snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -263,12 +262,7 @@ class IsolationForest(BaseTransformer):
|
|
263
262
|
)
|
264
263
|
return selected_cols
|
265
264
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
|
265
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
|
272
266
|
"""Fit estimator
|
273
267
|
For more details on this function, see [sklearn.ensemble.IsolationForest.fit]
|
274
268
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit)
|
@@ -295,12 +289,14 @@ class IsolationForest(BaseTransformer):
|
|
295
289
|
|
296
290
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
291
|
|
298
|
-
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
293
|
if SNOWML_SPROC_ENV in os.environ:
|
300
294
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
295
|
project=_PROJECT,
|
302
296
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
298
|
+
inspect.currentframe(), IsolationForest.__class__.__name__
|
299
|
+
),
|
304
300
|
api_calls=[Session.call],
|
305
301
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
302
|
)
|
@@ -321,7 +317,7 @@ class IsolationForest(BaseTransformer):
|
|
321
317
|
)
|
322
318
|
self._sklearn_object = model_trainer.train()
|
323
319
|
self._is_fitted = True
|
324
|
-
self.
|
320
|
+
self._generate_model_signatures(dataset)
|
325
321
|
return self
|
326
322
|
|
327
323
|
def _batch_inference_validate_snowpark(
|
@@ -397,7 +393,9 @@ class IsolationForest(BaseTransformer):
|
|
397
393
|
# when it is classifier, infer the datatype from label columns
|
398
394
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
399
395
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
400
|
-
label_cols_signatures = [
|
396
|
+
label_cols_signatures = [
|
397
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
398
|
+
]
|
401
399
|
if len(label_cols_signatures) == 0:
|
402
400
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
403
401
|
raise exceptions.SnowflakeMLException(
|
@@ -405,25 +403,22 @@ class IsolationForest(BaseTransformer):
|
|
405
403
|
original_exception=ValueError(error_str),
|
406
404
|
)
|
407
405
|
|
408
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
409
|
-
label_cols_signatures[0].as_snowpark_type()
|
410
|
-
)
|
406
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
411
407
|
|
412
408
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
413
|
-
assert isinstance(
|
409
|
+
assert isinstance(
|
410
|
+
dataset._session, Session
|
411
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
414
412
|
|
415
413
|
transform_kwargs = dict(
|
416
|
-
session
|
417
|
-
dependencies
|
418
|
-
drop_input_cols
|
419
|
-
expected_output_cols_type
|
414
|
+
session=dataset._session,
|
415
|
+
dependencies=self._deps,
|
416
|
+
drop_input_cols=self._drop_input_cols,
|
417
|
+
expected_output_cols_type=expected_type_inferred,
|
420
418
|
)
|
421
419
|
|
422
420
|
elif isinstance(dataset, pd.DataFrame):
|
423
|
-
transform_kwargs = dict(
|
424
|
-
snowpark_input_cols = self._snowpark_cols,
|
425
|
-
drop_input_cols = self._drop_input_cols
|
426
|
-
)
|
421
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
427
422
|
|
428
423
|
transform_handlers = ModelTransformerBuilder.build(
|
429
424
|
dataset=dataset,
|
@@ -463,7 +458,7 @@ class IsolationForest(BaseTransformer):
|
|
463
458
|
Transformed dataset.
|
464
459
|
"""
|
465
460
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
461
|
+
inference_method = "transform"
