snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -269,12 +268,7 @@ class RidgeCV(BaseTransformer):
|
|
269
268
|
)
|
270
269
|
return selected_cols
|
271
270
|
|
272
|
-
|
273
|
-
project=_PROJECT,
|
274
|
-
subproject=_SUBPROJECT,
|
275
|
-
custom_tags=dict([("autogen", True)]),
|
276
|
-
)
|
277
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeCV":
|
271
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeCV":
|
278
272
|
"""Fit Ridge regression model with cv
|
279
273
|
For more details on this function, see [sklearn.linear_model.RidgeCV.fit]
|
280
274
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV.fit)
|
@@ -301,12 +295,14 @@ class RidgeCV(BaseTransformer):
|
|
301
295
|
|
302
296
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
303
297
|
|
304
|
-
|
298
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
305
299
|
if SNOWML_SPROC_ENV in os.environ:
|
306
300
|
statement_params = telemetry.get_function_usage_statement_params(
|
307
301
|
project=_PROJECT,
|
308
302
|
subproject=_SUBPROJECT,
|
309
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
303
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
304
|
+
inspect.currentframe(), RidgeCV.__class__.__name__
|
305
|
+
),
|
310
306
|
api_calls=[Session.call],
|
311
307
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
312
308
|
)
|
@@ -327,7 +323,7 @@ class RidgeCV(BaseTransformer):
|
|
327
323
|
)
|
328
324
|
self._sklearn_object = model_trainer.train()
|
329
325
|
self._is_fitted = True
|
330
|
-
self.
|
326
|
+
self._generate_model_signatures(dataset)
|
331
327
|
return self
|
332
328
|
|
333
329
|
def _batch_inference_validate_snowpark(
|
@@ -403,7 +399,9 @@ class RidgeCV(BaseTransformer):
|
|
403
399
|
# when it is classifier, infer the datatype from label columns
|
404
400
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
405
401
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
406
|
-
label_cols_signatures = [
|
402
|
+
label_cols_signatures = [
|
403
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
404
|
+
]
|
407
405
|
if len(label_cols_signatures) == 0:
|
408
406
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
409
407
|
raise exceptions.SnowflakeMLException(
|
@@ -411,25 +409,22 @@ class RidgeCV(BaseTransformer):
|
|
411
409
|
original_exception=ValueError(error_str),
|
412
410
|
)
|
413
411
|
|
414
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
415
|
-
label_cols_signatures[0].as_snowpark_type()
|
416
|
-
)
|
412
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
417
413
|
|
418
414
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
419
|
-
assert isinstance(
|
415
|
+
assert isinstance(
|
416
|
+
dataset._session, Session
|
417
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
420
418
|
|
421
419
|
transform_kwargs = dict(
|
422
|
-
session
|
423
|
-
dependencies
|
424
|
-
drop_input_cols
|
425
|
-
expected_output_cols_type
|
420
|
+
session=dataset._session,
|
421
|
+
dependencies=self._deps,
|
422
|
+
drop_input_cols=self._drop_input_cols,
|
423
|
+
expected_output_cols_type=expected_type_inferred,
|
426
424
|
)
|
427
425
|
|
428
426
|
elif isinstance(dataset, pd.DataFrame):
|
429
|
-
transform_kwargs = dict(
|
430
|
-
snowpark_input_cols = self._snowpark_cols,
|
431
|
-
drop_input_cols = self._drop_input_cols
|
432
|
-
)
|
427
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
433
428
|
|
434
429
|
transform_handlers = ModelTransformerBuilder.build(
|
435
430
|
dataset=dataset,
|
@@ -469,7 +464,7 @@ class RidgeCV(BaseTransformer):
|
|
469
464
|
Transformed dataset.
