snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -263,12 +262,7 @@ class IsolationForest(BaseTransformer):
263
262
  )
264
263
  return selected_cols
265
264
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
265
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
272
266
  """Fit estimator
273
267
  For more details on this function, see [sklearn.ensemble.IsolationForest.fit]
274
268
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit)
@@ -295,12 +289,14 @@ class IsolationForest(BaseTransformer):
295
289
 
296
290
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
291
 
298
- # If we are already in a stored procedure, no need to kick off another one.
292
+ # If we are already in a stored procedure, no need to kick off another one.
299
293
  if SNOWML_SPROC_ENV in os.environ:
300
294
  statement_params = telemetry.get_function_usage_statement_params(
301
295
  project=_PROJECT,
302
296
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IsolationForest.__class__.__name__),
297
+ function_name=telemetry.get_statement_params_full_func_name(
298
+ inspect.currentframe(), IsolationForest.__class__.__name__
299
+ ),
304
300
  api_calls=[Session.call],
305
301
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
302
  )
@@ -321,7 +317,7 @@ class IsolationForest(BaseTransformer):
321
317
  )
322
318
  self._sklearn_object = model_trainer.train()
323
319
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
320
+ self._generate_model_signatures(dataset)
325
321
  return self
326
322
 
327
323
  def _batch_inference_validate_snowpark(
@@ -397,7 +393,9 @@ class IsolationForest(BaseTransformer):
397
393
  # when it is classifier, infer the datatype from label columns
398
394
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
399
395
  # Batch inference takes a single expected output column type. Use the first columns type for now.
400
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
396
+ label_cols_signatures = [
397
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
398
+ ]
401
399
  if len(label_cols_signatures) == 0:
402
400
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
403
401
  raise exceptions.SnowflakeMLException(
@@ -405,25 +403,22 @@ class IsolationForest(BaseTransformer):
405
403
  original_exception=ValueError(error_str),
406
404
  )
407
405
 
408
- expected_type_inferred = convert_sp_to_sf_type(
409
- label_cols_signatures[0].as_snowpark_type()
410
- )
406
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
411
407
 
412
408
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
413
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
409
+ assert isinstance(
410
+ dataset._session, Session
411
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
412
 
415
413
  transform_kwargs = dict(
416
- session = dataset._session,
417
- dependencies = self._deps,
418
- drop_input_cols = self._drop_input_cols,
419
- expected_output_cols_type = expected_type_inferred,
414
+ session=dataset._session,
415
+ dependencies=self._deps,
416
+ drop_input_cols=self._drop_input_cols,
417
+ expected_output_cols_type=expected_type_inferred,
420
418
  )
421
419
 
422
420
  elif isinstance(dataset, pd.DataFrame):
423
- transform_kwargs = dict(
424
- snowpark_input_cols = self._snowpark_cols,
425
- drop_input_cols = self._drop_input_cols
426
- )
421
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
427
422
 
428
423
  transform_handlers = ModelTransformerBuilder.build(
429
424
  dataset=dataset,
@@ -463,7 +458,7 @@ class IsolationForest(BaseTransformer):
463
458
  Transformed dataset.
464
459
  """
465
460
  super()._check_dataset_type(dataset)
466
- inference_method="transform"
461
+ inference_method = "transform"
467
462
 
468
463
  # This dictionary contains optional kwargs for batch inference. These kwargs
469
464
  # are specific to the type of dataset used.
@@ -500,17 +495,14 @@ class IsolationForest(BaseTransformer):
500
495
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
501
496
 
502
497
  transform_kwargs = dict(
503
- session = dataset._session,
504
- dependencies = self._deps,
505
- drop_input_cols = self._drop_input_cols,
506
- expected_output_cols_type = expected_dtype,
498
+ session=dataset._session,
499
+ dependencies=self._deps,
500
+ drop_input_cols=self._drop_input_cols,
501
+ expected_output_cols_type=expected_dtype,
507
502
  )
508
503
 
509
504
  elif isinstance(dataset, pd.DataFrame):
510
- transform_kwargs = dict(
511
- snowpark_input_cols = self._snowpark_cols,
512
- drop_input_cols = self._drop_input_cols
513
- )
505
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
514
506
 
515
507
  transform_handlers = ModelTransformerBuilder.build(
516
508
  dataset=dataset,
@@ -529,7 +521,11 @@ class IsolationForest(BaseTransformer):
529
521
  return output_df
530
522
 
