snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -222,12 +221,7 @@ class OutputCodeClassifier(BaseTransformer):
222
221
  )
223
222
  return selected_cols
224
223
 
225
- @telemetry.send_api_usage_telemetry(
226
- project=_PROJECT,
227
- subproject=_SUBPROJECT,
228
- custom_tags=dict([("autogen", True)]),
229
- )
230
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
224
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
231
225
  """Fit underlying estimators
232
226
  For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.fit]
233
227
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OutputCodeClassifier.html#sklearn.multiclass.OutputCodeClassifier.fit)
@@ -254,12 +248,14 @@ class OutputCodeClassifier(BaseTransformer):
254
248
 
255
249
  self._snowpark_cols = dataset.select(self.input_cols).columns
256
250
 
257
- # If we are already in a stored procedure, no need to kick off another one.
251
+ # If we are already in a stored procedure, no need to kick off another one.
258
252
  if SNOWML_SPROC_ENV in os.environ:
259
253
  statement_params = telemetry.get_function_usage_statement_params(
260
254
  project=_PROJECT,
261
255
  subproject=_SUBPROJECT,
262
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OutputCodeClassifier.__class__.__name__),
256
+ function_name=telemetry.get_statement_params_full_func_name(
257
+ inspect.currentframe(), OutputCodeClassifier.__class__.__name__
258
+ ),
263
259
  api_calls=[Session.call],
264
260
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
261
  )
@@ -280,7 +276,7 @@ class OutputCodeClassifier(BaseTransformer):
280
276
  )
281
277
  self._sklearn_object = model_trainer.train()
282
278
  self._is_fitted = True
283
- self._get_model_signatures(dataset)
279
+ self._generate_model_signatures(dataset)
284
280
  return self
285
281
 
286
282
  def _batch_inference_validate_snowpark(
@@ -356,7 +352,9 @@ class OutputCodeClassifier(BaseTransformer):
356
352
  # when it is classifier, infer the datatype from label columns
357
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
358
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
359
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
360
358
  if len(label_cols_signatures) == 0:
361
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
362
360
  raise exceptions.SnowflakeMLException(
@@ -364,25 +362,22 @@ class OutputCodeClassifier(BaseTransformer):
364
362
  original_exception=ValueError(error_str),
365
363
  )
366
364
 
367
- expected_type_inferred = convert_sp_to_sf_type(
368
- label_cols_signatures[0].as_snowpark_type()
369
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
370
366
 
371
367
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
368
+ assert isinstance(
369
+ dataset._session, Session
370
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
371
 
374
372
  transform_kwargs = dict(
375
- session = dataset._session,
376
- dependencies = self._deps,
377
- drop_input_cols = self._drop_input_cols,
378
- expected_output_cols_type = expected_type_inferred,
373
+ session=dataset._session,
374
+ dependencies=self._deps,
375
+ drop_input_cols=self._drop_input_cols,
376
+ expected_output_cols_type=expected_type_inferred,
379
377
  )
380
378
 
381
379
  elif isinstance(dataset, pd.DataFrame):
382
- transform_kwargs = dict(
383
- snowpark_input_cols = self._snowpark_cols,
384
- drop_input_cols = self._drop_input_cols
385
- )
380
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
386
381
 
387
382
  transform_handlers = ModelTransformerBuilder.build(
388
383
  dataset=dataset,
@@ -422,7 +417,7 @@ class OutputCodeClassifier(BaseTransformer):
422
417
  Transformed dataset.
423
418
  """
424
419
  super()._check_dataset_type(dataset)
425
- inference_method="transform"
420
+ inference_method = "transform"
426
421
 
427
422
  # This dictionary contains optional kwargs for batch inference. These kwargs
428
423
  # are specific to the type of dataset used.
@@ -459,17 +454,14 @@ class OutputCodeClassifier(BaseTransformer):
459
454
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
460
455
 
461
456
  transform_kwargs = dict(
462
- session = dataset._session,
463
- dependencies = self._deps,
464
- drop_input_cols = self._drop_input_cols,
465
- expected_output_cols_type = expected_dtype,
457
+ session=dataset._session,
458
+ dependencies=self._deps,
459
+ drop_input_cols=self._drop_input_cols,
460
+ expected_output_cols_type=expected_dtype,
466
461
  )
467
462
 
468
463
  elif isinstance(dataset, pd.DataFrame):
469
- transform_kwargs = dict(
470
- snowpark_input_cols = self._snowpark_cols,
471
- drop_input_cols = self._drop_input_cols
472
- )
464
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
473
465
 