|
467
462
|
|
468
463
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
464
|
# are specific to the type of dataset used.
|
@@ -500,17 +495,14 @@ class IsolationForest(BaseTransformer):
|
|
500
495
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
496
|
|
502
497
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
498
|
+
session=dataset._session,
|
499
|
+
dependencies=self._deps,
|
500
|
+
drop_input_cols=self._drop_input_cols,
|
501
|
+
expected_output_cols_type=expected_dtype,
|
507
502
|
)
|
508
503
|
|
509
504
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
505
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
506
|
|
515
507
|
transform_handlers = ModelTransformerBuilder.build(
|
516
508
|
dataset=dataset,
|
@@ -529,7 +521,11 @@ class IsolationForest(BaseTransformer):
|
|
529
521
|
return output_df
|
530
522
|
|
531
523
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
524
|
+
def fit_predict(
|
525
|
+
self,
|
526
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
527
|
+
output_cols_prefix: str = "fit_predict_",
|
528
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
529
|
""" Perform fit on X and returns labels for X
|
534
530
|
For more details on this function, see [sklearn.ensemble.IsolationForest.fit_predict]
|
535
531
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit_predict)
|
@@ -556,7 +552,9 @@ class IsolationForest(BaseTransformer):
|
|
556
552
|
)
|
557
553
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
558
554
|
drop_input_cols=self._drop_input_cols,
|
559
|
-
expected_output_cols_list=
|
555
|
+
expected_output_cols_list=(
|
556
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
557
|
+
),
|
560
558
|
)
|
561
559
|
self._sklearn_object = fitted_estimator
|
562
560
|
self._is_fitted = True
|
@@ -573,6 +571,62 @@ class IsolationForest(BaseTransformer):
|
|
573
571
|
assert self._sklearn_object is not None
|
574
572
|
return self._sklearn_object.embedding_
|
575
573
|
|
574
|
+
|
575
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
576
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
577
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
578
|
+
"""
|
579
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
580
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
581
|
+
if output_cols:
|
582
|
+
output_cols = [
|
583
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
584
|
+
for c in output_cols
|
585
|
+
]
|
586
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
587
|
+
output_cols = [output_cols_prefix]
|
588
|
+
elif self._sklearn_object is not None:
|
589
|
+
classes = self._sklearn_object.classes_
|
590
|
+
if isinstance(classes, numpy.ndarray):
|
591
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
592
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
593
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
594
|
+
output_cols = []
|
595
|
+
for i, cl in enumerate(classes):
|
596
|
+
# For binary classification, there is only one output column for each class
|
597
|
+
# ndarray as the two classes are complementary.
|
598
|
+
if len(cl) == 2:
|
599
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
600
|
+
else:
|
601
|
+
output_cols.extend([
|
602
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
603
|
+
])
|
604
|
+
else:
|
605
|
+
output_cols = []
|
606
|
+
|
607
|
+
# Make sure column names are valid snowflake identifiers.
|
608
|
+
assert output_cols is not None # Make MyPy happy
|
609
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
610
|
+
|
611
|
+
return rv
|
612
|
+
|
613
|
+
def _align_expected_output_names(
|
614
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
615
|
+
) -> List[str]:
|
616
|
+
# in case the inferred output column names dimension is different
|
617
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
618
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
619
|
+
output_df_columns = list(output_df_pd.columns)
|
620
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
621
|
+
if self.sample_weight_col:
|
622
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
623
|
+
# if the dimension of inferred output column names is correct; use it
|
624
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
625
|
+
return expected_output_cols_list
|
626
|
+
# otherwise, use the sklearn estimator's output
|
627
|
+
else:
|
628
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
629
|
+
|
576
630
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
577
631
|
@telemetry.send_api_usage_telemetry(
|
578
632
|
project=_PROJECT,
|
@@ -603,24 +657,28 @@ class IsolationForest(BaseTransformer):
