snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -285,12 +284,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
285
284
|
)
|
286
285
|
return selected_cols
|
287
286
|
|
288
|
-
|
289
|
-
project=_PROJECT,
|
290
|
-
subproject=_SUBPROJECT,
|
291
|
-
custom_tags=dict([("autogen", True)]),
|
292
|
-
)
|
293
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
|
287
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
|
294
288
|
"""Fit the radius neighbors classifier from the training dataset
|
295
289
|
For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.fit]
|
296
290
|
(https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier.fit)
|
@@ -317,12 +311,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
317
311
|
|
318
312
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
319
313
|
|
320
|
-
|
314
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
321
315
|
if SNOWML_SPROC_ENV in os.environ:
|
322
316
|
statement_params = telemetry.get_function_usage_statement_params(
|
323
317
|
project=_PROJECT,
|
324
318
|
subproject=_SUBPROJECT,
|
325
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
319
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
320
|
+
inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__
|
321
|
+
),
|
326
322
|
api_calls=[Session.call],
|
327
323
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
328
324
|
)
|
@@ -343,7 +339,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
343
339
|
)
|
344
340
|
self._sklearn_object = model_trainer.train()
|
345
341
|
self._is_fitted = True
|
346
|
-
self.
|
342
|
+
self._generate_model_signatures(dataset)
|
347
343
|
return self
|
348
344
|
|
349
345
|
def _batch_inference_validate_snowpark(
|
@@ -419,7 +415,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
419
415
|
# when it is classifier, infer the datatype from label columns
|
420
416
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
421
417
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
422
|
-
label_cols_signatures = [
|
418
|
+
label_cols_signatures = [
|
419
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
420
|
+
]
|
423
421
|
if len(label_cols_signatures) == 0:
|
424
422
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
425
423
|
raise exceptions.SnowflakeMLException(
|
@@ -427,25 +425,22 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
427
425
|
original_exception=ValueError(error_str),
|
428
426
|
)
|
429
427
|
|
430
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
431
|
-
label_cols_signatures[0].as_snowpark_type()
|
432
|
-
)
|
428
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
433
429
|
|
434
430
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
435
|
-
assert isinstance(
|
431
|
+
assert isinstance(
|
432
|
+
dataset._session, Session
|
433
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
436
434
|
|
437
435
|
transform_kwargs = dict(
|
438
|
-
session
|
439
|
-
dependencies
|
440
|
-
drop_input_cols
|
441
|
-
expected_output_cols_type
|
436
|
+
session=dataset._session,
|
437
|
+
dependencies=self._deps,
|
438
|
+
drop_input_cols=self._drop_input_cols,
|
439
|
+
expected_output_cols_type=expected_type_inferred,
|
442
440
|
)
|
443
441
|
|
444
442
|
elif isinstance(dataset, pd.DataFrame):
|
445
|
-
transform_kwargs = dict(
|
446
|
-
snowpark_input_cols = self._snowpark_cols,
|
447
|
-
drop_input_cols = self._drop_input_cols
|
448
|
-
)
|
443
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
449
444
|
|
450
445
|
transform_handlers = ModelTransformerBuilder.build(
|
451
446
|
dataset=dataset,
|
@@ -485,7 +480,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
485
480
|
Transformed dataset.
|
486
481
|
"""
|
487
482
|
super()._check_dataset_type(dataset)
|
488
|
-
inference_method="transform"
|
483
|
+
inference_method = "transform"
