snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -222,12 +221,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
222
221
|
)
|
223
222
|
return selected_cols
|
224
223
|
|
225
|
-
|
226
|
-
project=_PROJECT,
|
227
|
-
subproject=_SUBPROJECT,
|
228
|
-
custom_tags=dict([("autogen", True)]),
|
229
|
-
)
|
230
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
|
224
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
|
231
225
|
"""Fit underlying estimators
|
232
226
|
For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.fit]
|
233
227
|
(https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OutputCodeClassifier.html#sklearn.multiclass.OutputCodeClassifier.fit)
|
@@ -254,12 +248,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
254
248
|
|
255
249
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
256
250
|
|
257
|
-
|
251
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
258
252
|
if SNOWML_SPROC_ENV in os.environ:
|
259
253
|
statement_params = telemetry.get_function_usage_statement_params(
|
260
254
|
project=_PROJECT,
|
261
255
|
subproject=_SUBPROJECT,
|
262
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
256
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
257
|
+
inspect.currentframe(), OutputCodeClassifier.__class__.__name__
|
258
|
+
),
|
263
259
|
api_calls=[Session.call],
|
264
260
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
265
261
|
)
|
@@ -280,7 +276,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
280
276
|
)
|
281
277
|
self._sklearn_object = model_trainer.train()
|
282
278
|
self._is_fitted = True
|
283
|
-
self.
|
279
|
+
self._generate_model_signatures(dataset)
|
284
280
|
return self
|
285
281
|
|
286
282
|
def _batch_inference_validate_snowpark(
|
@@ -356,7 +352,9 @@ class OutputCodeClassifier(BaseTransformer):
|
|
356
352
|
# when it is classifier, infer the datatype from label columns
|
357
353
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
358
354
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
359
|
-
label_cols_signatures = [
|
355
|
+
label_cols_signatures = [
|
356
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
357
|
+
]
|
360
358
|
if len(label_cols_signatures) == 0:
|
361
359
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
362
360
|
raise exceptions.SnowflakeMLException(
|
@@ -364,25 +362,22 @@ class OutputCodeClassifier(BaseTransformer):
|
|
364
362
|
original_exception=ValueError(error_str),
|
365
363
|
)
|
366
364
|
|
367
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
368
|
-
label_cols_signatures[0].as_snowpark_type()
|
369
|
-
)
|
365
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
370
366
|
|
371
367
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
372
|
-
assert isinstance(
|
368
|
+
assert isinstance(
|
369
|
+
dataset._session, Session
|
370
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
373
371
|
|
374
372
|
transform_kwargs = dict(
|
375
|
-
session
|
376
|
-
dependencies
|
377
|
-
drop_input_cols
|
378
|
-
expected_output_cols_type
|
373
|
+
session=dataset._session,
|
374
|
+
dependencies=self._deps,
|
375
|
+
drop_input_cols=self._drop_input_cols,
|
376
|
+
expected_output_cols_type=expected_type_inferred,
|
379
377
|
)
|
380
378
|
|
381
379
|
elif isinstance(dataset, pd.DataFrame):
|
382
|
-
transform_kwargs = dict(
|
383
|
-
snowpark_input_cols = self._snowpark_cols,
|
384
|
-
drop_input_cols = self._drop_input_cols
|
385
|
-
)
|
380
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
386
381
|
|
387
382
|
transform_handlers = ModelTransformerBuilder.build(
|
388
383
|
dataset=dataset,
|
@@ -422,7 +417,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
422
417
|
Transformed dataset.
|
423
418
|
"""
|
424
419
|
super()._check_dataset_type(dataset)
|
425
|
-
inference_method="transform"
|
420
|
+
inference_method = "transform"
