snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -354,12 +353,7 @@ class SGDRegressor(BaseTransformer):
|
|
354
353
|
)
|
355
354
|
return selected_cols
|
356
355
|
|
357
|
-
|
358
|
-
project=_PROJECT,
|
359
|
-
subproject=_SUBPROJECT,
|
360
|
-
custom_tags=dict([("autogen", True)]),
|
361
|
-
)
|
362
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDRegressor":
|
356
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDRegressor":
|
363
357
|
"""Fit linear model with Stochastic Gradient Descent
|
364
358
|
For more details on this function, see [sklearn.linear_model.SGDRegressor.fit]
|
365
359
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor.fit)
|
@@ -386,12 +380,14 @@ class SGDRegressor(BaseTransformer):
|
|
386
380
|
|
387
381
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
388
382
|
|
389
|
-
|
383
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
390
384
|
if SNOWML_SPROC_ENV in os.environ:
|
391
385
|
statement_params = telemetry.get_function_usage_statement_params(
|
392
386
|
project=_PROJECT,
|
393
387
|
subproject=_SUBPROJECT,
|
394
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
388
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
389
|
+
inspect.currentframe(), SGDRegressor.__class__.__name__
|
390
|
+
),
|
395
391
|
api_calls=[Session.call],
|
396
392
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
397
393
|
)
|
@@ -412,7 +408,7 @@ class SGDRegressor(BaseTransformer):
|
|
412
408
|
)
|
413
409
|
self._sklearn_object = model_trainer.train()
|
414
410
|
self._is_fitted = True
|
415
|
-
self.
|
411
|
+
self._generate_model_signatures(dataset)
|
416
412
|
return self
|
417
413
|
|
418
414
|
def _batch_inference_validate_snowpark(
|
@@ -488,7 +484,9 @@ class SGDRegressor(BaseTransformer):
|
|
488
484
|
# when it is classifier, infer the datatype from label columns
|
489
485
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
490
486
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
491
|
-
label_cols_signatures = [
|
487
|
+
label_cols_signatures = [
|
488
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
489
|
+
]
|
492
490
|
if len(label_cols_signatures) == 0:
|
493
491
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
494
492
|
raise exceptions.SnowflakeMLException(
|
@@ -496,25 +494,22 @@ class SGDRegressor(BaseTransformer):
|
|
496
494
|
original_exception=ValueError(error_str),
|
497
495
|
)
|
498
496
|
|
499
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
500
|
-
label_cols_signatures[0].as_snowpark_type()
|
501
|
-
)
|
497
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
502
498
|
|
503
499
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
504
|
-
assert isinstance(
|
500
|
+
assert isinstance(
|
501
|
+
dataset._session, Session
|
502
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
505
503
|
|
506
504
|
transform_kwargs = dict(
|
507
|
-
session
|
508
|
-
dependencies
|
509
|
-
drop_input_cols
|
510
|
-
expected_output_cols_type
|
505
|
+
session=dataset._session,
|
506
|
+
dependencies=self._deps,
|
507
|
+
drop_input_cols=self._drop_input_cols,
|
508
|
+
expected_output_cols_type=expected_type_inferred,
|
511
509
|
)
|
512
510
|
|
513
511
|
elif isinstance(dataset, pd.DataFrame):
|
514
|
-
transform_kwargs = dict(
|
515
|
-
snowpark_input_cols = self._snowpark_cols,
|
516
|
-
drop_input_cols = self._drop_input_cols
|
517
|
-
)
|
512
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
518
513
|
|
519
514
|
transform_handlers = ModelTransformerBuilder.build(
|
520
515
|
dataset=dataset,
|
@@ -554,7 +549,7 @@ class SGDRegressor(BaseTransformer):
|
|
554
549
|
Transformed dataset.