|
470
465
|
"""
|
471
466
|
super()._check_dataset_type(dataset)
|
472
|
-
inference_method="transform"
|
467
|
+
inference_method = "transform"
|
473
468
|
|
474
469
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
475
470
|
# are specific to the type of dataset used.
|
@@ -506,17 +501,14 @@ class RidgeCV(BaseTransformer):
|
|
506
501
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
507
502
|
|
508
503
|
transform_kwargs = dict(
|
509
|
-
session
|
510
|
-
dependencies
|
511
|
-
drop_input_cols
|
512
|
-
expected_output_cols_type
|
504
|
+
session=dataset._session,
|
505
|
+
dependencies=self._deps,
|
506
|
+
drop_input_cols=self._drop_input_cols,
|
507
|
+
expected_output_cols_type=expected_dtype,
|
513
508
|
)
|
514
509
|
|
515
510
|
elif isinstance(dataset, pd.DataFrame):
|
516
|
-
transform_kwargs = dict(
|
517
|
-
snowpark_input_cols = self._snowpark_cols,
|
518
|
-
drop_input_cols = self._drop_input_cols
|
519
|
-
)
|
511
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
520
512
|
|
521
513
|
transform_handlers = ModelTransformerBuilder.build(
|
522
514
|
dataset=dataset,
|
@@ -535,7 +527,11 @@ class RidgeCV(BaseTransformer):
|
|
535
527
|
return output_df
|
536
528
|
|
537
529
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
538
|
-
def fit_predict(
|
530
|
+
def fit_predict(
|
531
|
+
self,
|
532
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
533
|
+
output_cols_prefix: str = "fit_predict_",
|
534
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
539
535
|
""" Method not supported for this class.
|
540
536
|
|
541
537
|
|
@@ -560,7 +556,9 @@ class RidgeCV(BaseTransformer):
|
|
560
556
|
)
|
561
557
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
562
558
|
drop_input_cols=self._drop_input_cols,
|
563
|
-
expected_output_cols_list=
|
559
|
+
expected_output_cols_list=(
|
560
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
561
|
+
),
|
564
562
|
)
|
565
563
|
self._sklearn_object = fitted_estimator
|
566
564
|
self._is_fitted = True
|
@@ -577,6 +575,62 @@ class RidgeCV(BaseTransformer):
|
|
577
575
|
assert self._sklearn_object is not None
|
578
576
|
return self._sklearn_object.embedding_
|
579
577
|
|
578
|
+
|
579
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
580
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
581
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
582
|
+
"""
|
583
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
584
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
585
|
+
if output_cols:
|
586
|
+
output_cols = [
|
587
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
588
|
+
for c in output_cols
|
589
|
+
]
|
590
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
591
|
+
output_cols = [output_cols_prefix]
|
592
|
+
elif self._sklearn_object is not None:
|
593
|
+
classes = self._sklearn_object.classes_
|
594
|
+
if isinstance(classes, numpy.ndarray):
|
595
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
596
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
597
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
598
|
+
output_cols = []
|
599
|
+
for i, cl in enumerate(classes):
|
600
|
+
# For binary classification, there is only one output column for each class
|
601
|
+
# ndarray as the two classes are complementary.
|
602
|
+
if len(cl) == 2:
|
603
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
604
|
+
else:
|
605
|
+
output_cols.extend([
|
606
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
607
|
+
])
|
608
|
+
else:
|
609
|
+
output_cols = []
|
610
|
+
|
611
|
+
# Make sure column names are valid snowflake identifiers.
|
612
|
+
assert output_cols is not None # Make MyPy happy
|
613
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
614
|
+
|
615
|
+
return rv
|
616
|
+
|
617
|
+
def _align_expected_output_names(
|
618
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
619
|
+
) -> List[str]:
|
620
|
+
# in case the inferred output column names dimension is different
|
621
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
622
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
623
|
+
output_df_columns = list(output_df_pd.columns)
|
624
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
625
|
+
if self.sample_weight_col:
|
626
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
627
|
+
# if the dimension of inferred output column names is correct; use it
|
628
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
629
|
+
return expected_output_cols_list
|
630
|
+
# otherwise, use the sklearn estimator's output
|
631
|
+
else:
|
632
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
633
|
+
|
580
634
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
581
635
|
@telemetry.send_api_usage_telemetry(
|
582
636
|
project=_PROJECT,
|
@@ -607,24 +661,28 @@ class RidgeCV(BaseTransformer):
