snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -287,12 +286,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
287
286
  )
288
287
  return selected_cols
289
288
 
290
- @telemetry.send_api_usage_telemetry(
291
- project=_PROJECT,
292
- subproject=_SUBPROJECT,
293
- custom_tags=dict([("autogen", True)]),
294
- )
295
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveRegressor":
289
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveRegressor":
296
290
  """Fit linear model with Passive Aggressive algorithm
297
291
  For more details on this function, see [sklearn.linear_model.PassiveAggressiveRegressor.fit]
298
292
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html#sklearn.linear_model.PassiveAggressiveRegressor.fit)
@@ -319,12 +313,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
319
313
 
320
314
  self._snowpark_cols = dataset.select(self.input_cols).columns
321
315
 
322
- # If we are already in a stored procedure, no need to kick off another one.
316
+ # If we are already in a stored procedure, no need to kick off another one.
323
317
  if SNOWML_SPROC_ENV in os.environ:
324
318
  statement_params = telemetry.get_function_usage_statement_params(
325
319
  project=_PROJECT,
326
320
  subproject=_SUBPROJECT,
327
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__),
321
+ function_name=telemetry.get_statement_params_full_func_name(
322
+ inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__
323
+ ),
328
324
  api_calls=[Session.call],
329
325
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
330
326
  )
@@ -345,7 +341,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
345
341
  )
346
342
  self._sklearn_object = model_trainer.train()
347
343
  self._is_fitted = True
348
- self._get_model_signatures(dataset)
344
+ self._generate_model_signatures(dataset)
349
345
  return self
350
346
 
351
347
  def _batch_inference_validate_snowpark(
@@ -421,7 +417,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
421
417
  # when it is classifier, infer the datatype from label columns
422
418
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
423
419
  # Batch inference takes a single expected output column type. Use the first columns type for now.
424
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
420
+ label_cols_signatures = [
421
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
422
+ ]
425
423
  if len(label_cols_signatures) == 0:
426
424
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
427
425
  raise exceptions.SnowflakeMLException(
@@ -429,25 +427,22 @@ class PassiveAggressiveRegressor(BaseTransformer):
429
427
  original_exception=ValueError(error_str),
430
428
  )
431
429
 
432
- expected_type_inferred = convert_sp_to_sf_type(
433
- label_cols_signatures[0].as_snowpark_type()
434
- )
430
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
435
431
 
436
432
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
437
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
+ assert isinstance(
434
+ dataset._session, Session
435
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
438
436
 
439
437
  transform_kwargs = dict(
440
- session = dataset._session,
441
- dependencies = self._deps,
442
- drop_input_cols = self._drop_input_cols,
443
- expected_output_cols_type = expected_type_inferred,
438
+ session=dataset._session,
439
+ dependencies=self._deps,
440
+ drop_input_cols=self._drop_input_cols,
441
+ expected_output_cols_type=expected_type_inferred,
444
442
  )
445
443
 
446
444
  elif isinstance(dataset, pd.DataFrame):
447
- transform_kwargs = dict(
448
- snowpark_input_cols = self._snowpark_cols,
449
- drop_input_cols = self._drop_input_cols
450
- )
445
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
451
446
 
452
447
  transform_handlers = ModelTransformerBuilder.build(
453
448
  dataset=dataset,
@@ -487,7 +482,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
487
482
  Transformed dataset.
488
483
  """
489
484
  super()._check_dataset_type(dataset)
490
- inference_method="transform"
485
+ inference_method = "transform"
491
486
 
492
487
  # This dictionary contains optional kwargs for batch inference. These kwargs
493
488
  # are specific to the type of dataset used.
@@ -524,17 +519,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
524
519
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
525
520
 
526
521
  transform_kwargs = dict(
527
- session = dataset._session,
528
- dependencies = self._deps,
529
- drop_input_cols = self._drop_input_cols,
530
- expected_output_cols_type = expected_dtype,
522
+ session=dataset._session,
523
+ dependencies=self._deps,
524
+ drop_input_cols=self._drop_input_cols,
525
+ expected_output_cols_type=expected_dtype,
531
526
  )
532
527
 
533
528
  elif isinstance(dataset, pd.DataFrame):
534
- transform_kwargs = dict(
535
- snowpark_input_cols = self._snowpark_cols,
536
- drop_input_cols = self._drop_input_cols
537
- )
529
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
538
530
 
539
531
  transform_handlers = ModelTransformerBuilder.build(
540
532
  dataset=dataset,
@@ -553,7 +545,11 @@ class PassiveAggressiveRegressor(BaseTransformer):
553
545
  return output_df
554
546
 