|
489
484
|
|
490
485
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
491
486
|
# are specific to the type of dataset used.
|
@@ -522,17 +517,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
522
517
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
523
518
|
|
524
519
|
transform_kwargs = dict(
|
525
|
-
session
|
526
|
-
dependencies
|
527
|
-
drop_input_cols
|
528
|
-
expected_output_cols_type
|
520
|
+
session=dataset._session,
|
521
|
+
dependencies=self._deps,
|
522
|
+
drop_input_cols=self._drop_input_cols,
|
523
|
+
expected_output_cols_type=expected_dtype,
|
529
524
|
)
|
530
525
|
|
531
526
|
elif isinstance(dataset, pd.DataFrame):
|
532
|
-
transform_kwargs = dict(
|
533
|
-
snowpark_input_cols = self._snowpark_cols,
|
534
|
-
drop_input_cols = self._drop_input_cols
|
535
|
-
)
|
527
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
536
528
|
|
537
529
|
transform_handlers = ModelTransformerBuilder.build(
|
538
530
|
dataset=dataset,
|
@@ -551,7 +543,11 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
551
543
|
return output_df
|
552
544
|
|
553
545
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
554
|
-
def fit_predict(
|
546
|
+
def fit_predict(
|
547
|
+
self,
|
548
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
549
|
+
output_cols_prefix: str = "fit_predict_",
|
550
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
555
551
|
""" Method not supported for this class.
|
556
552
|
|
557
553
|
|
@@ -576,7 +572,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
576
572
|
)
|
577
573
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
578
574
|
drop_input_cols=self._drop_input_cols,
|
579
|
-
expected_output_cols_list=
|
575
|
+
expected_output_cols_list=(
|
576
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
577
|
+
),
|
580
578
|
)
|
581
579
|
self._sklearn_object = fitted_estimator
|
582
580
|
self._is_fitted = True
|
@@ -593,6 +591,62 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
593
591
|
assert self._sklearn_object is not None
|
594
592
|
return self._sklearn_object.embedding_
|
595
593
|
|
594
|
+
|
595
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
596
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
597
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
598
|
+
"""
|
599
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
600
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
601
|
+
if output_cols:
|
602
|
+
output_cols = [
|
603
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
604
|
+
for c in output_cols
|
605
|
+
]
|
606
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
607
|
+
output_cols = [output_cols_prefix]
|
608
|
+
elif self._sklearn_object is not None:
|
609
|
+
classes = self._sklearn_object.classes_
|
610
|
+
if isinstance(classes, numpy.ndarray):
|
611
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
612
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
613
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
614
|
+
output_cols = []
|
615
|
+
for i, cl in enumerate(classes):
|
616
|
+
# For binary classification, there is only one output column for each class
|
617
|
+
# ndarray as the two classes are complementary.
|
618
|
+
if len(cl) == 2:
|
619
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
620
|
+
else:
|
621
|
+
output_cols.extend([
|
622
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
623
|
+
])
|
624
|
+
else:
|
625
|
+
output_cols = []
|
626
|
+
|
627
|
+
# Make sure column names are valid snowflake identifiers.
|
628
|
+
assert output_cols is not None # Make MyPy happy
|
629
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
630
|
+
|
631
|
+
return rv
|
632
|
+
|
633
|
+
def _align_expected_output_names(
|
634
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
635
|
+
) -> List[str]:
|
636
|
+
# in case the inferred output column names dimension is different
|
637
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
638
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
639
|
+
output_df_columns = list(output_df_pd.columns)
|
640
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
641
|
+
if self.sample_weight_col:
|
642
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
643
|
+
# if the dimension of inferred output column names is correct; use it
|
644
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
645
|
+
return expected_output_cols_list
|
646
|
+
# otherwise, use the sklearn estimator's output
|
647
|
+
else:
|
648
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
649
|
+
|
596
650
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
597
651
|
@telemetry.send_api_usage_telemetry(
|
598
652
|
project=_PROJECT,
|
@@ -625,24 +679,28 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
625
679
|
# are specific to the type of dataset used.
|
626
680
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
627
681
|
|
682
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
|
+
|
628
684
|
if isinstance(dataset, DataFrame):
|
629
685
|
self._deps = self._batch_inference_validate_snowpark(
|
630
686
|
dataset=dataset,
|
631
687
|
inference_method=inference_method,
|
632
688
|
)
|
633
|
-
assert isinstance(
|
689
|
+
assert isinstance(
|
690
|
+
dataset._session, Session
|
691
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
634
692
|
transform_kwargs = dict(
|
635
693
|
session=dataset._session,
|
636
694
|
dependencies=self._deps,
|
637
|
-
drop_input_cols
|
695
|
+
drop_input_cols=self._drop_input_cols,
|
638
696
|
expected_output_cols_type="float",
|
639
697
|
)
|
698
|
+
expected_output_cols = self._align_expected_output_names(
|
699
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
700
|
+
)
|
640
701
|
|
641
702
|
elif isinstance(dataset, pd.DataFrame):
|
642
|
-
transform_kwargs = dict(
|
643
|
-
snowpark_input_cols = self._snowpark_cols,
|
644
|
-
drop_input_cols = self._drop_input_cols
|
645
|
-
)
|
703
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
646
704
|
|
647
705
|
transform_handlers = ModelTransformerBuilder.build(
|
648
706
|
dataset=dataset,
|
@@ -654,7 +712,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
654
712
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
655
713
|
inference_method=inference_method,
|
656
714
|
input_cols=self.input_cols,
|
657
|
-
expected_output_cols=
|
715
|
+
expected_output_cols=expected_output_cols,
|
658
716
|
**transform_kwargs
|
659
717
|
)
|
660
718
|
return output_df
|
@@ -686,7 +744,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
686
744
|
Output dataset with log probability of the sample for each class in the model.
|
687
745
|
"""
|
688
746
|
super()._check_dataset_type(dataset)
|
689
|
-
inference_method="predict_log_proba"
|
747
|
+
inference_method = "predict_log_proba"
|
748
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
690
749
|
|
691
750
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
692
751
|
# are specific to the type of dataset used.
|
@@ -697,18 +756,20 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
697
756
|
dataset=dataset,
|
698
757
|
inference_method=inference_method,
|
699
758
|
)
|
700
|
-
assert isinstance(
|
759
|
+
assert isinstance(
|
760
|
+
dataset._session, Session
|
761
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
701
762
|
transform_kwargs = dict(
|
702
763
|
session=dataset._session,
|
703
764
|
dependencies=self._deps,
|
704
|
-
drop_input_cols
|
765
|
+
drop_input_cols=self._drop_input_cols,
|
705
766
|
expected_output_cols_type="float",
|
706
767
|
)
|
768
|
+
expected_output_cols = self._align_expected_output_names(
|
769
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
770
|
+
)
|
707
771
|
elif isinstance(dataset, pd.DataFrame):
|
708
|
-
transform_kwargs = dict(
|
709
|
-
snowpark_input_cols = self._snowpark_cols,
|
710
|
-
drop_input_cols = self._drop_input_cols
|
711
|
-
)
|
772
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
712
773
|
|
713
774
|
transform_handlers = ModelTransformerBuilder.build(
|
714
775
|
dataset=dataset,
|
@@ -721,7 +782,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
721
782
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
722
783
|
inference_method=inference_method,
|
723
784
|
input_cols=self.input_cols,
|
724
|
-
expected_output_cols=
|
785
|
+
expected_output_cols=expected_output_cols,
|
725
786
|
**transform_kwargs
|
726
787
|
)
|
727
788
|
return output_df
|
@@ -747,30 +808,34 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
747
808
|
Output dataset with results of the decision function for the samples in input dataset.
|
748
809
|
"""
|
749
810
|
super()._check_dataset_type(dataset)
|
750
|
-
inference_method="decision_function"
|
811
|
+
inference_method = "decision_function"