|
|
607
661
|
# are specific to the type of dataset used.
|
608
662
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
609
663
|
|
664
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
665
|
+
|
610
666
|
if isinstance(dataset, DataFrame):
|
611
667
|
self._deps = self._batch_inference_validate_snowpark(
|
612
668
|
dataset=dataset,
|
613
669
|
inference_method=inference_method,
|
614
670
|
)
|
615
|
-
assert isinstance(
|
671
|
+
assert isinstance(
|
672
|
+
dataset._session, Session
|
673
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
616
674
|
transform_kwargs = dict(
|
617
675
|
session=dataset._session,
|
618
676
|
dependencies=self._deps,
|
619
|
-
drop_input_cols
|
677
|
+
drop_input_cols=self._drop_input_cols,
|
620
678
|
expected_output_cols_type="float",
|
621
679
|
)
|
680
|
+
expected_output_cols = self._align_expected_output_names(
|
681
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
682
|
+
)
|
622
683
|
|
623
684
|
elif isinstance(dataset, pd.DataFrame):
|
624
|
-
transform_kwargs = dict(
|
625
|
-
snowpark_input_cols = self._snowpark_cols,
|
626
|
-
drop_input_cols = self._drop_input_cols
|
627
|
-
)
|
685
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
628
686
|
|
629
687
|
transform_handlers = ModelTransformerBuilder.build(
|
630
688
|
dataset=dataset,
|
@@ -636,7 +694,7 @@ class RidgeCV(BaseTransformer):
|
|
636
694
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
637
695
|
inference_method=inference_method,
|
638
696
|
input_cols=self.input_cols,
|
639
|
-
expected_output_cols=
|
697
|
+
expected_output_cols=expected_output_cols,
|
640
698
|
**transform_kwargs
|
641
699
|
)
|
642
700
|
return output_df
|
@@ -666,7 +724,8 @@ class RidgeCV(BaseTransformer):
|
|
666
724
|
Output dataset with log probability of the sample for each class in the model.
|
667
725
|
"""
|
668
726
|
super()._check_dataset_type(dataset)
|
669
|
-
inference_method="predict_log_proba"
|
727
|
+
inference_method = "predict_log_proba"
|
728
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
670
729
|
|
671
730
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
672
731
|
# are specific to the type of dataset used.
|
@@ -677,18 +736,20 @@ class RidgeCV(BaseTransformer):
|
|
677
736
|
dataset=dataset,
|
678
737
|
inference_method=inference_method,
|
679
738
|
)
|
680
|
-
assert isinstance(
|
739
|
+
assert isinstance(
|
740
|
+
dataset._session, Session
|
741
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
681
742
|
transform_kwargs = dict(
|
682
743
|
session=dataset._session,
|
683
744
|
dependencies=self._deps,
|
684
|
-
drop_input_cols
|
745
|
+
drop_input_cols=self._drop_input_cols,
|
685
746
|
expected_output_cols_type="float",
|
686
747
|
)
|
748
|
+
expected_output_cols = self._align_expected_output_names(
|
749
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
750
|
+
)
|
687
751
|
elif isinstance(dataset, pd.DataFrame):
|
688
|
-
transform_kwargs = dict(
|
689
|
-
snowpark_input_cols = self._snowpark_cols,
|
690
|
-
drop_input_cols = self._drop_input_cols
|
691
|
-
)
|
752
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
692
753
|
|
693
754
|
transform_handlers = ModelTransformerBuilder.build(
|
694
755
|
dataset=dataset,
|
@@ -701,7 +762,7 @@ class RidgeCV(BaseTransformer):
|
|
701
762
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
702
763
|
inference_method=inference_method,
|
703
764
|
input_cols=self.input_cols,
|
704
|
-
expected_output_cols=
|
765
|
+
expected_output_cols=expected_output_cols,
|
705
766
|
**transform_kwargs
|
706
767
|
)
|
707
768
|
return output_df
|
@@ -727,30 +788,34 @@ class RidgeCV(BaseTransformer):
|
|
727
788
|
Output dataset with results of the decision function for the samples in input dataset.
