snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -388,12 +387,7 @@ class SGDClassifier(BaseTransformer):
|
|
388
387
|
)
|
389
388
|
return selected_cols
|
390
389
|
|
391
|
-
|
392
|
-
project=_PROJECT,
|
393
|
-
subproject=_SUBPROJECT,
|
394
|
-
custom_tags=dict([("autogen", True)]),
|
395
|
-
)
|
396
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
|
390
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
|
397
391
|
"""Fit linear model with Stochastic Gradient Descent
|
398
392
|
For more details on this function, see [sklearn.linear_model.SGDClassifier.fit]
|
399
393
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.fit)
|
@@ -420,12 +414,14 @@ class SGDClassifier(BaseTransformer):
|
|
420
414
|
|
421
415
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
422
416
|
|
423
|
-
|
417
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
424
418
|
if SNOWML_SPROC_ENV in os.environ:
|
425
419
|
statement_params = telemetry.get_function_usage_statement_params(
|
426
420
|
project=_PROJECT,
|
427
421
|
subproject=_SUBPROJECT,
|
428
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
422
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
423
|
+
inspect.currentframe(), SGDClassifier.__class__.__name__
|
424
|
+
),
|
429
425
|
api_calls=[Session.call],
|
430
426
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
431
427
|
)
|
@@ -446,7 +442,7 @@ class SGDClassifier(BaseTransformer):
|
|
446
442
|
)
|
447
443
|
self._sklearn_object = model_trainer.train()
|
448
444
|
self._is_fitted = True
|
449
|
-
self.
|
445
|
+
self._generate_model_signatures(dataset)
|
450
446
|
return self
|
451
447
|
|
452
448
|
def _batch_inference_validate_snowpark(
|
@@ -522,7 +518,9 @@ class SGDClassifier(BaseTransformer):
|
|
522
518
|
# when it is classifier, infer the datatype from label columns
|
523
519
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
524
520
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
525
|
-
label_cols_signatures = [
|
521
|
+
label_cols_signatures = [
|
522
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
523
|
+
]
|
526
524
|
if len(label_cols_signatures) == 0:
|
527
525
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
528
526
|
raise exceptions.SnowflakeMLException(
|
@@ -530,25 +528,22 @@ class SGDClassifier(BaseTransformer):
|
|
530
528
|
original_exception=ValueError(error_str),
|
531
529
|
)
|
532
530
|
|
533
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
534
|
-
label_cols_signatures[0].as_snowpark_type()
|
535
|
-
)
|
531
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
536
532
|
|
537
533
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
538
|
-
assert isinstance(
|
534
|
+
assert isinstance(
|
535
|
+
dataset._session, Session
|
536
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
539
537
|
|
540
538
|
transform_kwargs = dict(
|
541
|
-
session
|
542
|
-
dependencies
|
543
|
-
drop_input_cols
|
544
|
-
expected_output_cols_type
|
539
|
+
session=dataset._session,
|
540
|
+
dependencies=self._deps,
|
541
|
+
drop_input_cols=self._drop_input_cols,
|
542
|
+
expected_output_cols_type=expected_type_inferred,
|
545
543
|
)
|
546
544
|
|
547
545
|
elif isinstance(dataset, pd.DataFrame):
|
548
|
-
transform_kwargs = dict(
|
549
|
-
snowpark_input_cols = self._snowpark_cols,
|
550
|
-
drop_input_cols = self._drop_input_cols
|
551
|
-
)
|
546
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
552
547
|
|
553
548
|
transform_handlers = ModelTransformerBuilder.build(
|
554
549
|
dataset=dataset,
|
@@ -588,7 +583,7 @@ class SGDClassifier(BaseTransformer):
|
|
588
583
|
Transformed dataset.