|
751
812
|
|
752
813
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
753
814
|
# are specific to the type of dataset used.
|
754
815
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
755
816
|
|
817
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
818
|
+
|
756
819
|
if isinstance(dataset, DataFrame):
|
757
820
|
self._deps = self._batch_inference_validate_snowpark(
|
758
821
|
dataset=dataset,
|
759
822
|
inference_method=inference_method,
|
760
823
|
)
|
761
|
-
assert isinstance(
|
824
|
+
assert isinstance(
|
825
|
+
dataset._session, Session
|
826
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
762
827
|
transform_kwargs = dict(
|
763
828
|
session=dataset._session,
|
764
829
|
dependencies=self._deps,
|
765
|
-
drop_input_cols
|
830
|
+
drop_input_cols=self._drop_input_cols,
|
766
831
|
expected_output_cols_type="float",
|
767
832
|
)
|
833
|
+
expected_output_cols = self._align_expected_output_names(
|
834
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
835
|
+
)
|
768
836
|
|
769
837
|
elif isinstance(dataset, pd.DataFrame):
|
770
|
-
transform_kwargs = dict(
|
771
|
-
snowpark_input_cols = self._snowpark_cols,
|
772
|
-
drop_input_cols = self._drop_input_cols
|
773
|
-
)
|
838
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
774
839
|
|
775
840
|
transform_handlers = ModelTransformerBuilder.build(
|
776
841
|
dataset=dataset,
|
@@ -783,7 +848,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
783
848
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
784
849
|
inference_method=inference_method,
|
785
850
|
input_cols=self.input_cols,
|
786
|
-
expected_output_cols=
|
851
|
+
expected_output_cols=expected_output_cols,
|
787
852
|
**transform_kwargs
|
788
853
|
)
|
789
854
|
return output_df
|
@@ -812,12 +877,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
812
877
|
Output dataset with probability of the sample for each class in the model.
|
813
878
|
"""
|
814
879
|
super()._check_dataset_type(dataset)
|
815
|
-
inference_method="score_samples"
|
880
|
+
inference_method = "score_samples"
|
816
881
|
|
817
882
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
818
883
|
# are specific to the type of dataset used.
|
819
884
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
820
885
|
|
886
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
887
|
+
|
821
888
|
if isinstance(dataset, DataFrame):
|
822
889
|
self._deps = self._batch_inference_validate_snowpark(
|
823
890
|
dataset=dataset,
|
@@ -830,6 +897,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
830
897
|
drop_input_cols = self._drop_input_cols,
|
831
898
|
expected_output_cols_type="float",
|
832
899
|
)
|
900
|
+
expected_output_cols = self._align_expected_output_names(
|
901
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
902
|
+
)
|
833
903
|
|
834
904
|
elif isinstance(dataset, pd.DataFrame):
|
835
905
|
transform_kwargs = dict(
|
@@ -848,7 +918,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
848
918
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
849
919
|
inference_method=inference_method,
|
850
920
|
input_cols=self.input_cols,
|
851
|
-
expected_output_cols=
|
921
|
+
expected_output_cols=expected_output_cols,
|
852
922
|
**transform_kwargs
|
853
923
|
)
|
854
924
|
return output_df
|
@@ -995,50 +1065,84 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
995
1065
|
)
|
996
1066
|
return output_df
|
997
1067
|
|
1068
|
+
|
1069
|
+
|
1070
|
+
def to_sklearn(self) -> Any:
|
1071
|
+
"""Get sklearn.neighbors.RadiusNeighborsClassifier object.