|
728
789
|
"""
|
729
790
|
super()._check_dataset_type(dataset)
|
730
|
-
inference_method="decision_function"
|
791
|
+
inference_method = "decision_function"
|
731
792
|
|
732
793
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
733
794
|
# are specific to the type of dataset used.
|
734
795
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
735
796
|
|
797
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
798
|
+
|
736
799
|
if isinstance(dataset, DataFrame):
|
737
800
|
self._deps = self._batch_inference_validate_snowpark(
|
738
801
|
dataset=dataset,
|
739
802
|
inference_method=inference_method,
|
740
803
|
)
|
741
|
-
assert isinstance(
|
804
|
+
assert isinstance(
|
805
|
+
dataset._session, Session
|
806
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
742
807
|
transform_kwargs = dict(
|
743
808
|
session=dataset._session,
|
744
809
|
dependencies=self._deps,
|
745
|
-
drop_input_cols
|
810
|
+
drop_input_cols=self._drop_input_cols,
|
746
811
|
expected_output_cols_type="float",
|
747
812
|
)
|
813
|
+
expected_output_cols = self._align_expected_output_names(
|
814
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
815
|
+
)
|
748
816
|
|
749
817
|
elif isinstance(dataset, pd.DataFrame):
|
750
|
-
transform_kwargs = dict(
|
751
|
-
snowpark_input_cols = self._snowpark_cols,
|
752
|
-
drop_input_cols = self._drop_input_cols
|
753
|
-
)
|
818
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
754
819
|
|
755
820
|
transform_handlers = ModelTransformerBuilder.build(
|
756
821
|
dataset=dataset,
|
@@ -763,7 +828,7 @@ class RidgeCV(BaseTransformer):
|
|
763
828
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
764
829
|
inference_method=inference_method,
|
765
830
|
input_cols=self.input_cols,
|
766
|
-
expected_output_cols=
|
831
|
+
expected_output_cols=expected_output_cols,
|
767
832
|
**transform_kwargs
|
768
833
|
)
|
769
834
|
return output_df
|
@@ -792,12 +857,14 @@ class RidgeCV(BaseTransformer):
|
|
792
857
|
Output dataset with probability of the sample for each class in the model.
|
793
858
|
"""
|
794
859
|
super()._check_dataset_type(dataset)
|
795
|
-
inference_method="score_samples"
|
860
|
+
inference_method = "score_samples"
|
796
861
|
|
797
862
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
798
863
|
# are specific to the type of dataset used.
|
799
864
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
800
865
|
|
866
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
867
|
+
|
801
868
|
if isinstance(dataset, DataFrame):
|
802
869
|
self._deps = self._batch_inference_validate_snowpark(
|
803
870
|
dataset=dataset,
|
@@ -810,6 +877,9 @@ class RidgeCV(BaseTransformer):
|
|
810
877
|
drop_input_cols = self._drop_input_cols,
|
811
878
|
expected_output_cols_type="float",
|
812
879
|
)
|
880
|
+
expected_output_cols = self._align_expected_output_names(
|
881
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
882
|
+
)
|
813
883
|
|
814
884
|
elif isinstance(dataset, pd.DataFrame):
|
815
885
|
transform_kwargs = dict(
|
@@ -828,7 +898,7 @@ class RidgeCV(BaseTransformer):
|
|
828
898
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
829
899
|
inference_method=inference_method,
|
830
900
|
input_cols=self.input_cols,
|
831
|
-
expected_output_cols=
|
901
|
+
expected_output_cols=expected_output_cols,
|
832
902
|
**transform_kwargs
|
833
903
|
)
|
834
904
|
return output_df
|
@@ -975,50 +1045,84 @@ class RidgeCV(BaseTransformer):
|
|
975
1045
|
)
|
976
1046
|
return output_df
|
977
1047
|
|
1048
|
+
|
1049
|
+
|
1050
|
+
def to_sklearn(self) -> Any:
|
1051
|
+
"""Get sklearn.linear_model.RidgeCV object.