|
589
584
|
"""
|
590
585
|
super()._check_dataset_type(dataset)
|
591
|
-
inference_method="transform"
|
586
|
+
inference_method = "transform"
|
592
587
|
|
593
588
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
594
589
|
# are specific to the type of dataset used.
|
@@ -625,17 +620,14 @@ class SGDClassifier(BaseTransformer):
|
|
625
620
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
626
621
|
|
627
622
|
transform_kwargs = dict(
|
628
|
-
session
|
629
|
-
dependencies
|
630
|
-
drop_input_cols
|
631
|
-
expected_output_cols_type
|
623
|
+
session=dataset._session,
|
624
|
+
dependencies=self._deps,
|
625
|
+
drop_input_cols=self._drop_input_cols,
|
626
|
+
expected_output_cols_type=expected_dtype,
|
632
627
|
)
|
633
628
|
|
634
629
|
elif isinstance(dataset, pd.DataFrame):
|
635
|
-
transform_kwargs = dict(
|
636
|
-
snowpark_input_cols = self._snowpark_cols,
|
637
|
-
drop_input_cols = self._drop_input_cols
|
638
|
-
)
|
630
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
639
631
|
|
640
632
|
transform_handlers = ModelTransformerBuilder.build(
|
641
633
|
dataset=dataset,
|
@@ -654,7 +646,11 @@ class SGDClassifier(BaseTransformer):
|
|
654
646
|
return output_df
|
655
647
|
|
656
648
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
657
|
-
def fit_predict(
|
649
|
+
def fit_predict(
|
650
|
+
self,
|
651
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
652
|
+
output_cols_prefix: str = "fit_predict_",
|
653
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
658
654
|
""" Method not supported for this class.
|
659
655
|
|
660
656
|
|
@@ -679,7 +675,9 @@ class SGDClassifier(BaseTransformer):
|
|
679
675
|
)
|
680
676
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
681
677
|
drop_input_cols=self._drop_input_cols,
|
682
|
-
expected_output_cols_list=
|
678
|
+
expected_output_cols_list=(
|
679
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
680
|
+
),
|
683
681
|
)
|
684
682
|
self._sklearn_object = fitted_estimator
|
685
683
|
self._is_fitted = True
|
@@ -696,6 +694,62 @@ class SGDClassifier(BaseTransformer):
|
|
696
694
|
assert self._sklearn_object is not None
|
697
695
|
return self._sklearn_object.embedding_
|
698
696
|
|
697
|
+
|
698
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
699
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
700
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
701
|
+
"""
|
702
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
703
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
704
|
+
if output_cols:
|
705
|
+
output_cols = [
|
706
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
707
|
+
for c in output_cols
|
708
|
+
]
|
709
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
710
|
+
output_cols = [output_cols_prefix]
|
711
|
+
elif self._sklearn_object is not None:
|
712
|
+
classes = self._sklearn_object.classes_
|
713
|
+
if isinstance(classes, numpy.ndarray):
|
714
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
715
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
716
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
717
|
+
output_cols = []
|
718
|
+
for i, cl in enumerate(classes):
|
719
|
+
# For binary classification, there is only one output column for each class
|
720
|
+
# ndarray as the two classes are complementary.
|
721
|
+
if len(cl) == 2:
|
722
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
723
|
+
else:
|
724
|
+
output_cols.extend([
|
725
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
726
|
+
])
|
727
|
+
else:
|
728
|
+
output_cols = []
|
729
|
+
|
730
|
+
# Make sure column names are valid snowflake identifiers.
|
731
|
+
assert output_cols is not None # Make MyPy happy
|
732
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
733
|
+
|
734
|
+
return rv
|
735
|
+
|
736
|
+
def _align_expected_output_names(
|
737
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
738
|
+
) -> List[str]:
|
739
|
+
# in case the inferred output column names dimension is different
|
740
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
741
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
742
|
+
output_df_columns = list(output_df_pd.columns)
|
743
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
744
|
+
if self.sample_weight_col:
|
745
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
746
|
+
# if the dimension of inferred output column names is correct; use it
|
747
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
748
|
+
return expected_output_cols_list
|
749
|
+
# otherwise, use the sklearn estimator's output
|
750
|
+
else:
|
751
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
752
|
+
|
699
753
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
700
754
|
@telemetry.send_api_usage_telemetry(
|
701
755
|
project=_PROJECT,
|
@@ -728,24 +782,28 @@ class SGDClassifier(BaseTransformer):