531
523
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
532
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
524
+ def fit_predict(
525
+ self,
526
+ dataset: Union[DataFrame, pd.DataFrame],
527
+ output_cols_prefix: str = "fit_predict_",
528
+ ) -> Union[DataFrame, pd.DataFrame]:
533
529
  """ Perform fit on X and returns labels for X
534
530
  For more details on this function, see [sklearn.ensemble.IsolationForest.fit_predict]
535
531
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit_predict)
@@ -556,7 +552,9 @@ class IsolationForest(BaseTransformer):
556
552
  )
557
553
  output_result, fitted_estimator = model_trainer.train_fit_predict(
558
554
  drop_input_cols=self._drop_input_cols,
559
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
555
+ expected_output_cols_list=(
556
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
557
+ ),
560
558
  )
561
559
  self._sklearn_object = fitted_estimator
562
560
  self._is_fitted = True
@@ -573,6 +571,62 @@ class IsolationForest(BaseTransformer):
573
571
  assert self._sklearn_object is not None
574
572
  return self._sklearn_object.embedding_
575
573
 
574
+
575
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
576
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
577
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
578
+ """
579
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
580
+ # The following condition is introduced for kneighbors methods, and not used in other methods
581
+ if output_cols:
582
+ output_cols = [
583
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
584
+ for c in output_cols
585
+ ]
586
+ elif getattr(self._sklearn_object, "classes_", None) is None:
587
+ output_cols = [output_cols_prefix]
588
+ elif self._sklearn_object is not None:
589
+ classes = self._sklearn_object.classes_
590
+ if isinstance(classes, numpy.ndarray):
591
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
592
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
593
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
594
+ output_cols = []
595
+ for i, cl in enumerate(classes):
596
+ # For binary classification, there is only one output column for each class
597
+ # ndarray as the two classes are complementary.
598
+ if len(cl) == 2:
599
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
600
+ else:
601
+ output_cols.extend([
602
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
603
+ ])
604
+ else:
605
+ output_cols = []
606
+
607
+ # Make sure column names are valid snowflake identifiers.
608
+ assert output_cols is not None # Make MyPy happy
609
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
610
+
611
+ return rv
612
+
613
+ def _align_expected_output_names(
614
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
615
+ ) -> List[str]:
616
+ # in case the inferred output column names dimension is different
617
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
618
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
619
+ output_df_columns = list(output_df_pd.columns)
620
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
621
+ if self.sample_weight_col:
622
+ output_df_columns_set -= set(self.sample_weight_col)
623
+ # if the dimension of inferred output column names is correct; use it
624
+ if len(expected_output_cols_list) == len(output_df_columns_set):
625
+ return expected_output_cols_list
626
+ # otherwise, use the sklearn estimator's output
627
+ else:
628
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
629
+
576
630
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
577
631
  @telemetry.send_api_usage_telemetry(
578
632
  project=_PROJECT,
@@ -603,24 +657,28 @@ class IsolationForest(BaseTransformer):
603
657
  # are specific to the type of dataset used.
604
658
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
605
659
 
660
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
661
+
606
662
  if isinstance(dataset, DataFrame):
607
663
  self._deps = self._batch_inference_validate_snowpark(
608
664
  dataset=dataset,
609
665
  inference_method=inference_method,
610
666
  )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
+ assert isinstance(
668
+ dataset._session, Session
669
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
670
  transform_kwargs = dict(
613
671
  session=dataset._session,
614
672
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
673
+ drop_input_cols=self._drop_input_cols,
616
674
  expected_output_cols_type="float",
617
675
  )
676
+ expected_output_cols = self._align_expected_output_names(
677
+ inference_method, dataset, expected_output_cols, output_cols_prefix
678
+ )
618
679
 
619
680
  elif isinstance(dataset, pd.DataFrame):
620
- transform_kwargs = dict(
621
- snowpark_input_cols = self._snowpark_cols,
622
- drop_input_cols = self._drop_input_cols
623
- )
681
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
624
682
 
625
683
  transform_handlers = ModelTransformerBuilder.build(
626
684
  dataset=dataset,
@@ -632,7 +690,7 @@ class IsolationForest(BaseTransformer):
632
690
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
691
  inference_method=inference_method,
634
692
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
693
+ expected_output_cols=expected_output_cols,
636
694
  **transform_kwargs
637
695
  )
638
696
  return output_df
@@ -662,7 +720,8 @@ class IsolationForest(BaseTransformer):
662
720
  Output dataset with log probability of the sample for each class in the model.
663
721
  """
664
722
  super()._check_dataset_type(dataset)
665
- inference_method="predict_log_proba"
723
+ inference_method = "predict_log_proba"
724
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
725
 