|
1072
|
+
"""
|
1073
|
+
if self._sklearn_object is None:
|
1074
|
+
self._sklearn_object = self._create_sklearn_object()
|
1075
|
+
return self._sklearn_object
|
1076
|
+
|
1077
|
+
def to_xgboost(self) -> Any:
|
1078
|
+
raise exceptions.SnowflakeMLException(
|
1079
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
+
original_exception=AttributeError(
|
1081
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
+
"to_xgboost()",
|
1083
|
+
"to_sklearn()"
|
1084
|
+
)
|
1085
|
+
),
|
1086
|
+
)
|
1087
|
+
|
1088
|
+
def to_lightgbm(self) -> Any:
|
1089
|
+
raise exceptions.SnowflakeMLException(
|
1090
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1091
|
+
original_exception=AttributeError(
|
1092
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1093
|
+
"to_lightgbm()",
|
1094
|
+
"to_sklearn()"
|
1095
|
+
)
|
1096
|
+
),
|
1097
|
+
)
|
998
1098
|
|
999
|
-
def
|
1099
|
+
def _get_dependencies(self) -> List[str]:
|
1100
|
+
return self._deps
|
1101
|
+
|
1102
|
+
|
1103
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1000
1104
|
self._model_signature_dict = dict()
|
1001
1105
|
|
1002
1106
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1003
1107
|
|
1004
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1108
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1005
1109
|
outputs: List[BaseFeatureSpec] = []
|
1006
1110
|
if hasattr(self, "predict"):
|
1007
1111
|
# keep mypy happy
|
1008
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1112
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1009
1113
|
# For classifier, the type of predict is the same as the type of label
|
1010
|
-
if self._sklearn_object._estimator_type ==
|
1011
|
-
|
1114
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1115
|
+
# label columns is the desired type for output
|
1012
1116
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1013
1117
|
# rename the output columns
|
1014
1118
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1015
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1016
|
-
|
1017
|
-
|
1119
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1120
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1121
|
+
)
|
1018
1122
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1019
1123
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1020
|
-
# Clusterer returns int64 cluster labels.
|
1124
|
+
# Clusterer returns int64 cluster labels.
|
1021
1125
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1022
1126
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1023
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1127
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1128
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1129
|
+
)
|
1130
|
+
|
1027
1131
|
# For regressor, the type of predict is float64
|
1028
|
-
elif self._sklearn_object._estimator_type ==
|
1132
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1029
1133
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1030
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1134
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1135
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1136
|
+
)
|
1137
|
+
|
1034
1138
|
for prob_func in PROB_FUNCTIONS:
|
1035
1139
|
if hasattr(self, prob_func):
|
1036
1140
|
output_cols_prefix: str = f"{prob_func}_"
|
1037
1141
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1038
1142
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1039
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1040
|
-
|
1041
|
-
|
1143
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1144
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1145
|
+
)
|
1042
1146
|
|
1043
1147
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1044
1148
|
items = list(self._model_signature_dict.items())
|
@@ -1051,10 +1155,10 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
1051
1155
|
"""Returns model signature of current class.
|
1052
1156
|
|
1053
1157
|
Raises:
|
1054
|
-
|
1158
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1055
1159
|
|
1056
1160
|
Returns:
|
1057
|
-
Dict
|
1161
|
+
Dict with each method and its input output signature
|
1058
1162
|
"""
|
1059
1163
|
if self._model_signature_dict is None:
|
1060
1164
|
raise exceptions.SnowflakeMLException(
|
@@ -1062,35 +1166,3 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
1062
1166
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1063
1167
|
)
|
1064
1168
|
return self._model_signature_dict
|
1065
|
-
|
1066
|
-
def to_sklearn(self) -> Any:
|
1067
|
-
"""Get sklearn.neighbors.RadiusNeighborsClassifier object.
|
1068
|
-
"""
|
1069
|
-
if self._sklearn_object is None:
|
1070
|
-
self._sklearn_object = self._create_sklearn_object()
|
1071
|
-
return self._sklearn_object
|
1072
|
-
|
1073
|
-
def to_xgboost(self) -> Any:
|
1074
|
-
raise exceptions.SnowflakeMLException(
|
1075
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1076
|
-
original_exception=AttributeError(
|
1077
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1078
|
-
"to_xgboost()",
|
1079
|
-
"to_sklearn()"
|
1080
|
-
)
|
1081
|
-
),
|
1082
|
-
)
|
1083
|
-
|
1084
|
-
def to_lightgbm(self) -> Any:
|
1085
|
-
raise exceptions.SnowflakeMLException(
|
1086
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1087
|
-
original_exception=AttributeError(
|
1088
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1089
|
-
"to_lightgbm()",
|
1090
|
-
"to_sklearn()"
|
1091
|
-
)
|
1092
|
-
),
|
1093
|
-
)
|
1094
|
-
|
1095
|
-
def _get_dependencies(self) -> List[str]:
|
1096
|
-
return self._deps
|