|
|
728
782
|
# are specific to the type of dataset used.
|
729
783
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
730
784
|
|
785
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
786
|
+
|
731
787
|
if isinstance(dataset, DataFrame):
|
732
788
|
self._deps = self._batch_inference_validate_snowpark(
|
733
789
|
dataset=dataset,
|
734
790
|
inference_method=inference_method,
|
735
791
|
)
|
736
|
-
assert isinstance(
|
792
|
+
assert isinstance(
|
793
|
+
dataset._session, Session
|
794
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
737
795
|
transform_kwargs = dict(
|
738
796
|
session=dataset._session,
|
739
797
|
dependencies=self._deps,
|
740
|
-
drop_input_cols
|
798
|
+
drop_input_cols=self._drop_input_cols,
|
741
799
|
expected_output_cols_type="float",
|
742
800
|
)
|
801
|
+
expected_output_cols = self._align_expected_output_names(
|
802
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
803
|
+
)
|
743
804
|
|
744
805
|
elif isinstance(dataset, pd.DataFrame):
|
745
|
-
transform_kwargs = dict(
|
746
|
-
snowpark_input_cols = self._snowpark_cols,
|
747
|
-
drop_input_cols = self._drop_input_cols
|
748
|
-
)
|
806
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
749
807
|
|
750
808
|
transform_handlers = ModelTransformerBuilder.build(
|
751
809
|
dataset=dataset,
|
@@ -757,7 +815,7 @@ class SGDClassifier(BaseTransformer):
|
|
757
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
758
816
|
inference_method=inference_method,
|
759
817
|
input_cols=self.input_cols,
|
760
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
761
819
|
**transform_kwargs
|
762
820
|
)
|
763
821
|
return output_df
|
@@ -789,7 +847,8 @@ class SGDClassifier(BaseTransformer):
|
|
789
847
|
Output dataset with log probability of the sample for each class in the model.
|
790
848
|
"""
|
791
849
|
super()._check_dataset_type(dataset)
|
792
|
-
inference_method="predict_log_proba"
|
850
|
+
inference_method = "predict_log_proba"
|
851
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
793
852
|
|
794
853
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
795
854
|
# are specific to the type of dataset used.
|
@@ -800,18 +859,20 @@ class SGDClassifier(BaseTransformer):
|
|
800
859
|
dataset=dataset,
|
801
860
|
inference_method=inference_method,
|
802
861
|
)
|
803
|
-
assert isinstance(
|
862
|
+
assert isinstance(
|
863
|
+
dataset._session, Session
|
864
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
804
865
|
transform_kwargs = dict(
|
805
866
|
session=dataset._session,
|
806
867
|
dependencies=self._deps,
|
807
|
-
drop_input_cols
|
868
|
+
drop_input_cols=self._drop_input_cols,
|
808
869
|
expected_output_cols_type="float",
|
809
870
|
)
|
871
|
+
expected_output_cols = self._align_expected_output_names(
|
872
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
873
|
+
)
|
810
874
|
elif isinstance(dataset, pd.DataFrame):
|
811
|
-
transform_kwargs = dict(
|
812
|
-
snowpark_input_cols = self._snowpark_cols,
|
813
|
-
drop_input_cols = self._drop_input_cols
|
814
|
-
)
|
875
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
815
876
|
|
816
877
|
transform_handlers = ModelTransformerBuilder.build(
|
817
878
|
dataset=dataset,
|
@@ -824,7 +885,7 @@ class SGDClassifier(BaseTransformer):
|
|
824
885
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
825
886
|
inference_method=inference_method,
|
826
887
|
input_cols=self.input_cols,
|
827
|
-
expected_output_cols=
|
888
|
+
expected_output_cols=expected_output_cols,
|
828
889
|
**transform_kwargs
|
829
890
|
)
|
830
891
|
return output_df
|
@@ -852,30 +913,34 @@ class SGDClassifier(BaseTransformer):
|
|
852
913
|
Output dataset with results of the decision function for the samples in input dataset.