|
1052
|
+
"""
|
1053
|
+
if self._sklearn_object is None:
|
1054
|
+
self._sklearn_object = self._create_sklearn_object()
|
1055
|
+
return self._sklearn_object
|
1056
|
+
|
1057
|
+
def to_xgboost(self) -> Any:
|
1058
|
+
raise exceptions.SnowflakeMLException(
|
1059
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1060
|
+
original_exception=AttributeError(
|
1061
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1062
|
+
"to_xgboost()",
|
1063
|
+
"to_sklearn()"
|
1064
|
+
)
|
1065
|
+
),
|
1066
|
+
)
|
1067
|
+
|
1068
|
+
def to_lightgbm(self) -> Any:
|
1069
|
+
raise exceptions.SnowflakeMLException(
|
1070
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1071
|
+
original_exception=AttributeError(
|
1072
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1073
|
+
"to_lightgbm()",
|
1074
|
+
"to_sklearn()"
|
1075
|
+
)
|
1076
|
+
),
|
1077
|
+
)
|
978
1078
|
|
979
|
-
def
|
1079
|
+
def _get_dependencies(self) -> List[str]:
|
1080
|
+
return self._deps
|
1081
|
+
|
1082
|
+
|
1083
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
980
1084
|
self._model_signature_dict = dict()
|
981
1085
|
|
982
1086
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
983
1087
|
|
984
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1088
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
985
1089
|
outputs: List[BaseFeatureSpec] = []
|
986
1090
|
if hasattr(self, "predict"):
|
987
1091
|
# keep mypy happy
|
988
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1092
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
989
1093
|
# For classifier, the type of predict is the same as the type of label
|
990
|
-
if self._sklearn_object._estimator_type ==
|
991
|
-
|
1094
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1095
|
+
# label columns is the desired type for output
|
992
1096
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
993
1097
|
# rename the output columns
|
994
1098
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
995
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
996
|
-
|
997
|
-
|
1099
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1100
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1101
|
+
)
|
998
1102
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
999
1103
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1000
|
-
# Clusterer returns int64 cluster labels.
|
1104
|
+
# Clusterer returns int64 cluster labels.
|
1001
1105
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1002
1106
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1003
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1004
|
-
|
1005
|
-
|
1006
|
-
|
1107
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1108
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1109
|
+
)
|
1110
|
+
|
1007
1111
|
# For regressor, the type of predict is float64
|
1008
|
-
elif self._sklearn_object._estimator_type ==
|
1112
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1009
1113
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1010
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1114
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1117
|
+
|
1014
1118
|
for prob_func in PROB_FUNCTIONS:
|
1015
1119
|
if hasattr(self, prob_func):
|
1016
1120
|
output_cols_prefix: str = f"{prob_func}_"
|
1017
1121
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1018
1122
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1019
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1020
|
-
|
1021
|
-
|
1123
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1124
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1125
|
+
)
|
1022
1126
|
|
1023
1127
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1024
1128
|
items = list(self._model_signature_dict.items())
|
@@ -1031,10 +1135,10 @@ class RidgeCV(BaseTransformer):
|
|
1031
1135
|
"""Returns model signature of current class.
|
1032
1136
|
|
1033
1137
|
Raises:
|
1034
|
-
|
1138
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1035
1139
|
|
1036
1140
|
Returns:
|
1037
|
-
Dict
|
1141
|
+
Dict with each method and its input output signature
|
1038
1142
|
"""
|
1039
1143
|
if self._model_signature_dict is None:
|
1040
1144
|
raise exceptions.SnowflakeMLException(
|
@@ -1042,35 +1146,3 @@ class RidgeCV(BaseTransformer):
|
|
1042
1146
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1043
1147
|
)
|
1044
1148
|
return self._model_signature_dict
|
1045
|
-
|
1046
|
-
def to_sklearn(self) -> Any:
|
1047
|
-
"""Get sklearn.linear_model.RidgeCV object.
|
1048
|
-
"""
|
1049
|
-
if self._sklearn_object is None:
|
1050
|
-
self._sklearn_object = self._create_sklearn_object()
|
1051
|
-
return self._sklearn_object
|
1052
|
-
|
1053
|
-
def to_xgboost(self) -> Any:
|
1054
|
-
raise exceptions.SnowflakeMLException(
|
1055
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1056
|
-
original_exception=AttributeError(
|
1057
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1058
|
-
"to_xgboost()",
|
1059
|
-
"to_sklearn()"
|
1060
|
-
)
|
1061
|
-
),
|
1062
|
-
)
|
1063
|
-
|
1064
|
-
def to_lightgbm(self) -> Any:
|
1065
|
-
raise exceptions.SnowflakeMLException(
|
1066
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1067
|
-
original_exception=AttributeError(
|
1068
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1069
|
-
"to_lightgbm()",
|
1070
|
-
"to_sklearn()"
|
1071
|
-
)
|
1072
|
-
),
|
1073
|
-
)
|
1074
|
-
|
1075
|
-
def _get_dependencies(self) -> List[str]:
|
1076
|
-
return self._deps
|