474
466
  transform_handlers = ModelTransformerBuilder.build(
475
467
  dataset=dataset,
@@ -488,7 +480,11 @@ class OutputCodeClassifier(BaseTransformer):
488
480
  return output_df
489
481
 
490
482
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
491
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
483
+ def fit_predict(
484
+ self,
485
+ dataset: Union[DataFrame, pd.DataFrame],
486
+ output_cols_prefix: str = "fit_predict_",
487
+ ) -> Union[DataFrame, pd.DataFrame]:
492
488
  """ Method not supported for this class.
493
489
 
494
490
 
@@ -513,7 +509,9 @@ class OutputCodeClassifier(BaseTransformer):
513
509
  )
514
510
  output_result, fitted_estimator = model_trainer.train_fit_predict(
515
511
  drop_input_cols=self._drop_input_cols,
516
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
512
+ expected_output_cols_list=(
513
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
514
+ ),
517
515
  )
518
516
  self._sklearn_object = fitted_estimator
519
517
  self._is_fitted = True
@@ -530,6 +528,62 @@ class OutputCodeClassifier(BaseTransformer):
530
528
  assert self._sklearn_object is not None
531
529
  return self._sklearn_object.embedding_
532
530
 
531
+
532
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
533
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
534
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
535
+ """
536
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
537
+ # The following condition is introduced for kneighbors methods, and not used in other methods
538
+ if output_cols:
539
+ output_cols = [
540
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
541
+ for c in output_cols
542
+ ]
543
+ elif getattr(self._sklearn_object, "classes_", None) is None:
544
+ output_cols = [output_cols_prefix]
545
+ elif self._sklearn_object is not None:
546
+ classes = self._sklearn_object.classes_
547
+ if isinstance(classes, numpy.ndarray):
548
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
549
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
550
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
551
+ output_cols = []
552
+ for i, cl in enumerate(classes):
553
+ # For binary classification, there is only one output column for each class
554
+ # ndarray as the two classes are complementary.
555
+ if len(cl) == 2:
556
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
557
+ else:
558
+ output_cols.extend([
559
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
560
+ ])
561
+ else:
562
+ output_cols = []
563
+
564
+ # Make sure column names are valid snowflake identifiers.
565
+ assert output_cols is not None # Make MyPy happy
566
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
567
+
568
+ return rv
569
+
570
+ def _align_expected_output_names(
571
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
572
+ ) -> List[str]:
573
+ # in case the inferred output column names dimension is different
574
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
575
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
576
+ output_df_columns = list(output_df_pd.columns)
577
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
578
+ if self.sample_weight_col:
579
+ output_df_columns_set -= set(self.sample_weight_col)
580
+ # if the dimension of inferred output column names is correct; use it
581
+ if len(expected_output_cols_list) == len(output_df_columns_set):
582
+ return expected_output_cols_list
583
+ # otherwise, use the sklearn estimator's output
584
+ else:
585
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
586
+
533
587
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
534
588
  @telemetry.send_api_usage_telemetry(
535
589
  project=_PROJECT,
@@ -560,24 +614,28 @@ class OutputCodeClassifier(BaseTransformer):
560
614
  # are specific to the type of dataset used.
561
615
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
562
616
 
617
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
618
+
563
619
  if isinstance(dataset, DataFrame):
564
620
  self._deps = self._batch_inference_validate_snowpark(
565
621
  dataset=dataset,
566
622
  inference_method=inference_method,
567
623
  )
568
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
624
+ assert isinstance(
625
+ dataset._session, Session
626
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
569
627
  transform_kwargs = dict(
570
628
  session=dataset._session,
571
629
  dependencies=self._deps,
572
- drop_input_cols = self._drop_input_cols,
630
+ drop_input_cols=self._drop_input_cols,
573
631
  expected_output_cols_type="float",
574
632
  )
633
+ expected_output_cols = self._align_expected_output_names(
634
+ inference_method, dataset, expected_output_cols, output_cols_prefix
635
+ )
575
636
 
576
637
  elif isinstance(dataset, pd.DataFrame):
577
- transform_kwargs = dict(
578
- snowpark_input_cols = self._snowpark_cols,
579
- drop_input_cols = self._drop_input_cols
580
- )
638
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
581
639
 