|
426
421
|
|
427
422
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
428
423
|
# are specific to the type of dataset used.
|
@@ -459,17 +454,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
459
454
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
460
455
|
|
461
456
|
transform_kwargs = dict(
|
462
|
-
session
|
463
|
-
dependencies
|
464
|
-
drop_input_cols
|
465
|
-
expected_output_cols_type
|
457
|
+
session=dataset._session,
|
458
|
+
dependencies=self._deps,
|
459
|
+
drop_input_cols=self._drop_input_cols,
|
460
|
+
expected_output_cols_type=expected_dtype,
|
466
461
|
)
|
467
462
|
|
468
463
|
elif isinstance(dataset, pd.DataFrame):
|
469
|
-
transform_kwargs = dict(
|
470
|
-
snowpark_input_cols = self._snowpark_cols,
|
471
|
-
drop_input_cols = self._drop_input_cols
|
472
|
-
)
|
464
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
473
465
|
|
474
466
|
transform_handlers = ModelTransformerBuilder.build(
|
475
467
|
dataset=dataset,
|
@@ -488,7 +480,11 @@ class OutputCodeClassifier(BaseTransformer):
|
|
488
480
|
return output_df
|
489
481
|
|
490
482
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
491
|
-
def fit_predict(
|
483
|
+
def fit_predict(
|
484
|
+
self,
|
485
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
486
|
+
output_cols_prefix: str = "fit_predict_",
|
487
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
492
488
|
""" Method not supported for this class.
|
493
489
|
|
494
490
|
|
@@ -513,7 +509,9 @@ class OutputCodeClassifier(BaseTransformer):
|
|
513
509
|
)
|
514
510
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
515
511
|
drop_input_cols=self._drop_input_cols,
|
516
|
-
expected_output_cols_list=
|
512
|
+
expected_output_cols_list=(
|
513
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
514
|
+
),
|
517
515
|
)
|
518
516
|
self._sklearn_object = fitted_estimator
|
519
517
|
self._is_fitted = True
|
@@ -530,6 +528,62 @@ class OutputCodeClassifier(BaseTransformer):
|
|
530
528
|
assert self._sklearn_object is not None
|
531
529
|
return self._sklearn_object.embedding_
|
532
530
|
|
531
|
+
|
532
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
533
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
534
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
535
|
+
"""
|
536
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
537
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
538
|
+
if output_cols:
|
539
|
+
output_cols = [
|
540
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
541
|
+
for c in output_cols
|
542
|
+
]
|
543
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
544
|
+
output_cols = [output_cols_prefix]
|
545
|
+
elif self._sklearn_object is not None:
|
546
|
+
classes = self._sklearn_object.classes_
|
547
|
+
if isinstance(classes, numpy.ndarray):
|
548
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
549
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
550
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
551
|
+
output_cols = []
|
552
|
+
for i, cl in enumerate(classes):
|
553
|
+
# For binary classification, there is only one output column for each class
|
554
|
+
# ndarray as the two classes are complementary.
|
555
|
+
if len(cl) == 2:
|
556
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
557
|
+
else:
|
558
|
+
output_cols.extend([
|
559
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
560
|
+
])
|
561
|
+
else:
|
562
|
+
output_cols = []
|
563
|
+
|
564
|
+
# Make sure column names are valid snowflake identifiers.
|
565
|
+
assert output_cols is not None # Make MyPy happy
|
566
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
567
|
+
|
568
|
+
return rv
|
569
|
+
|
570
|
+
def _align_expected_output_names(
|
571
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
572
|
+
) -> List[str]:
|
573
|
+
# in case the inferred output column names dimension is different
|
574
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
575
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
576
|
+
output_df_columns = list(output_df_pd.columns)
|
577
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
578
|
+
if self.sample_weight_col:
|
579
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
580
|
+
# if the dimension of inferred output column names is correct; use it
|
581
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
582
|
+
return expected_output_cols_list
|
583
|
+
# otherwise, use the sklearn estimator's output
|
584
|
+
else:
|
585
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
586
|
+
|
533
587
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
534
588
|
@telemetry.send_api_usage_telemetry(
|
535
589
|
project=_PROJECT,
|
@@ -560,24 +614,28 @@ class OutputCodeClassifier(BaseTransformer):
