception=AttributeError(
1058
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1059
+ "to_xgboost()",
1060
+ "to_sklearn()"
1061
+ )
1062
+ ),
1063
+ )
1064
+
1065
+ def to_lightgbm(self) -> Any:
1066
+ raise exceptions.SnowflakeMLException(
1067
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1068
+ original_exception=AttributeError(
1069
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1070
+ "to_lightgbm()",
1071
+ "to_sklearn()"
1072
+ )
1073
+ ),
1074
+ )
975
1075
 
976
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1076
+ def _get_dependencies(self) -> List[str]:
1077
+ return self._deps
1078
+
1079
+
1080
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
977
1081
  self._model_signature_dict = dict()
978
1082
 
979
1083
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
980
1084
 
981
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1085
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
982
1086
  outputs: List[BaseFeatureSpec] = []
983
1087
  if hasattr(self, "predict"):
984
1088
  # keep mypy happy
985
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1089
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
986
1090
  # For classifier, the type of predict is the same as the type of label
987
- if self._sklearn_object._estimator_type == 'classifier':
988
- # label columns is the desired type for output
1091
+ if self._sklearn_object._estimator_type == "classifier":
1092
+ # label columns is the desired type for output
989
1093
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
990
1094
  # rename the output columns
991
1095
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
992
- self._model_signature_dict["predict"] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
995
1099
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
996
1100
  # For outlier models, returns -1 for outliers and 1 for inliers.
997
- # Clusterer returns int64 cluster labels.
1101
+ # Clusterer returns int64 cluster labels.
998
1102
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
999
1103
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1000
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1003
-
1104
+ self._model_signature_dict["predict"] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1107
+
1004
1108
  # For regressor, the type of predict is float64
1005
- elif self._sklearn_object._estimator_type == 'regressor':
1109
+ elif self._sklearn_object._estimator_type == "regressor":
1006
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1007
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1010
-
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1114
+
1011
1115
  for prob_func in PROB_FUNCTIONS:
1012
1116
  if hasattr(self, prob_func):
1013
1117
  output_cols_prefix: str = f"{prob_func}_"
1014
1118
  output_column_names = self._get_output_column_names(output_cols_prefix)
1015
1119
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1016
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1120
+ self._model_signature_dict[prob_func] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1019
1123
 
1020
1124
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1021
1125
  items = list(self._model_signature_dict.items())
@@ -1028,10 +1132,10 @@ class LassoLarsIC(BaseTransformer):
1028
1132
  """Returns model signature of current class.
1029
1133
 
1030
1134
  Raises:
1031
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1135
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1032
1136
 
1033
1137
  Returns:
1034
- Dict[str, ModelSignature]: each method and its input output signature
1138
+ Dict with each method and its input output signature
1035
1139
  """
1036
1140
  if self._model_signature_dict is None:
1037
1141
  raise exceptions.SnowflakeMLException(
@@ -1039,35 +1143,3 @@ class LassoLarsIC(BaseTransformer):
1039
1143
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1040
1144
  )
1041
1145
  return self._model_signature_dict
1042
-
1043
- def to_sklearn(self) -> Any:
1044
- """Get sklearn.linear_model.LassoLarsIC object.
1045
- """
1046
- if self._sklearn_object is None:
1047
- self._sklearn_object = self._create_sklearn_object()
1048
- return self._sklearn_object
1049
-
1050
- def to_xgboost(self) -> Any:
1051
- raise exceptions.SnowflakeMLException(
1052
- error_code=error_codes.METHOD_NOT_ALLOWED,
1053
- original_exception=AttributeError(
1054
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1055
- "to_xgboost()",
1056
- "to_sklearn()"
1057
- )
1058
- ),
1059
- )
1060
-
1061
- def to_lightgbm(self) -> Any:
1062
- raise exceptions.SnowflakeMLException(
1063
- error_code=error_codes.METHOD_NOT_ALLOWED,
1064
- original_exception=AttributeError(
1065
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
- "to_lightgbm()",
1067
- "to_sklearn()"
1068
- )
1069
- ),
1070
- )
1071
-
1072
- def _get_dependencies(self) -> List[str]:
1073
- return self._deps