555
547
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
556
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
548
+ def fit_predict(
549
+ self,
550
+ dataset: Union[DataFrame, pd.DataFrame],
551
+ output_cols_prefix: str = "fit_predict_",
552
+ ) -> Union[DataFrame, pd.DataFrame]:
557
553
  """ Method not supported for this class.
558
554
 
559
555
 
@@ -578,7 +574,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
578
574
  )
579
575
  output_result, fitted_estimator = model_trainer.train_fit_predict(
580
576
  drop_input_cols=self._drop_input_cols,
581
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
577
+ expected_output_cols_list=(
578
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
579
+ ),
582
580
  )
583
581
  self._sklearn_object = fitted_estimator
584
582
  self._is_fitted = True
@@ -595,6 +593,62 @@ class PassiveAggressiveRegressor(BaseTransformer):
595
593
  assert self._sklearn_object is not None
596
594
  return self._sklearn_object.embedding_
597
595
 
596
+
597
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
598
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
599
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
600
+ """
601
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
602
+ # The following condition is introduced for kneighbors methods, and not used in other methods
603
+ if output_cols:
604
+ output_cols = [
605
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
606
+ for c in output_cols
607
+ ]
608
+ elif getattr(self._sklearn_object, "classes_", None) is None:
609
+ output_cols = [output_cols_prefix]
610
+ elif self._sklearn_object is not None:
611
+ classes = self._sklearn_object.classes_
612
+ if isinstance(classes, numpy.ndarray):
613
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
614
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
615
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
616
+ output_cols = []
617
+ for i, cl in enumerate(classes):
618
+ # For binary classification, there is only one output column for each class
619
+ # ndarray as the two classes are complementary.
620
+ if len(cl) == 2:
621
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
622
+ else:
623
+ output_cols.extend([
624
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
625
+ ])
626
+ else:
627
+ output_cols = []
628
+
629
+ # Make sure column names are valid snowflake identifiers.
630
+ assert output_cols is not None # Make MyPy happy
631
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
632
+
633
+ return rv
634
+
635
+ def _align_expected_output_names(
636
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
637
+ ) -> List[str]:
638
+ # in case the inferred output column names dimension is different
639
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
640
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
641
+ output_df_columns = list(output_df_pd.columns)
642
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
643
+ if self.sample_weight_col:
644
+ output_df_columns_set -= set(self.sample_weight_col)
645
+ # if the dimension of inferred output column names is correct; use it
646
+ if len(expected_output_cols_list) == len(output_df_columns_set):
647
+ return expected_output_cols_list
648
+ # otherwise, use the sklearn estimator's output
649
+ else:
650
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
651
+
598
652
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
599
653
  @telemetry.send_api_usage_telemetry(
600
654
  project=_PROJECT,
@@ -625,24 +679,28 @@ class PassiveAggressiveRegressor(BaseTransformer):
625
679
  # are specific to the type of dataset used.
626
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
681
 
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
+
628
684
  if isinstance(dataset, DataFrame):
629
685
  self._deps = self._batch_inference_validate_snowpark(
630
686
  dataset=dataset,
631
687
  inference_method=inference_method,
632
688
  )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
+ assert isinstance(
690
+ dataset._session, Session
691
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
692
  transform_kwargs = dict(
635
693
  session=dataset._session,
636
694
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
695
+ drop_input_cols=self._drop_input_cols,
638
696
  expected_output_cols_type="float",
639
697
  )
698
+ expected_output_cols = self._align_expected_output_names(
699
+ inference_method, dataset, expected_output_cols, output_cols_prefix
700
+ )
640
701
 
641
702
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
703
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
704
 
647
705
  transform_handlers = ModelTransformerBuilder.build(
648
706
  dataset=dataset,
@@ -654,7 +712,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
654
712
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
713
  inference_method=inference_method,
656
714
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
715
+ expected_output_cols=expected_output_cols,
658
716
  **transform_kwargs
659
717
  )
660
718
  return output_df
@@ -684,7 +742,8 @@ class PassiveAggressiveRegressor(BaseTransformer):
684
742
  Output dataset with log probability of the sample for each class in the model.
685
743
  """
686
744
  super()._check_dataset_type(dataset)
687
- inference_method="predict_log_proba"
745
+ inference_method = "predict_log_proba"
746
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
688
747
 