|
|
560
614
|
# are specific to the type of dataset used.
|
561
615
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
562
616
|
|
617
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
618
|
+
|
563
619
|
if isinstance(dataset, DataFrame):
|
564
620
|
self._deps = self._batch_inference_validate_snowpark(
|
565
621
|
dataset=dataset,
|
566
622
|
inference_method=inference_method,
|
567
623
|
)
|
568
|
-
assert isinstance(
|
624
|
+
assert isinstance(
|
625
|
+
dataset._session, Session
|
626
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
569
627
|
transform_kwargs = dict(
|
570
628
|
session=dataset._session,
|
571
629
|
dependencies=self._deps,
|
572
|
-
drop_input_cols
|
630
|
+
drop_input_cols=self._drop_input_cols,
|
573
631
|
expected_output_cols_type="float",
|
574
632
|
)
|
633
|
+
expected_output_cols = self._align_expected_output_names(
|
634
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
635
|
+
)
|
575
636
|
|
576
637
|
elif isinstance(dataset, pd.DataFrame):
|
577
|
-
transform_kwargs = dict(
|
578
|
-
snowpark_input_cols = self._snowpark_cols,
|
579
|
-
drop_input_cols = self._drop_input_cols
|
580
|
-
)
|
638
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
581
639
|
|
582
640
|
transform_handlers = ModelTransformerBuilder.build(
|
583
641
|
dataset=dataset,
|
@@ -589,7 +647,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
589
647
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
590
648
|
inference_method=inference_method,
|
591
649
|
input_cols=self.input_cols,
|
592
|
-
expected_output_cols=
|
650
|
+
expected_output_cols=expected_output_cols,
|
593
651
|
**transform_kwargs
|
594
652
|
)
|
595
653
|
return output_df
|
@@ -619,7 +677,8 @@ class OutputCodeClassifier(BaseTransformer):
|
|
619
677
|
Output dataset with log probability of the sample for each class in the model.
|
620
678
|
"""
|
621
679
|
super()._check_dataset_type(dataset)
|
622
|
-
inference_method="predict_log_proba"
|
680
|
+
inference_method = "predict_log_proba"
|
681
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
623
682
|
|
624
683
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
625
684
|
# are specific to the type of dataset used.
|
@@ -630,18 +689,20 @@ class OutputCodeClassifier(BaseTransformer):
|
|
630
689
|
dataset=dataset,
|
631
690
|
inference_method=inference_method,
|
632
691
|
)
|
633
|
-
assert isinstance(
|
692
|
+
assert isinstance(
|
693
|
+
dataset._session, Session
|
694
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
634
695
|
transform_kwargs = dict(
|
635
696
|
session=dataset._session,
|
636
697
|
dependencies=self._deps,
|
637
|
-
drop_input_cols
|
698
|
+
drop_input_cols=self._drop_input_cols,
|
638
699
|
expected_output_cols_type="float",
|
639
700
|
)
|
701
|
+
expected_output_cols = self._align_expected_output_names(
|
702
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
703
|
+
)
|
640
704
|
elif isinstance(dataset, pd.DataFrame):
|
641
|
-
transform_kwargs = dict(
|
642
|
-
snowpark_input_cols = self._snowpark_cols,
|
643
|
-
drop_input_cols = self._drop_input_cols
|
644
|
-
)
|
705
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
645
706
|
|
646
707
|
transform_handlers = ModelTransformerBuilder.build(
|
647
708
|
dataset=dataset,
|
@@ -654,7 +715,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
654
715
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
655
716
|
inference_method=inference_method,
|
656
717
|
input_cols=self.input_cols,
|
657
|
-
expected_output_cols=
|
718
|
+
expected_output_cols=expected_output_cols,
|
658
719
|
**transform_kwargs
|
659
720
|
)
|
660
721
|
return output_df
|
@@ -680,30 +741,34 @@ class OutputCodeClassifier(BaseTransformer):
|
|
680
741
|
Output dataset with results of the decision function for the samples in input dataset.