|
|
603
657
|
# are specific to the type of dataset used.
|
604
658
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
605
659
|
|
660
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
661
|
+
|
606
662
|
if isinstance(dataset, DataFrame):
|
607
663
|
self._deps = self._batch_inference_validate_snowpark(
|
608
664
|
dataset=dataset,
|
609
665
|
inference_method=inference_method,
|
610
666
|
)
|
611
|
-
assert isinstance(
|
667
|
+
assert isinstance(
|
668
|
+
dataset._session, Session
|
669
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
612
670
|
transform_kwargs = dict(
|
613
671
|
session=dataset._session,
|
614
672
|
dependencies=self._deps,
|
615
|
-
drop_input_cols
|
673
|
+
drop_input_cols=self._drop_input_cols,
|
616
674
|
expected_output_cols_type="float",
|
617
675
|
)
|
676
|
+
expected_output_cols = self._align_expected_output_names(
|
677
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
678
|
+
)
|
618
679
|
|
619
680
|
elif isinstance(dataset, pd.DataFrame):
|
620
|
-
transform_kwargs = dict(
|
621
|
-
snowpark_input_cols = self._snowpark_cols,
|
622
|
-
drop_input_cols = self._drop_input_cols
|
623
|
-
)
|
681
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
624
682
|
|
625
683
|
transform_handlers = ModelTransformerBuilder.build(
|
626
684
|
dataset=dataset,
|
@@ -632,7 +690,7 @@ class IsolationForest(BaseTransformer):
|
|
632
690
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
633
691
|
inference_method=inference_method,
|
634
692
|
input_cols=self.input_cols,
|
635
|
-
expected_output_cols=
|
693
|
+
expected_output_cols=expected_output_cols,
|
636
694
|
**transform_kwargs
|
637
695
|
)
|
638
696
|
return output_df
|
@@ -662,7 +720,8 @@ class IsolationForest(BaseTransformer):
|
|
662
720
|
Output dataset with log probability of the sample for each class in the model.
|
663
721
|
"""
|
664
722
|
super()._check_dataset_type(dataset)
|
665
|
-
inference_method="predict_log_proba"
|
723
|
+
inference_method = "predict_log_proba"
|
724
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
666
725
|
|
667
726
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
668
727
|
# are specific to the type of dataset used.
|
@@ -673,18 +732,20 @@ class IsolationForest(BaseTransformer):
|
|
673
732
|
dataset=dataset,
|
674
733
|
inference_method=inference_method,
|
675
734
|
)
|
676
|
-
assert isinstance(
|
735
|
+
assert isinstance(
|
736
|
+
dataset._session, Session
|
737
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
677
738
|
transform_kwargs = dict(
|
678
739
|
session=dataset._session,
|
679
740
|
dependencies=self._deps,
|
680
|
-
drop_input_cols
|
741
|
+
drop_input_cols=self._drop_input_cols,
|
681
742
|
expected_output_cols_type="float",
|
682
743
|
)
|
744
|
+
expected_output_cols = self._align_expected_output_names(
|
745
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
746
|
+
)
|
683
747
|
elif isinstance(dataset, pd.DataFrame):
|
684
|
-
transform_kwargs = dict(
|
685
|
-
snowpark_input_cols = self._snowpark_cols,
|
686
|
-
drop_input_cols = self._drop_input_cols
|
687
|
-
)
|
748
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
688
749
|
|
689
750
|
transform_handlers = ModelTransformerBuilder.build(
|
690
751
|
dataset=dataset,
|
@@ -697,7 +758,7 @@ class IsolationForest(BaseTransformer):
|
|
697
758
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
698
759
|
inference_method=inference_method,
|
699
760
|
input_cols=self.input_cols,
|
700
|
-
expected_output_cols=
|
761
|
+
expected_output_cols=expected_output_cols,
|
701
762
|
**transform_kwargs
|
702
763
|
)
|
703
764
|
return output_df
|
@@ -725,30 +786,34 @@ class IsolationForest(BaseTransformer):
|
|
725
786
|
Output dataset with results of the decision function for the samples in input dataset.
|
726
787
|
"""
|
727
788
|
super()._check_dataset_type(dataset)
|
728
|
-
inference_method="decision_function"
|
789
|
+
inference_method = "decision_function"