582
640
  transform_handlers = ModelTransformerBuilder.build(
583
641
  dataset=dataset,
@@ -589,7 +647,7 @@ class OutputCodeClassifier(BaseTransformer):
589
647
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
590
648
  inference_method=inference_method,
591
649
  input_cols=self.input_cols,
592
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
650
+ expected_output_cols=expected_output_cols,
593
651
  **transform_kwargs
594
652
  )
595
653
  return output_df
@@ -619,7 +677,8 @@ class OutputCodeClassifier(BaseTransformer):
619
677
  Output dataset with log probability of the sample for each class in the model.
620
678
  """
621
679
  super()._check_dataset_type(dataset)
622
- inference_method="predict_log_proba"
680
+ inference_method = "predict_log_proba"
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
623
682
 
624
683
  # This dictionary contains optional kwargs for batch inference. These kwargs
625
684
  # are specific to the type of dataset used.
@@ -630,18 +689,20 @@ class OutputCodeClassifier(BaseTransformer):
630
689
  dataset=dataset,
631
690
  inference_method=inference_method,
632
691
  )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
+ assert isinstance(
693
+ dataset._session, Session
694
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
695
  transform_kwargs = dict(
635
696
  session=dataset._session,
636
697
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
698
+ drop_input_cols=self._drop_input_cols,
638
699
  expected_output_cols_type="float",
639
700
  )
701
+ expected_output_cols = self._align_expected_output_names(
702
+ inference_method, dataset, expected_output_cols, output_cols_prefix
703
+ )
640
704
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
705
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
706
 
646
707
  transform_handlers = ModelTransformerBuilder.build(
647
708
  dataset=dataset,
@@ -654,7 +715,7 @@ class OutputCodeClassifier(BaseTransformer):
654
715
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
716
  inference_method=inference_method,
656
717
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
718
+ expected_output_cols=expected_output_cols,
658
719
  **transform_kwargs
659
720
  )
660
721
  return output_df
@@ -680,30 +741,34 @@ class OutputCodeClassifier(BaseTransformer):
680
741
  Output dataset with results of the decision function for the samples in input dataset.
681
742
  """
682
743
  super()._check_dataset_type(dataset)
683
- inference_method="decision_function"
744
+ inference_method = "decision_function"
684
745
 
685
746
  # This dictionary contains optional kwargs for batch inference. These kwargs
686
747
  # are specific to the type of dataset used.
687
748
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
688
749
 
750
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
751
+
689
752
  if isinstance(dataset, DataFrame):
690
753
  self._deps = self._batch_inference_validate_snowpark(
691
754
  dataset=dataset,
692
755
  inference_method=inference_method,
693
756
  )
694
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
+ assert isinstance(
758
+ dataset._session, Session
759
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
760
  transform_kwargs = dict(
696
761
  session=dataset._session,
697
762
  dependencies=self._deps,
698
- drop_input_cols = self._drop_input_cols,
763
+ drop_input_cols=self._drop_input_cols,
699
764
  expected_output_cols_type="float",
700
765
  )
766
+ expected_output_cols = self._align_expected_output_names(
767
+ inference_method, dataset, expected_output_cols, output_cols_prefix
768
+ )
701
769
 
702
770
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
771
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
772
 
708
773
  transform_handlers = ModelTransformerBuilder.build(
709
774
  dataset=dataset,
@@ -716,7 +781,7 @@ class OutputCodeClassifier(BaseTransformer):
716
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
782
  inference_method=inference_method,
718
783
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
720
785
  **transform_kwargs
721
786
  )
722
787
  return output_df
@@ -745,12 +810,14 @@ class OutputCodeClassifier(BaseTransformer):
745
810
  Output dataset with probability of the sample for each class in the model.
746
811
  """
747
812
  super()._check_dataset_type(dataset)
748
- inference_method="score_samples"
813
+ inference_method = "score_samples"
749
814
 
750
815
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
816
  # are specific to the type of dataset used.
752
817
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
818
 
819
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
820
+
754
821
  if isinstance(dataset, DataFrame):
755
822
  self._deps = self._batch_inference_validate_snowpark(
756
823
  dataset=dataset,
@@ -763,6 +830,9 @@ class OutputCodeClassifier(BaseTransformer):
763
830
  drop_input_cols = self._drop_input_cols,
764
831
  expected_output_cols_type="float",
765
832
  )
833
+ expected_output_cols = self._align_expected_output_names(
834
+ inference_method, dataset, expected_output_cols, output_cols_prefix
835
+ )
766
836
 