|
681
742
|
"""
|
682
743
|
super()._check_dataset_type(dataset)
|
683
|
-
inference_method="decision_function"
|
744
|
+
inference_method = "decision_function"
|
684
745
|
|
685
746
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
686
747
|
# are specific to the type of dataset used.
|
687
748
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
688
749
|
|
750
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
751
|
+
|
689
752
|
if isinstance(dataset, DataFrame):
|
690
753
|
self._deps = self._batch_inference_validate_snowpark(
|
691
754
|
dataset=dataset,
|
692
755
|
inference_method=inference_method,
|
693
756
|
)
|
694
|
-
assert isinstance(
|
757
|
+
assert isinstance(
|
758
|
+
dataset._session, Session
|
759
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
695
760
|
transform_kwargs = dict(
|
696
761
|
session=dataset._session,
|
697
762
|
dependencies=self._deps,
|
698
|
-
drop_input_cols
|
763
|
+
drop_input_cols=self._drop_input_cols,
|
699
764
|
expected_output_cols_type="float",
|
700
765
|
)
|
766
|
+
expected_output_cols = self._align_expected_output_names(
|
767
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
768
|
+
)
|
701
769
|
|
702
770
|
elif isinstance(dataset, pd.DataFrame):
|
703
|
-
transform_kwargs = dict(
|
704
|
-
snowpark_input_cols = self._snowpark_cols,
|
705
|
-
drop_input_cols = self._drop_input_cols
|
706
|
-
)
|
771
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
707
772
|
|
708
773
|
transform_handlers = ModelTransformerBuilder.build(
|
709
774
|
dataset=dataset,
|
@@ -716,7 +781,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
716
781
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
717
782
|
inference_method=inference_method,
|
718
783
|
input_cols=self.input_cols,
|
719
|
-
expected_output_cols=
|
784
|
+
expected_output_cols=expected_output_cols,
|
720
785
|
**transform_kwargs
|
721
786
|
)
|
722
787
|
return output_df
|
@@ -745,12 +810,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
745
810
|
Output dataset with probability of the sample for each class in the model.
|
746
811
|
"""
|
747
812
|
super()._check_dataset_type(dataset)
|
748
|
-
inference_method="score_samples"
|
813
|
+
inference_method = "score_samples"
|
749
814
|
|
750
815
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
751
816
|
# are specific to the type of dataset used.
|
752
817
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
753
818
|
|
819
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
820
|
+
|
754
821
|
if isinstance(dataset, DataFrame):
|
755
822
|
self._deps = self._batch_inference_validate_snowpark(
|
756
823
|
dataset=dataset,
|
@@ -763,6 +830,9 @@ class OutputCodeClassifier(BaseTransformer):
|
|
763
830
|
drop_input_cols = self._drop_input_cols,
|
764
831
|
expected_output_cols_type="float",
|
765
832
|
)
|
833
|
+
expected_output_cols = self._align_expected_output_names(
|
834
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
835
|
+
)
|
766
836
|
|
767
837
|
elif isinstance(dataset, pd.DataFrame):
|
768
838
|
transform_kwargs = dict(
|
@@ -781,7 +851,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
781
851
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
782
852
|
inference_method=inference_method,
|
783
853
|
input_cols=self.input_cols,
|
784
|
-
expected_output_cols=
|
854
|
+
expected_output_cols=expected_output_cols,
|
785
855
|
**transform_kwargs
|
786
856
|
)
|
787
857
|
return output_df
|
@@ -928,50 +998,84 @@ class OutputCodeClassifier(BaseTransformer):
|
|
928
998
|
)
|
929
999
|
return output_df
|
930
1000
|
|
1001
|
+
|
1002
|
+
|
1003
|
+
def to_sklearn(self) -> Any:
|
1004
|
+
"""Get sklearn.multiclass.OutputCodeClassifier object.