667
726
  # This dictionary contains optional kwargs for batch inference. These kwargs
668
727
  # are specific to the type of dataset used.
@@ -673,18 +732,20 @@ class IsolationForest(BaseTransformer):
673
732
  dataset=dataset,
674
733
  inference_method=inference_method,
675
734
  )
676
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
+ assert isinstance(
736
+ dataset._session, Session
737
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
738
  transform_kwargs = dict(
678
739
  session=dataset._session,
679
740
  dependencies=self._deps,
680
- drop_input_cols = self._drop_input_cols,
741
+ drop_input_cols=self._drop_input_cols,
681
742
  expected_output_cols_type="float",
682
743
  )
744
+ expected_output_cols = self._align_expected_output_names(
745
+ inference_method, dataset, expected_output_cols, output_cols_prefix
746
+ )
683
747
  elif isinstance(dataset, pd.DataFrame):
684
- transform_kwargs = dict(
685
- snowpark_input_cols = self._snowpark_cols,
686
- drop_input_cols = self._drop_input_cols
687
- )
748
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
688
749
 
689
750
  transform_handlers = ModelTransformerBuilder.build(
690
751
  dataset=dataset,
@@ -697,7 +758,7 @@ class IsolationForest(BaseTransformer):
697
758
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
698
759
  inference_method=inference_method,
699
760
  input_cols=self.input_cols,
700
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
761
+ expected_output_cols=expected_output_cols,
701
762
  **transform_kwargs
702
763
  )
703
764
  return output_df
@@ -725,30 +786,34 @@ class IsolationForest(BaseTransformer):
725
786
  Output dataset with results of the decision function for the samples in input dataset.
726
787
  """
727
788
  super()._check_dataset_type(dataset)
728
- inference_method="decision_function"
789
+ inference_method = "decision_function"
729
790
 
730
791
  # This dictionary contains optional kwargs for batch inference. These kwargs
731
792
  # are specific to the type of dataset used.
732
793
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
733
794
 
795
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
796
+
734
797
  if isinstance(dataset, DataFrame):
735
798
  self._deps = self._batch_inference_validate_snowpark(
736
799
  dataset=dataset,
737
800
  inference_method=inference_method,
738
801
  )
739
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
802
+ assert isinstance(
803
+ dataset._session, Session
804
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
740
805
  transform_kwargs = dict(
741
806
  session=dataset._session,
742
807
  dependencies=self._deps,
743
- drop_input_cols = self._drop_input_cols,
808
+ drop_input_cols=self._drop_input_cols,
744
809
  expected_output_cols_type="float",
745
810
  )
811
+ expected_output_cols = self._align_expected_output_names(
812
+ inference_method, dataset, expected_output_cols, output_cols_prefix
813
+ )
746
814
 
747
815
  elif isinstance(dataset, pd.DataFrame):
748
- transform_kwargs = dict(
749
- snowpark_input_cols = self._snowpark_cols,
750
- drop_input_cols = self._drop_input_cols
751
- )
816
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
752
817
 
753
818
  transform_handlers = ModelTransformerBuilder.build(
754
819
  dataset=dataset,
@@ -761,7 +826,7 @@ class IsolationForest(BaseTransformer):
761
826
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
762
827
  inference_method=inference_method,
763
828
  input_cols=self.input_cols,
764
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
829
+ expected_output_cols=expected_output_cols,
765
830
  **transform_kwargs
766
831
  )
767
832
  return output_df
@@ -792,12 +857,14 @@ class IsolationForest(BaseTransformer):
792
857
  Output dataset with probability of the sample for each class in the model.
793
858
  """
794
859
  super()._check_dataset_type(dataset)
795
- inference_method="score_samples"
860
+ inference_method = "score_samples"
796
861
 
797
862
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
863
  # are specific to the type of dataset used.
799
864
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
865
 
866
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
867
+
801
868
  if isinstance(dataset, DataFrame):
802
869
  self._deps = self._batch_inference_validate_snowpark(
803
870
  dataset=dataset,
@@ -810,6 +877,9 @@ class IsolationForest(BaseTransformer):
810
877
  drop_input_cols = self._drop_input_cols,
811
878
  expected_output_cols_type="float",
812
879
  )
880
+ expected_output_cols = self._align_expected_output_names(
881
+ inference_method, dataset, expected_output_cols, output_cols_prefix
882
+ )
813
883
 
814
884
  elif isinstance(dataset, pd.DataFrame):
815
885
  transform_kwargs = dict(
@@ -828,7 +898,7 @@ class IsolationForest(BaseTransformer):
828
898
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
899
  inference_method=inference_method,
830
900
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
901
+ expected_output_cols=expected_output_cols,
832
902
  **transform_kwargs
833
903
  )
834
904
  return output_df
@@ -973,50 +1043,84 @@ class IsolationForest(BaseTransformer):
973
1043
  )
974
1044
  return output_df
975
1045
 