767
837
  elif isinstance(dataset, pd.DataFrame):
768
838
  transform_kwargs = dict(
@@ -781,7 +851,7 @@ class OutputCodeClassifier(BaseTransformer):
781
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
852
  inference_method=inference_method,
783
853
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
785
855
  **transform_kwargs
786
856
  )
787
857
  return output_df
@@ -928,50 +998,84 @@ class OutputCodeClassifier(BaseTransformer):
928
998
  )
929
999
  return output_df
930
1000
 
1001
+
1002
+
1003
+ def to_sklearn(self) -> Any:
1004
+ """Get sklearn.multiclass.OutputCodeClassifier object.
1005
+ """
1006
+ if self._sklearn_object is None:
1007
+ self._sklearn_object = self._create_sklearn_object()
1008
+ return self._sklearn_object
1009
+
1010
+ def to_xgboost(self) -> Any:
1011
+ raise exceptions.SnowflakeMLException(
1012
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1013
+ original_exception=AttributeError(
1014
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1015
+ "to_xgboost()",
1016
+ "to_sklearn()"
1017
+ )
1018
+ ),
1019
+ )
1020
+
1021
+ def to_lightgbm(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_lightgbm()",
1027
+ "to_sklearn()"
1028
+ )
1029
+ ),
1030
+ )
931
1031
 
932
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
+ def _get_dependencies(self) -> List[str]:
1033
+ return self._deps
1034
+
1035
+
1036
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
933
1037
  self._model_signature_dict = dict()
934
1038
 
935
1039
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
936
1040
 
937
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1041
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
938
1042
  outputs: List[BaseFeatureSpec] = []
939
1043
  if hasattr(self, "predict"):
940
1044
  # keep mypy happy
941
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1045
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
942
1046
  # For classifier, the type of predict is the same as the type of label
943
- if self._sklearn_object._estimator_type == 'classifier':
944
- # label columns is the desired type for output
1047
+ if self._sklearn_object._estimator_type == "classifier":
1048
+ # label columns is the desired type for output
945
1049
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
1050
  # rename the output columns
947
1051
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
951
1055
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
952
1056
  # For outlier models, returns -1 for outliers and 1 for inliers.
953
- # Clusterer returns int64 cluster labels.
1057
+ # Clusterer returns int64 cluster labels.
954
1058
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
955
1059
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
956
- self._model_signature_dict["predict"] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
959
-
1060
+ self._model_signature_dict["predict"] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
1063
+
960
1064
  # For regressor, the type of predict is float64
961
- elif self._sklearn_object._estimator_type == 'regressor':
1065
+ elif self._sklearn_object._estimator_type == "regressor":
962
1066
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
966
-
1067
+ self._model_signature_dict["predict"] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
1070
+
967
1071
  for prob_func in PROB_FUNCTIONS:
968
1072
  if hasattr(self, prob_func):
969
1073
  output_cols_prefix: str = f"{prob_func}_"
970
1074
  output_column_names = self._get_output_column_names(output_cols_prefix)
971
1075
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
972
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
1076
+ self._model_signature_dict[prob_func] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
975
1079
 
976
1080
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
977
1081
  items = list(self._model_signature_dict.items())
@@ -984,10 +1088,10 @@ class OutputCodeClassifier(BaseTransformer):
984
1088
  """Returns model signature of current class.
985
1089
 
986
1090
  Raises:
987
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1091
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
988
1092
 
989
1093
  Returns:
990
- Dict[str, ModelSignature]: each method and its input output signature
1094
+ Dict with each method and its input output signature
991
1095
  """
992
1096
  if self._model_signature_dict is None:
993
1097
  raise exceptions.SnowflakeMLException(
@@ -995,35 +1099,3 @@ class OutputCodeClassifier(BaseTransformer):
995
1099
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
996
1100
  )
997
1101
  return self._model_signature_dict
998
-
999
- def to_sklearn(self) -> Any:
1000
- """Get sklearn.multiclass.OutputCodeClassifier object.
1001
- """
1002
- if self._sklearn_object is None:
1003
- self._sklearn_object = self._create_sklearn_object()
1004
- return self._sklearn_object
1005
-
1006
- def to_xgboost(self) -> Any:
1007
- raise exceptions.SnowflakeMLException(
1008
- error_code=error_codes.METHOD_NOT_ALLOWED,
1009
- original_exception=AttributeError(
1010
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
- "to_xgboost()",
1012
- "to_sklearn()"
1013
- )
1014
- ),
1015
- )
1016
-
1017
- def to_lightgbm(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_lightgbm()",
1023
- "to_sklearn()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def _get_dependencies(self) -> List[str]:
1029
- return self._deps