|
555
550
|
"""
|
556
551
|
super()._check_dataset_type(dataset)
|
557
|
-
inference_method="transform"
|
552
|
+
inference_method = "transform"
|
558
553
|
|
559
554
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
560
555
|
# are specific to the type of dataset used.
|
@@ -591,17 +586,14 @@ class SGDRegressor(BaseTransformer):
|
|
591
586
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
592
587
|
|
593
588
|
transform_kwargs = dict(
|
594
|
-
session
|
595
|
-
dependencies
|
596
|
-
drop_input_cols
|
597
|
-
expected_output_cols_type
|
589
|
+
session=dataset._session,
|
590
|
+
dependencies=self._deps,
|
591
|
+
drop_input_cols=self._drop_input_cols,
|
592
|
+
expected_output_cols_type=expected_dtype,
|
598
593
|
)
|
599
594
|
|
600
595
|
elif isinstance(dataset, pd.DataFrame):
|
601
|
-
transform_kwargs = dict(
|
602
|
-
snowpark_input_cols = self._snowpark_cols,
|
603
|
-
drop_input_cols = self._drop_input_cols
|
604
|
-
)
|
596
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
605
597
|
|
606
598
|
transform_handlers = ModelTransformerBuilder.build(
|
607
599
|
dataset=dataset,
|
@@ -620,7 +612,11 @@ class SGDRegressor(BaseTransformer):
|
|
620
612
|
return output_df
|
621
613
|
|
622
614
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
623
|
-
def fit_predict(
|
615
|
+
def fit_predict(
|
616
|
+
self,
|
617
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
618
|
+
output_cols_prefix: str = "fit_predict_",
|
619
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
624
620
|
""" Method not supported for this class.
|
625
621
|
|
626
622
|
|
@@ -645,7 +641,9 @@ class SGDRegressor(BaseTransformer):
|
|
645
641
|
)
|
646
642
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
647
643
|
drop_input_cols=self._drop_input_cols,
|
648
|
-
expected_output_cols_list=
|
644
|
+
expected_output_cols_list=(
|
645
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
646
|
+
),
|
649
647
|
)
|
650
648
|
self._sklearn_object = fitted_estimator
|
651
649
|
self._is_fitted = True
|
@@ -662,6 +660,62 @@ class SGDRegressor(BaseTransformer):
|
|
662
660
|
assert self._sklearn_object is not None
|
663
661
|
return self._sklearn_object.embedding_
|
664
662
|
|
663
|
+
|
664
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
665
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
666
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
667
|
+
"""
|
668
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
669
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
670
|
+
if output_cols:
|
671
|
+
output_cols = [
|
672
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
673
|
+
for c in output_cols
|
674
|
+
]
|
675
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
676
|
+
output_cols = [output_cols_prefix]
|
677
|
+
elif self._sklearn_object is not None:
|
678
|
+
classes = self._sklearn_object.classes_
|
679
|
+
if isinstance(classes, numpy.ndarray):
|
680
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
681
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
682
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
683
|
+
output_cols = []
|
684
|
+
for i, cl in enumerate(classes):
|
685
|
+
# For binary classification, there is only one output column for each class
|
686
|
+
# ndarray as the two classes are complementary.
|
687
|
+
if len(cl) == 2:
|
688
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
689
|
+
else:
|
690
|
+
output_cols.extend([
|
691
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
692
|
+
])
|
693
|
+
else:
|
694
|
+
output_cols = []
|
695
|
+
|
696
|
+
# Make sure column names are valid snowflake identifiers.
|
697
|
+
assert output_cols is not None # Make MyPy happy
|
698
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
699
|
+
|
700
|
+
return rv
|
701
|
+
|
702
|
+
def _align_expected_output_names(
|
703
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
704
|
+
) -> List[str]:
|
705
|
+
# in case the inferred output column names dimension is different
|
706
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
707
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
708
|
+
output_df_columns = list(output_df_pd.columns)
|
709
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
710
|
+
if self.sample_weight_col:
|
711
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
712
|
+
# if the dimension of inferred output column names is correct; use it
|
713
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
714
|
+
return expected_output_cols_list
|
715
|
+
# otherwise, use the sklearn estimator's output
|
716
|
+
else:
|
717
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
718
|
+
|
665
719
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
666
720
|
@telemetry.send_api_usage_telemetry(
|
667
721
|
project=_PROJECT,
|
@@ -692,24 +746,28 @@ class SGDRegressor(BaseTransformer):