1046
+
1047
+
1048
+ def to_sklearn(self) -> Any:
1049
+ """Get sklearn.ensemble.IsolationForest object.
1050
+ """
1051
+ if self._sklearn_object is None:
1052
+ self._sklearn_object = self._create_sklearn_object()
1053
+ return self._sklearn_object
1054
+
1055
+ def to_xgboost(self) -> Any:
1056
+ raise exceptions.SnowflakeMLException(
1057
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1058
+ original_exception=AttributeError(
1059
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
+ "to_xgboost()",
1061
+ "to_sklearn()"
1062
+ )
1063
+ ),
1064
+ )
1065
+
1066
+ def to_lightgbm(self) -> Any:
1067
+ raise exceptions.SnowflakeMLException(
1068
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1069
+ original_exception=AttributeError(
1070
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
+ "to_lightgbm()",
1072
+ "to_sklearn()"
1073
+ )
1074
+ ),
1075
+ )
976
1076
 
977
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1077
+ def _get_dependencies(self) -> List[str]:
1078
+ return self._deps
1079
+
1080
+
1081
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
978
1082
  self._model_signature_dict = dict()
979
1083
 
980
1084
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
981
1085
 
982
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1086
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
983
1087
  outputs: List[BaseFeatureSpec] = []
984
1088
  if hasattr(self, "predict"):
985
1089
  # keep mypy happy
986
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1090
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
987
1091
  # For classifier, the type of predict is the same as the type of label
988
- if self._sklearn_object._estimator_type == 'classifier':
989
- # label columns is the desired type for output
1092
+ if self._sklearn_object._estimator_type == "classifier":
1093
+ # label columns is the desired type for output
990
1094
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
991
1095
  # rename the output columns
992
1096
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
1097
+ self._model_signature_dict["predict"] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
996
1100
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
997
1101
  # For outlier models, returns -1 for outliers and 1 for inliers.
998
- # Clusterer returns int64 cluster labels.
1102
+ # Clusterer returns int64 cluster labels.
999
1103
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1000
1104
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1004
-
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1108
+
1005
1109
  # For regressor, the type of predict is float64
1006
- elif self._sklearn_object._estimator_type == 'regressor':
1110
+ elif self._sklearn_object._estimator_type == "regressor":
1007
1111
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1011
-
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1115
+
1012
1116
  for prob_func in PROB_FUNCTIONS:
1013
1117
  if hasattr(self, prob_func):
1014
1118
  output_cols_prefix: str = f"{prob_func}_"
1015
1119
  output_column_names = self._get_output_column_names(output_cols_prefix)
1016
1120
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1017
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1121
+ self._model_signature_dict[prob_func] = ModelSignature(
1122
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1123
+ )
1020
1124
 
1021
1125
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1022
1126
  items = list(self._model_signature_dict.items())
@@ -1029,10 +1133,10 @@ class IsolationForest(BaseTransformer):
1029
1133
  """Returns model signature of current class.
1030
1134
 
1031
1135
  Raises:
1032
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1136
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1033
1137
 
1034
1138
  Returns:
1035
- Dict[str, ModelSignature]: each method and its input output signature
1139
+ Dict with each method and its input output signature
1036
1140
  """
1037
1141
  if self._model_signature_dict is None:
1038
1142
  raise exceptions.SnowflakeMLException(
@@ -1040,35 +1144,3 @@ class IsolationForest(BaseTransformer):
1040
1144
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1041
1145
  )
1042
1146
  return self._model_signature_dict
1043
-
1044
- def to_sklearn(self) -> Any:
1045
- """Get sklearn.ensemble.IsolationForest object.
1046
- """
1047
- if self._sklearn_object is None:
1048
- self._sklearn_object = self._create_sklearn_object()
1049
- return self._sklearn_object
1050
-
1051
- def to_xgboost(self) -> Any:
1052
- raise exceptions.SnowflakeMLException(
1053
- error_code=error_codes.METHOD_NOT_ALLOWED,
1054
- original_exception=AttributeError(
1055
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
- "to_xgboost()",
1057
- "to_sklearn()"
1058
- )
1059
- ),
1060
- )
1061
-
1062
- def to_lightgbm(self) -> Any:
1063
- raise exceptions.SnowflakeMLException(
1064
- error_code=error_codes.METHOD_NOT_ALLOWED,
1065
- original_exception=AttributeError(
1066
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1067
- "to_lightgbm()",
1068
- "to_sklearn()"
1069
- )
1070
- ),
1071
- )
1072
-
1073
- def _get_dependencies(self) -> List[str]:
1074
- return self._deps