689
748
  # This dictionary contains optional kwargs for batch inference. These kwargs
690
749
  # are specific to the type of dataset used.
@@ -695,18 +754,20 @@ class PassiveAggressiveRegressor(BaseTransformer):
695
754
  dataset=dataset,
696
755
  inference_method=inference_method,
697
756
  )
698
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
+ assert isinstance(
758
+ dataset._session, Session
759
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
760
  transform_kwargs = dict(
700
761
  session=dataset._session,
701
762
  dependencies=self._deps,
702
- drop_input_cols = self._drop_input_cols,
763
+ drop_input_cols=self._drop_input_cols,
703
764
  expected_output_cols_type="float",
704
765
  )
766
+ expected_output_cols = self._align_expected_output_names(
767
+ inference_method, dataset, expected_output_cols, output_cols_prefix
768
+ )
705
769
  elif isinstance(dataset, pd.DataFrame):
706
- transform_kwargs = dict(
707
- snowpark_input_cols = self._snowpark_cols,
708
- drop_input_cols = self._drop_input_cols
709
- )
770
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
710
771
 
711
772
  transform_handlers = ModelTransformerBuilder.build(
712
773
  dataset=dataset,
@@ -719,7 +780,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
719
780
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
720
781
  inference_method=inference_method,
721
782
  input_cols=self.input_cols,
722
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
783
+ expected_output_cols=expected_output_cols,
723
784
  **transform_kwargs
724
785
  )
725
786
  return output_df
@@ -745,30 +806,34 @@ class PassiveAggressiveRegressor(BaseTransformer):
745
806
  Output dataset with results of the decision function for the samples in input dataset.
746
807
  """
747
808
  super()._check_dataset_type(dataset)
748
- inference_method="decision_function"
809
+ inference_method = "decision_function"
749
810
 
750
811
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
812
  # are specific to the type of dataset used.
752
813
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
814
 
815
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
816
+
754
817
  if isinstance(dataset, DataFrame):
755
818
  self._deps = self._batch_inference_validate_snowpark(
756
819
  dataset=dataset,
757
820
  inference_method=inference_method,
758
821
  )
759
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
822
+ assert isinstance(
823
+ dataset._session, Session
824
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
825
  transform_kwargs = dict(
761
826
  session=dataset._session,
762
827
  dependencies=self._deps,
763
- drop_input_cols = self._drop_input_cols,
828
+ drop_input_cols=self._drop_input_cols,
764
829
  expected_output_cols_type="float",
765
830
  )
831
+ expected_output_cols = self._align_expected_output_names(
832
+ inference_method, dataset, expected_output_cols, output_cols_prefix
833
+ )
766
834
 
767
835
  elif isinstance(dataset, pd.DataFrame):
768
- transform_kwargs = dict(
769
- snowpark_input_cols = self._snowpark_cols,
770
- drop_input_cols = self._drop_input_cols
771
- )
836
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
772
837
 
773
838
  transform_handlers = ModelTransformerBuilder.build(
774
839
  dataset=dataset,
@@ -781,7 +846,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
781
846
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
847
  inference_method=inference_method,
783
848
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
849
+ expected_output_cols=expected_output_cols,
785
850
  **transform_kwargs
786
851
  )
787
852
  return output_df
@@ -810,12 +875,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
810
875
  Output dataset with probability of the sample for each class in the model.
811
876
  """
812
877
  super()._check_dataset_type(dataset)
813
- inference_method="score_samples"
878
+ inference_method = "score_samples"
814
879
 
815
880
  # This dictionary contains optional kwargs for batch inference. These kwargs
816
881
  # are specific to the type of dataset used.
817
882
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
818
883
 
884
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
885
+
819
886
  if isinstance(dataset, DataFrame):
820
887
  self._deps = self._batch_inference_validate_snowpark(
821
888
  dataset=dataset,
@@ -828,6 +895,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
828
895
  drop_input_cols = self._drop_input_cols,
829
896
  expected_output_cols_type="float",
830
897
  )
898
+ expected_output_cols = self._align_expected_output_names(
899
+ inference_method, dataset, expected_output_cols, output_cols_prefix
900
+ )
831
901
 
832
902
  elif isinstance(dataset, pd.DataFrame):
833
903
  transform_kwargs = dict(
@@ -846,7 +916,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
846
916
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
847
917
  inference_method=inference_method,
848
918
  input_cols=self.input_cols,
849
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
919
+ expected_output_cols=expected_output_cols,
850
920
  **transform_kwargs
851
921
  )
852
922
  return output_df
@@ -993,50 +1063,84 @@ class PassiveAggressiveRegressor(BaseTransformer):
993
1063
  )
994
1064
  return output_df
995
1065
 