|
|
692
746
|
# are specific to the type of dataset used.
|
693
747
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
694
748
|
|
749
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
750
|
+
|
695
751
|
if isinstance(dataset, DataFrame):
|
696
752
|
self._deps = self._batch_inference_validate_snowpark(
|
697
753
|
dataset=dataset,
|
698
754
|
inference_method=inference_method,
|
699
755
|
)
|
700
|
-
assert isinstance(
|
756
|
+
assert isinstance(
|
757
|
+
dataset._session, Session
|
758
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
701
759
|
transform_kwargs = dict(
|
702
760
|
session=dataset._session,
|
703
761
|
dependencies=self._deps,
|
704
|
-
drop_input_cols
|
762
|
+
drop_input_cols=self._drop_input_cols,
|
705
763
|
expected_output_cols_type="float",
|
706
764
|
)
|
765
|
+
expected_output_cols = self._align_expected_output_names(
|
766
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
767
|
+
)
|
707
768
|
|
708
769
|
elif isinstance(dataset, pd.DataFrame):
|
709
|
-
transform_kwargs = dict(
|
710
|
-
snowpark_input_cols = self._snowpark_cols,
|
711
|
-
drop_input_cols = self._drop_input_cols
|
712
|
-
)
|
770
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
713
771
|
|
714
772
|
transform_handlers = ModelTransformerBuilder.build(
|
715
773
|
dataset=dataset,
|
@@ -721,7 +779,7 @@ class SGDRegressor(BaseTransformer):
|
|
721
779
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
722
780
|
inference_method=inference_method,
|
723
781
|
input_cols=self.input_cols,
|
724
|
-
expected_output_cols=
|
782
|
+
expected_output_cols=expected_output_cols,
|
725
783
|
**transform_kwargs
|
726
784
|
)
|
727
785
|
return output_df
|
@@ -751,7 +809,8 @@ class SGDRegressor(BaseTransformer):
|
|
751
809
|
Output dataset with log probability of the sample for each class in the model.
|
752
810
|
"""
|
753
811
|
super()._check_dataset_type(dataset)
|
754
|
-
inference_method="predict_log_proba"
|
812
|
+
inference_method = "predict_log_proba"
|
813
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
755
814
|
|
756
815
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
757
816
|
# are specific to the type of dataset used.
|
@@ -762,18 +821,20 @@ class SGDRegressor(BaseTransformer):
|
|
762
821
|
dataset=dataset,
|
763
822
|
inference_method=inference_method,
|
764
823
|
)
|
765
|
-
assert isinstance(
|
824
|
+
assert isinstance(
|
825
|
+
dataset._session, Session
|
826
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
766
827
|
transform_kwargs = dict(
|
767
828
|
session=dataset._session,
|
768
829
|
dependencies=self._deps,
|
769
|
-
drop_input_cols
|
830
|
+
drop_input_cols=self._drop_input_cols,
|
770
831
|
expected_output_cols_type="float",
|
771
832
|
)
|
833
|
+
expected_output_cols = self._align_expected_output_names(
|
834
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
835
|
+
)
|
772
836
|
elif isinstance(dataset, pd.DataFrame):
|
773
|
-
transform_kwargs = dict(
|
774
|
-
snowpark_input_cols = self._snowpark_cols,
|
775
|
-
drop_input_cols = self._drop_input_cols
|
776
|
-
)
|
837
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
777
838
|
|
778
839
|
transform_handlers = ModelTransformerBuilder.build(
|
779
840
|
dataset=dataset,
|
@@ -786,7 +847,7 @@ class SGDRegressor(BaseTransformer):
|
|
786
847
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
787
848
|
inference_method=inference_method,
|
788
849
|
input_cols=self.input_cols,
|
789
|
-
expected_output_cols=
|
850
|
+
expected_output_cols=expected_output_cols,
|
790
851
|
**transform_kwargs
|
791
852
|
)
|
792
853
|
return output_df
|
@@ -812,30 +873,34 @@ class SGDRegressor(BaseTransformer):
|
|
812
873
|
Output dataset with results of the decision function for the samples in input dataset.