|
853
914
|
"""
|
854
915
|
super()._check_dataset_type(dataset)
|
855
|
-
inference_method="decision_function"
|
916
|
+
inference_method = "decision_function"
|
856
917
|
|
857
918
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
858
919
|
# are specific to the type of dataset used.
|
859
920
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
860
921
|
|
922
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
923
|
+
|
861
924
|
if isinstance(dataset, DataFrame):
|
862
925
|
self._deps = self._batch_inference_validate_snowpark(
|
863
926
|
dataset=dataset,
|
864
927
|
inference_method=inference_method,
|
865
928
|
)
|
866
|
-
assert isinstance(
|
929
|
+
assert isinstance(
|
930
|
+
dataset._session, Session
|
931
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
867
932
|
transform_kwargs = dict(
|
868
933
|
session=dataset._session,
|
869
934
|
dependencies=self._deps,
|
870
|
-
drop_input_cols
|
935
|
+
drop_input_cols=self._drop_input_cols,
|
871
936
|
expected_output_cols_type="float",
|
872
937
|
)
|
938
|
+
expected_output_cols = self._align_expected_output_names(
|
939
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
940
|
+
)
|
873
941
|
|
874
942
|
elif isinstance(dataset, pd.DataFrame):
|
875
|
-
transform_kwargs = dict(
|
876
|
-
snowpark_input_cols = self._snowpark_cols,
|
877
|
-
drop_input_cols = self._drop_input_cols
|
878
|
-
)
|
943
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
879
944
|
|
880
945
|
transform_handlers = ModelTransformerBuilder.build(
|
881
946
|
dataset=dataset,
|
@@ -888,7 +953,7 @@ class SGDClassifier(BaseTransformer):
|
|
888
953
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
889
954
|
inference_method=inference_method,
|
890
955
|
input_cols=self.input_cols,
|
891
|
-
expected_output_cols=
|
956
|
+
expected_output_cols=expected_output_cols,
|
892
957
|
**transform_kwargs
|
893
958
|
)
|
894
959
|
return output_df
|
@@ -917,12 +982,14 @@ class SGDClassifier(BaseTransformer):
|
|
917
982
|
Output dataset with probability of the sample for each class in the model.
|
918
983
|
"""
|
919
984
|
super()._check_dataset_type(dataset)
|
920
|
-
inference_method="score_samples"
|
985
|
+
inference_method = "score_samples"
|
921
986
|
|
922
987
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
923
988
|
# are specific to the type of dataset used.
|
924
989
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
925
990
|
|
991
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
992
|
+
|
926
993
|
if isinstance(dataset, DataFrame):
|
927
994
|
self._deps = self._batch_inference_validate_snowpark(
|
928
995
|
dataset=dataset,
|
@@ -935,6 +1002,9 @@ class SGDClassifier(BaseTransformer):
|
|
935
1002
|
drop_input_cols = self._drop_input_cols,
|
936
1003
|
expected_output_cols_type="float",
|
937
1004
|
)
|
1005
|
+
expected_output_cols = self._align_expected_output_names(
|
1006
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
1007
|
+
)
|
938
1008
|
|
939
1009
|
elif isinstance(dataset, pd.DataFrame):
|
940
1010
|
transform_kwargs = dict(
|
@@ -953,7 +1023,7 @@ class SGDClassifier(BaseTransformer):
|
|
953
1023
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
954
1024
|
inference_method=inference_method,
|
955
1025
|
input_cols=self.input_cols,
|
956
|
-
expected_output_cols=
|
1026
|
+
expected_output_cols=expected_output_cols,
|
957
1027
|
**transform_kwargs
|
958
1028
|
)
|
959
1029
|
return output_df
|
@@ -1100,50 +1170,84 @@ class SGDClassifier(BaseTransformer):
|
|
1100
1170
|
)
|
1101
1171
|
return output_df
|
1102
1172
|
|
1173
|
+
|
1174
|
+
|
1175
|
+
def to_sklearn(self) -> Any:
|
1176
|
+
"""Get sklearn.linear_model.SGDClassifier object.