|
729
790
|
|
730
791
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
731
792
|
# are specific to the type of dataset used.
|
732
793
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
733
794
|
|
795
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
796
|
+
|
734
797
|
if isinstance(dataset, DataFrame):
|
735
798
|
self._deps = self._batch_inference_validate_snowpark(
|
736
799
|
dataset=dataset,
|
737
800
|
inference_method=inference_method,
|
738
801
|
)
|
739
|
-
assert isinstance(
|
802
|
+
assert isinstance(
|
803
|
+
dataset._session, Session
|
804
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
740
805
|
transform_kwargs = dict(
|
741
806
|
session=dataset._session,
|
742
807
|
dependencies=self._deps,
|
743
|
-
drop_input_cols
|
808
|
+
drop_input_cols=self._drop_input_cols,
|
744
809
|
expected_output_cols_type="float",
|
745
810
|
)
|
811
|
+
expected_output_cols = self._align_expected_output_names(
|
812
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
813
|
+
)
|
746
814
|
|
747
815
|
elif isinstance(dataset, pd.DataFrame):
|
748
|
-
transform_kwargs = dict(
|
749
|
-
snowpark_input_cols = self._snowpark_cols,
|
750
|
-
drop_input_cols = self._drop_input_cols
|
751
|
-
)
|
816
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
752
817
|
|
753
818
|
transform_handlers = ModelTransformerBuilder.build(
|
754
819
|
dataset=dataset,
|
@@ -761,7 +826,7 @@ class IsolationForest(BaseTransformer):
|
|
761
826
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
762
827
|
inference_method=inference_method,
|
763
828
|
input_cols=self.input_cols,
|
764
|
-
expected_output_cols=
|
829
|
+
expected_output_cols=expected_output_cols,
|
765
830
|
**transform_kwargs
|
766
831
|
)
|
767
832
|
return output_df
|
@@ -792,12 +857,14 @@ class IsolationForest(BaseTransformer):
|
|
792
857
|
Output dataset with probability of the sample for each class in the model.
|
793
858
|
"""
|
794
859
|
super()._check_dataset_type(dataset)
|
795
|
-
inference_method="score_samples"
|
860
|
+
inference_method = "score_samples"
|
796
861
|
|
797
862
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
798
863
|
# are specific to the type of dataset used.
|
799
864
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
800
865
|
|
866
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
867
|
+
|
801
868
|
if isinstance(dataset, DataFrame):
|
802
869
|
self._deps = self._batch_inference_validate_snowpark(
|
803
870
|
dataset=dataset,
|
@@ -810,6 +877,9 @@ class IsolationForest(BaseTransformer):
|
|
810
877
|
drop_input_cols = self._drop_input_cols,
|
811
878
|
expected_output_cols_type="float",
|
812
879
|
)
|
880
|
+
expected_output_cols = self._align_expected_output_names(
|
881
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
882
|
+
)
|
813
883
|
|
814
884
|
elif isinstance(dataset, pd.DataFrame):
|
815
885
|
transform_kwargs = dict(
|
@@ -828,7 +898,7 @@ class IsolationForest(BaseTransformer):
|
|
828
898
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
829
899
|
inference_method=inference_method,
|
830
900
|
input_cols=self.input_cols,
|
831
|
-
expected_output_cols=
|
901
|
+
expected_output_cols=expected_output_cols,
|
832
902
|
**transform_kwargs
|
833
903
|
)
|
834
904
|
return output_df
|
@@ -973,50 +1043,84 @@ class IsolationForest(BaseTransformer):
|
|
973
1043
|
)
|
974
1044
|
return output_df
|
975
1045
|
|
1046
|
+
|
1047
|
+
|
1048
|
+
def to_sklearn(self) -> Any:
|
1049
|
+
"""Get sklearn.ensemble.IsolationForest object.