|
1005
|
+
"""
|
1006
|
+
if self._sklearn_object is None:
|
1007
|
+
self._sklearn_object = self._create_sklearn_object()
|
1008
|
+
return self._sklearn_object
|
1009
|
+
|
1010
|
+
def to_xgboost(self) -> Any:
|
1011
|
+
raise exceptions.SnowflakeMLException(
|
1012
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1013
|
+
original_exception=AttributeError(
|
1014
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1015
|
+
"to_xgboost()",
|
1016
|
+
"to_sklearn()"
|
1017
|
+
)
|
1018
|
+
),
|
1019
|
+
)
|
1020
|
+
|
1021
|
+
def to_lightgbm(self) -> Any:
|
1022
|
+
raise exceptions.SnowflakeMLException(
|
1023
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1024
|
+
original_exception=AttributeError(
|
1025
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1026
|
+
"to_lightgbm()",
|
1027
|
+
"to_sklearn()"
|
1028
|
+
)
|
1029
|
+
),
|
1030
|
+
)
|
931
1031
|
|
932
|
-
def
|
1032
|
+
def _get_dependencies(self) -> List[str]:
|
1033
|
+
return self._deps
|
1034
|
+
|
1035
|
+
|
1036
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
933
1037
|
self._model_signature_dict = dict()
|
934
1038
|
|
935
1039
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
936
1040
|
|
937
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1041
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
938
1042
|
outputs: List[BaseFeatureSpec] = []
|
939
1043
|
if hasattr(self, "predict"):
|
940
1044
|
# keep mypy happy
|
941
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1045
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
942
1046
|
# For classifier, the type of predict is the same as the type of label
|
943
|
-
if self._sklearn_object._estimator_type ==
|
944
|
-
|
1047
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1048
|
+
# label columns is the desired type for output
|
945
1049
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
946
1050
|
# rename the output columns
|
947
1051
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
948
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
949
|
-
|
950
|
-
|
1052
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1053
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1054
|
+
)
|
951
1055
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
952
1056
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
953
|
-
# Clusterer returns int64 cluster labels.
|
1057
|
+
# Clusterer returns int64 cluster labels.
|
954
1058
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
955
1059
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
956
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
957
|
-
|
958
|
-
|
959
|
-
|
1060
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1061
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1062
|
+
)
|
1063
|
+
|
960
1064
|
# For regressor, the type of predict is float64
|
961
|
-
elif self._sklearn_object._estimator_type ==
|
1065
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
962
1066
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
963
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
964
|
-
|
965
|
-
|
966
|
-
|
1067
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1068
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1069
|
+
)
|
1070
|
+
|
967
1071
|
for prob_func in PROB_FUNCTIONS:
|
968
1072
|
if hasattr(self, prob_func):
|
969
1073
|
output_cols_prefix: str = f"{prob_func}_"
|
970
1074
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
971
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
972
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
973
|
-
|
974
|
-
|
1076
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
975
1079
|
|
976
1080
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
977
1081
|
items = list(self._model_signature_dict.items())
|
@@ -984,10 +1088,10 @@ class OutputCodeClassifier(BaseTransformer):
|
|
984
1088
|
"""Returns model signature of current class.
|
985
1089
|
|
986
1090
|
Raises:
|
987
|
-
|
1091
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
988
1092
|
|
989
1093
|
Returns:
|
990
|
-
Dict
|
1094
|
+
Dict with each method and its input output signature
|
991
1095
|
"""
|
992
1096
|
if self._model_signature_dict is None:
|
993
1097
|
raise exceptions.SnowflakeMLException(
|
@@ -995,35 +1099,3 @@ class OutputCodeClassifier(BaseTransformer):
|
|
995
1099
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
996
1100
|
)
|
997
1101
|
return self._model_signature_dict
|
998
|
-
|
999
|
-
def to_sklearn(self) -> Any:
|
1000
|
-
"""Get sklearn.multiclass.OutputCodeClassifier object.
|
1001
|
-
"""
|
1002
|
-
if self._sklearn_object is None:
|
1003
|
-
self._sklearn_object = self._create_sklearn_object()
|
1004
|
-
return self._sklearn_object
|
1005
|
-
|
1006
|
-
def to_xgboost(self) -> Any:
|
1007
|
-
raise exceptions.SnowflakeMLException(
|
1008
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1009
|
-
original_exception=AttributeError(
|
1010
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1011
|
-
"to_xgboost()",
|
1012
|
-
"to_sklearn()"
|
1013
|
-
)
|
1014
|
-
),
|
1015
|
-
)
|
1016
|
-
|
1017
|
-
def to_lightgbm(self) -> Any:
|
1018
|
-
raise exceptions.SnowflakeMLException(
|
1019
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1020
|
-
original_exception=AttributeError(
|
1021
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1022
|
-
"to_lightgbm()",
|
1023
|
-
"to_sklearn()"
|
1024
|
-
)
|
1025
|
-
),
|
1026
|
-
)
|
1027
|
-
|
1028
|
-
def _get_dependencies(self) -> List[str]:
|
1029
|
-
return self._deps
|