|
1177
|
+
"""
|
1178
|
+
if self._sklearn_object is None:
|
1179
|
+
self._sklearn_object = self._create_sklearn_object()
|
1180
|
+
return self._sklearn_object
|
1181
|
+
|
1182
|
+
def to_xgboost(self) -> Any:
|
1183
|
+
raise exceptions.SnowflakeMLException(
|
1184
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1185
|
+
original_exception=AttributeError(
|
1186
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1187
|
+
"to_xgboost()",
|
1188
|
+
"to_sklearn()"
|
1189
|
+
)
|
1190
|
+
),
|
1191
|
+
)
|
1192
|
+
|
1193
|
+
def to_lightgbm(self) -> Any:
|
1194
|
+
raise exceptions.SnowflakeMLException(
|
1195
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1196
|
+
original_exception=AttributeError(
|
1197
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1198
|
+
"to_lightgbm()",
|
1199
|
+
"to_sklearn()"
|
1200
|
+
)
|
1201
|
+
),
|
1202
|
+
)
|
1103
1203
|
|
1104
|
-
def
|
1204
|
+
def _get_dependencies(self) -> List[str]:
|
1205
|
+
return self._deps
|
1206
|
+
|
1207
|
+
|
1208
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1105
1209
|
self._model_signature_dict = dict()
|
1106
1210
|
|
1107
1211
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1108
1212
|
|
1109
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1213
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1110
1214
|
outputs: List[BaseFeatureSpec] = []
|
1111
1215
|
if hasattr(self, "predict"):
|
1112
1216
|
# keep mypy happy
|
1113
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1217
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1114
1218
|
# For classifier, the type of predict is the same as the type of label
|
1115
|
-
if self._sklearn_object._estimator_type ==
|
1116
|
-
|
1219
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1220
|
+
# label columns is the desired type for output
|
1117
1221
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1118
1222
|
# rename the output columns
|
1119
1223
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1120
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1121
|
-
|
1122
|
-
|
1224
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1225
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1226
|
+
)
|
1123
1227
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1124
1228
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1125
|
-
# Clusterer returns int64 cluster labels.
|
1229
|
+
# Clusterer returns int64 cluster labels.
|
1126
1230
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1127
1231
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1128
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1232
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1233
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1234
|
+
)
|
1235
|
+
|
1132
1236
|
# For regressor, the type of predict is float64
|
1133
|
-
elif self._sklearn_object._estimator_type ==
|
1237
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1134
1238
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1135
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1239
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1240
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1241
|
+
)
|
1242
|
+
|
1139
1243
|
for prob_func in PROB_FUNCTIONS:
|
1140
1244
|
if hasattr(self, prob_func):
|
1141
1245
|
output_cols_prefix: str = f"{prob_func}_"
|
1142
1246
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1143
1247
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1144
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1145
|
-
|
1146
|
-
|
1248
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1249
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1250
|
+
)
|
1147
1251
|
|
1148
1252
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1149
1253
|
items = list(self._model_signature_dict.items())
|
@@ -1156,10 +1260,10 @@ class SGDClassifier(BaseTransformer):
|
|
1156
1260
|
"""Returns model signature of current class.
|
1157
1261
|
|
1158
1262
|
Raises:
|
1159
|
-
|
1263
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1160
1264
|
|
1161
1265
|
Returns:
|
1162
|
-
Dict
|
1266
|
+
Dict with each method and its input output signature
|
1163
1267
|
"""
|
1164
1268
|
if self._model_signature_dict is None:
|
1165
1269
|
raise exceptions.SnowflakeMLException(
|
@@ -1167,35 +1271,3 @@ class SGDClassifier(BaseTransformer):
|
|
1167
1271
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1168
1272
|
)
|
1169
1273
|
return self._model_signature_dict
|
1170
|
-
|
1171
|
-
def to_sklearn(self) -> Any:
|
1172
|
-
"""Get sklearn.linear_model.SGDClassifier object.
|
1173
|
-
"""
|
1174
|
-
if self._sklearn_object is None:
|
1175
|
-
self._sklearn_object = self._create_sklearn_object()
|
1176
|
-
return self._sklearn_object
|
1177
|
-
|
1178
|
-
def to_xgboost(self) -> Any:
|
1179
|
-
raise exceptions.SnowflakeMLException(
|
1180
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1181
|
-
original_exception=AttributeError(
|
1182
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1183
|
-
"to_xgboost()",
|
1184
|
-
"to_sklearn()"
|
1185
|
-
)
|
1186
|
-
),
|
1187
|
-
)
|
1188
|
-
|
1189
|
-
def to_lightgbm(self) -> Any:
|
1190
|
-
raise exceptions.SnowflakeMLException(
|
1191
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1192
|
-
original_exception=AttributeError(
|
1193
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1194
|
-
"to_lightgbm()",
|
1195
|
-
"to_sklearn()"
|
1196
|
-
)
|
1197
|
-
),
|
1198
|
-
)
|
1199
|
-
|
1200
|
-
def _get_dependencies(self) -> List[str]:
|
1201
|
-
return self._deps
|