|
1050
|
+
"""
|
1051
|
+
if self._sklearn_object is None:
|
1052
|
+
self._sklearn_object = self._create_sklearn_object()
|
1053
|
+
return self._sklearn_object
|
1054
|
+
|
1055
|
+
def to_xgboost(self) -> Any:
|
1056
|
+
raise exceptions.SnowflakeMLException(
|
1057
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1058
|
+
original_exception=AttributeError(
|
1059
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1060
|
+
"to_xgboost()",
|
1061
|
+
"to_sklearn()"
|
1062
|
+
)
|
1063
|
+
),
|
1064
|
+
)
|
1065
|
+
|
1066
|
+
def to_lightgbm(self) -> Any:
|
1067
|
+
raise exceptions.SnowflakeMLException(
|
1068
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
+
original_exception=AttributeError(
|
1070
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
+
"to_lightgbm()",
|
1072
|
+
"to_sklearn()"
|
1073
|
+
)
|
1074
|
+
),
|
1075
|
+
)
|
976
1076
|
|
977
|
-
def
|
1077
|
+
def _get_dependencies(self) -> List[str]:
|
1078
|
+
return self._deps
|
1079
|
+
|
1080
|
+
|
1081
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
978
1082
|
self._model_signature_dict = dict()
|
979
1083
|
|
980
1084
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
981
1085
|
|
982
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1086
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
983
1087
|
outputs: List[BaseFeatureSpec] = []
|
984
1088
|
if hasattr(self, "predict"):
|
985
1089
|
# keep mypy happy
|
986
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1090
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
987
1091
|
# For classifier, the type of predict is the same as the type of label
|
988
|
-
if self._sklearn_object._estimator_type ==
|
989
|
-
|
1092
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1093
|
+
# label columns is the desired type for output
|
990
1094
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
991
1095
|
# rename the output columns
|
992
1096
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
1097
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
996
1100
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
997
1101
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
998
|
-
# Clusterer returns int64 cluster labels.
|
1102
|
+
# Clusterer returns int64 cluster labels.
|
999
1103
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1000
1104
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1001
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1105
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1106
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1107
|
+
)
|
1108
|
+
|
1005
1109
|
# For regressor, the type of predict is float64
|
1006
|
-
elif self._sklearn_object._estimator_type ==
|
1110
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1007
1111
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1008
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1112
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1113
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1114
|
+
)
|
1115
|
+
|
1012
1116
|
for prob_func in PROB_FUNCTIONS:
|
1013
1117
|
if hasattr(self, prob_func):
|
1014
1118
|
output_cols_prefix: str = f"{prob_func}_"
|
1015
1119
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1016
1120
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1017
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1018
|
-
|
1019
|
-
|
1121
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1122
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1123
|
+
)
|
1020
1124
|
|
1021
1125
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1022
1126
|
items = list(self._model_signature_dict.items())
|
@@ -1029,10 +1133,10 @@ class IsolationForest(BaseTransformer):
|
|
1029
1133
|
"""Returns model signature of current class.
|
1030
1134
|
|
1031
1135
|
Raises:
|
1032
|
-
|
1136
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1033
1137
|
|
1034
1138
|
Returns:
|
1035
|
-
Dict
|
1139
|
+
Dict with each method and its input output signature
|
1036
1140
|
"""
|
1037
1141
|
if self._model_signature_dict is None:
|
1038
1142
|
raise exceptions.SnowflakeMLException(
|
@@ -1040,35 +1144,3 @@ class IsolationForest(BaseTransformer):
|
|
1040
1144
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1041
1145
|
)
|
1042
1146
|
return self._model_signature_dict
|
1043
|
-
|
1044
|
-
def to_sklearn(self) -> Any:
|
1045
|
-
"""Get sklearn.ensemble.IsolationForest object.
|
1046
|
-
"""
|
1047
|
-
if self._sklearn_object is None:
|
1048
|
-
self._sklearn_object = self._create_sklearn_object()
|
1049
|
-
return self._sklearn_object
|
1050
|
-
|
1051
|
-
def to_xgboost(self) -> Any:
|
1052
|
-
raise exceptions.SnowflakeMLException(
|
1053
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
-
original_exception=AttributeError(
|
1055
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
-
"to_xgboost()",
|
1057
|
-
"to_sklearn()"
|
1058
|
-
)
|
1059
|
-
),
|
1060
|
-
)
|
1061
|
-
|
1062
|
-
def to_lightgbm(self) -> Any:
|
1063
|
-
raise exceptions.SnowflakeMLException(
|
1064
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1065
|
-
original_exception=AttributeError(
|
1066
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1067
|
-
"to_lightgbm()",
|
1068
|
-
"to_sklearn()"
|
1069
|
-
)
|
1070
|
-
),
|
1071
|
-
)
|
1072
|
-
|
1073
|
-
def _get_dependencies(self) -> List[str]:
|
1074
|
-
return self._deps
|