|
813
874
|
"""
|
814
875
|
super()._check_dataset_type(dataset)
|
815
|
-
inference_method="decision_function"
|
876
|
+
inference_method = "decision_function"
|
816
877
|
|
817
878
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
818
879
|
# are specific to the type of dataset used.
|
819
880
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
820
881
|
|
882
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
883
|
+
|
821
884
|
if isinstance(dataset, DataFrame):
|
822
885
|
self._deps = self._batch_inference_validate_snowpark(
|
823
886
|
dataset=dataset,
|
824
887
|
inference_method=inference_method,
|
825
888
|
)
|
826
|
-
assert isinstance(
|
889
|
+
assert isinstance(
|
890
|
+
dataset._session, Session
|
891
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
827
892
|
transform_kwargs = dict(
|
828
893
|
session=dataset._session,
|
829
894
|
dependencies=self._deps,
|
830
|
-
drop_input_cols
|
895
|
+
drop_input_cols=self._drop_input_cols,
|
831
896
|
expected_output_cols_type="float",
|
832
897
|
)
|
898
|
+
expected_output_cols = self._align_expected_output_names(
|
899
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
900
|
+
)
|
833
901
|
|
834
902
|
elif isinstance(dataset, pd.DataFrame):
|
835
|
-
transform_kwargs = dict(
|
836
|
-
snowpark_input_cols = self._snowpark_cols,
|
837
|
-
drop_input_cols = self._drop_input_cols
|
838
|
-
)
|
903
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
839
904
|
|
840
905
|
transform_handlers = ModelTransformerBuilder.build(
|
841
906
|
dataset=dataset,
|
@@ -848,7 +913,7 @@ class SGDRegressor(BaseTransformer):
|
|
848
913
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
849
914
|
inference_method=inference_method,
|
850
915
|
input_cols=self.input_cols,
|
851
|
-
expected_output_cols=
|
916
|
+
expected_output_cols=expected_output_cols,
|
852
917
|
**transform_kwargs
|
853
918
|
)
|
854
919
|
return output_df
|
@@ -877,12 +942,14 @@ class SGDRegressor(BaseTransformer):
|
|
877
942
|
Output dataset with probability of the sample for each class in the model.
|
878
943
|
"""
|
879
944
|
super()._check_dataset_type(dataset)
|
880
|
-
inference_method="score_samples"
|
945
|
+
inference_method = "score_samples"
|
881
946
|
|
882
947
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
883
948
|
# are specific to the type of dataset used.
|
884
949
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
885
950
|
|
951
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
952
|
+
|
886
953
|
if isinstance(dataset, DataFrame):
|
887
954
|
self._deps = self._batch_inference_validate_snowpark(
|
888
955
|
dataset=dataset,
|
@@ -895,6 +962,9 @@ class SGDRegressor(BaseTransformer):
|
|
895
962
|
drop_input_cols = self._drop_input_cols,
|
896
963
|
expected_output_cols_type="float",
|
897
964
|
)
|
965
|
+
expected_output_cols = self._align_expected_output_names(
|
966
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
967
|
+
)
|
898
968
|
|
899
969
|
elif isinstance(dataset, pd.DataFrame):
|
900
970
|
transform_kwargs = dict(
|
@@ -913,7 +983,7 @@ class SGDRegressor(BaseTransformer):
|
|
913
983
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
914
984
|
inference_method=inference_method,
|
915
985
|
input_cols=self.input_cols,
|
916
|
-
expected_output_cols=
|
986
|
+
expected_output_cols=expected_output_cols,
|
917
987
|
**transform_kwargs
|
918
988
|
)
|
919
989
|
return output_df
|
@@ -1060,50 +1130,84 @@ class SGDRegressor(BaseTransformer):
|
|
1060
1130
|
)
|
1061
1131
|
return output_df
|
1062
1132
|
|
1133
|
+
|
1134
|
+
|
1135
|
+
def to_sklearn(self) -> Any:
|
1136
|
+
"""Get sklearn.linear_model.SGDRegressor object.