1066
+
1067
+
1068
+ def to_sklearn(self) -> Any:
1069
+ """Get sklearn.linear_model.PassiveAggressiveRegressor object.
1070
+ """
1071
+ if self._sklearn_object is None:
1072
+ self._sklearn_object = self._create_sklearn_object()
1073
+ return self._sklearn_object
1074
+
1075
+ def to_xgboost(self) -> Any:
1076
+ raise exceptions.SnowflakeMLException(
1077
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1078
+ original_exception=AttributeError(
1079
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1080
+ "to_xgboost()",
1081
+ "to_sklearn()"
1082
+ )
1083
+ ),
1084
+ )
1085
+
1086
+ def to_lightgbm(self) -> Any:
1087
+ raise exceptions.SnowflakeMLException(
1088
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1089
+ original_exception=AttributeError(
1090
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1091
+ "to_lightgbm()",
1092
+ "to_sklearn()"
1093
+ )
1094
+ ),
1095
+ )
996
1096
 
997
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1097
+ def _get_dependencies(self) -> List[str]:
1098
+ return self._deps
1099
+
1100
+
1101
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
998
1102
  self._model_signature_dict = dict()
999
1103
 
1000
1104
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1001
1105
 
1002
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1106
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1003
1107
  outputs: List[BaseFeatureSpec] = []
1004
1108
  if hasattr(self, "predict"):
1005
1109
  # keep mypy happy
1006
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1110
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1007
1111
  # For classifier, the type of predict is the same as the type of label
1008
- if self._sklearn_object._estimator_type == 'classifier':
1009
- # label columns is the desired type for output
1112
+ if self._sklearn_object._estimator_type == "classifier":
1113
+ # label columns is the desired type for output
1010
1114
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1011
1115
  # rename the output columns
1012
1116
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1013
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1117
+ self._model_signature_dict["predict"] = ModelSignature(
1118
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1119
+ )
1016
1120
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1017
1121
  # For outlier models, returns -1 for outliers and 1 for inliers.
1018
- # Clusterer returns int64 cluster labels.
1122
+ # Clusterer returns int64 cluster labels.
1019
1123
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1020
1124
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1021
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1022
- ([] if self._drop_input_cols else inputs)
1023
- + outputs)
1024
-
1125
+ self._model_signature_dict["predict"] = ModelSignature(
1126
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1127
+ )
1128
+
1025
1129
  # For regressor, the type of predict is float64
1026
- elif self._sklearn_object._estimator_type == 'regressor':
1130
+ elif self._sklearn_object._estimator_type == "regressor":
1027
1131
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1028
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1029
- ([] if self._drop_input_cols else inputs)
1030
- + outputs)
1031
-
1132
+ self._model_signature_dict["predict"] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1135
+
1032
1136
  for prob_func in PROB_FUNCTIONS:
1033
1137
  if hasattr(self, prob_func):
1034
1138
  output_cols_prefix: str = f"{prob_func}_"
1035
1139
  output_column_names = self._get_output_column_names(output_cols_prefix)
1036
1140
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1037
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1038
- ([] if self._drop_input_cols else inputs)
1039
- + outputs)
1141
+ self._model_signature_dict[prob_func] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1040
1144
 
1041
1145
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1042
1146
  items = list(self._model_signature_dict.items())
@@ -1049,10 +1153,10 @@ class PassiveAggressiveRegressor(BaseTransformer):
1049
1153
  """Returns model signature of current class.
1050
1154
 
1051
1155
  Raises:
1052
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1156
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1053
1157
 
1054
1158
  Returns:
1055
- Dict[str, ModelSignature]: each method and its input output signature
1159
+ Dict with each method and its input output signature
1056
1160
  """
1057
1161
  if self._model_signature_dict is None:
1058
1162
  raise exceptions.SnowflakeMLException(
@@ -1060,35 +1164,3 @@ class PassiveAggressiveRegressor(BaseTransformer):
1060
1164
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1061
1165
  )
1062
1166
  return self._model_signature_dict
1063
-
1064
- def to_sklearn(self) -> Any:
1065
- """Get sklearn.linear_model.PassiveAggressiveRegressor object.
1066
- """
1067
- if self._sklearn_object is None:
1068
- self._sklearn_object = self._create_sklearn_object()
1069
- return self._sklearn_object
1070
-
1071
- def to_xgboost(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_xgboost()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def to_lightgbm(self) -> Any:
1083
- raise exceptions.SnowflakeMLException(
1084
- error_code=error_codes.METHOD_NOT_ALLOWED,
1085
- original_exception=AttributeError(
1086
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1087
- "to_lightgbm()",
1088
- "to_sklearn()"
1089
- )
1090
- ),
1091
- )
1092
-
1093
- def _get_dependencies(self) -> List[str]:
1094
- return self._deps