|
1137
|
+
"""
|
1138
|
+
if self._sklearn_object is None:
|
1139
|
+
self._sklearn_object = self._create_sklearn_object()
|
1140
|
+
return self._sklearn_object
|
1141
|
+
|
1142
|
+
def to_xgboost(self) -> Any:
|
1143
|
+
raise exceptions.SnowflakeMLException(
|
1144
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1145
|
+
original_exception=AttributeError(
|
1146
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1147
|
+
"to_xgboost()",
|
1148
|
+
"to_sklearn()"
|
1149
|
+
)
|
1150
|
+
),
|
1151
|
+
)
|
1152
|
+
|
1153
|
+
def to_lightgbm(self) -> Any:
|
1154
|
+
raise exceptions.SnowflakeMLException(
|
1155
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1156
|
+
original_exception=AttributeError(
|
1157
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1158
|
+
"to_lightgbm()",
|
1159
|
+
"to_sklearn()"
|
1160
|
+
)
|
1161
|
+
),
|
1162
|
+
)
|
1063
1163
|
|
1064
|
-
def
|
1164
|
+
def _get_dependencies(self) -> List[str]:
|
1165
|
+
return self._deps
|
1166
|
+
|
1167
|
+
|
1168
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1065
1169
|
self._model_signature_dict = dict()
|
1066
1170
|
|
1067
1171
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1068
1172
|
|
1069
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1173
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1070
1174
|
outputs: List[BaseFeatureSpec] = []
|
1071
1175
|
if hasattr(self, "predict"):
|
1072
1176
|
# keep mypy happy
|
1073
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1177
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1074
1178
|
# For classifier, the type of predict is the same as the type of label
|
1075
|
-
if self._sklearn_object._estimator_type ==
|
1076
|
-
|
1179
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1180
|
+
# label columns is the desired type for output
|
1077
1181
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1078
1182
|
# rename the output columns
|
1079
1183
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1080
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1081
|
-
|
1082
|
-
|
1184
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1185
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1186
|
+
)
|
1083
1187
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1084
1188
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1085
|
-
# Clusterer returns int64 cluster labels.
|
1189
|
+
# Clusterer returns int64 cluster labels.
|
1086
1190
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1087
1191
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1088
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
-
|
1090
|
-
|
1091
|
-
|
1192
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1193
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1194
|
+
)
|
1195
|
+
|
1092
1196
|
# For regressor, the type of predict is float64
|
1093
|
-
elif self._sklearn_object._estimator_type ==
|
1197
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1094
1198
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1095
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1096
|
-
|
1097
|
-
|
1098
|
-
|
1199
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1200
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1201
|
+
)
|
1202
|
+
|
1099
1203
|
for prob_func in PROB_FUNCTIONS:
|
1100
1204
|
if hasattr(self, prob_func):
|
1101
1205
|
output_cols_prefix: str = f"{prob_func}_"
|
1102
1206
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1103
1207
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1104
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1105
|
-
|
1106
|
-
|
1208
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1209
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1210
|
+
)
|
1107
1211
|
|
1108
1212
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1109
1213
|
items = list(self._model_signature_dict.items())
|
@@ -1116,10 +1220,10 @@ class SGDRegressor(BaseTransformer):
|
|
1116
1220
|
"""Returns model signature of current class.
|
1117
1221
|
|
1118
1222
|
Raises:
|
1119
|
-
|
1223
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1120
1224
|
|
1121
1225
|
Returns:
|
1122
|
-
Dict
|
1226
|
+
Dict with each method and its input output signature
|
1123
1227
|
"""
|
1124
1228
|
if self._model_signature_dict is None:
|
1125
1229
|
raise exceptions.SnowflakeMLException(
|
@@ -1127,35 +1231,3 @@ class SGDRegressor(BaseTransformer):
|
|
1127
1231
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1128
1232
|
)
|
1129
1233
|
return self._model_signature_dict
|
1130
|
-
|
1131
|
-
def to_sklearn(self) -> Any:
|
1132
|
-
"""Get sklearn.linear_model.SGDRegressor object.
|
1133
|
-
"""
|
1134
|
-
if self._sklearn_object is None:
|
1135
|
-
self._sklearn_object = self._create_sklearn_object()
|
1136
|
-
return self._sklearn_object
|
1137
|
-
|
1138
|
-
def to_xgboost(self) -> Any:
|
1139
|
-
raise exceptions.SnowflakeMLException(
|
1140
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1141
|
-
original_exception=AttributeError(
|
1142
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1143
|
-
"to_xgboost()",
|
1144
|
-
"to_sklearn()"
|
1145
|
-
)
|
1146
|
-
),
|
1147
|
-
)
|
1148
|
-
|
1149
|
-
def to_lightgbm(self) -> Any:
|
1150
|
-
raise exceptions.SnowflakeMLException(
|
1151
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1152
|
-
original_exception=AttributeError(
|
1153
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1154
|
-
"to_lightgbm()",
|
1155
|
-
"to_sklearn()"
|
1156
|
-
)
|
1157
|
-
),
|
1158
|
-
)
|
1159
|
-
|
1160
|
-
def _get_dependencies(self) -> List[str]:
|
1161
|
-
return self._deps
|