snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -388,12 +387,7 @@ class SGDClassifier(BaseTransformer):
388
387
  )
389
388
  return selected_cols
390
389
 
391
- @telemetry.send_api_usage_telemetry(
392
- project=_PROJECT,
393
- subproject=_SUBPROJECT,
394
- custom_tags=dict([("autogen", True)]),
395
- )
396
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
390
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
397
391
  """Fit linear model with Stochastic Gradient Descent
398
392
  For more details on this function, see [sklearn.linear_model.SGDClassifier.fit]
399
393
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.fit)
@@ -420,12 +414,14 @@ class SGDClassifier(BaseTransformer):
420
414
 
421
415
  self._snowpark_cols = dataset.select(self.input_cols).columns
422
416
 
423
- # If we are already in a stored procedure, no need to kick off another one.
417
+ # If we are already in a stored procedure, no need to kick off another one.
424
418
  if SNOWML_SPROC_ENV in os.environ:
425
419
  statement_params = telemetry.get_function_usage_statement_params(
426
420
  project=_PROJECT,
427
421
  subproject=_SUBPROJECT,
428
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDClassifier.__class__.__name__),
422
+ function_name=telemetry.get_statement_params_full_func_name(
423
+ inspect.currentframe(), SGDClassifier.__class__.__name__
424
+ ),
429
425
  api_calls=[Session.call],
430
426
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
431
427
  )
@@ -446,7 +442,7 @@ class SGDClassifier(BaseTransformer):
446
442
  )
447
443
  self._sklearn_object = model_trainer.train()
448
444
  self._is_fitted = True
449
- self._get_model_signatures(dataset)
445
+ self._generate_model_signatures(dataset)
450
446
  return self
451
447
 
452
448
  def _batch_inference_validate_snowpark(
@@ -522,7 +518,9 @@ class SGDClassifier(BaseTransformer):
522
518
  # when it is classifier, infer the datatype from label columns
523
519
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
524
520
  # Batch inference takes a single expected output column type. Use the first columns type for now.
525
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
521
+ label_cols_signatures = [
522
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
523
+ ]
526
524
  if len(label_cols_signatures) == 0:
527
525
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
528
526
  raise exceptions.SnowflakeMLException(
@@ -530,25 +528,22 @@ class SGDClassifier(BaseTransformer):
530
528
  original_exception=ValueError(error_str),
531
529
  )
532
530
 
533
- expected_type_inferred = convert_sp_to_sf_type(
534
- label_cols_signatures[0].as_snowpark_type()
535
- )
531
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
536
532
 
537
533
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
538
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
534
+ assert isinstance(
535
+ dataset._session, Session
536
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
539
537
 
540
538
  transform_kwargs = dict(
541
- session = dataset._session,
542
- dependencies = self._deps,
543
- drop_input_cols = self._drop_input_cols,
544
- expected_output_cols_type = expected_type_inferred,
539
+ session=dataset._session,
540
+ dependencies=self._deps,
541
+ drop_input_cols=self._drop_input_cols,
542
+ expected_output_cols_type=expected_type_inferred,
545
543
  )
546
544
 
547
545
  elif isinstance(dataset, pd.DataFrame):
548
- transform_kwargs = dict(
549
- snowpark_input_cols = self._snowpark_cols,
550
- drop_input_cols = self._drop_input_cols
551
- )
546
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
552
547
 
553
548
  transform_handlers = ModelTransformerBuilder.build(
554
549
  dataset=dataset,
@@ -588,7 +583,7 @@ class SGDClassifier(BaseTransformer):
588
583
  Transformed dataset.
589
584
  """
590
585
  super()._check_dataset_type(dataset)
591
- inference_method="transform"
586
+ inference_method = "transform"
592
587
 
593
588
  # This dictionary contains optional kwargs for batch inference. These kwargs
594
589
  # are specific to the type of dataset used.
@@ -625,17 +620,14 @@ class SGDClassifier(BaseTransformer):
625
620
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
621
 
627
622
  transform_kwargs = dict(
628
- session = dataset._session,
629
- dependencies = self._deps,
630
- drop_input_cols = self._drop_input_cols,
631
- expected_output_cols_type = expected_dtype,
623
+ session=dataset._session,
624
+ dependencies=self._deps,
625
+ drop_input_cols=self._drop_input_cols,
626
+ expected_output_cols_type=expected_dtype,
632
627
  )
633
628
 
634
629
  elif isinstance(dataset, pd.DataFrame):
635
- transform_kwargs = dict(
636
- snowpark_input_cols = self._snowpark_cols,
637
- drop_input_cols = self._drop_input_cols
638
- )
630
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
639
631
 
640
632
  transform_handlers = ModelTransformerBuilder.build(
641
633
  dataset=dataset,
@@ -654,7 +646,11 @@ class SGDClassifier(BaseTransformer):
654
646
  return output_df
655
647
 
656
648
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
657
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
649
+ def fit_predict(
650
+ self,
651
+ dataset: Union[DataFrame, pd.DataFrame],
652
+ output_cols_prefix: str = "fit_predict_",
653
+ ) -> Union[DataFrame, pd.DataFrame]:
658
654
  """ Method not supported for this class.
659
655
 
660
656
 
@@ -679,7 +675,9 @@ class SGDClassifier(BaseTransformer):
679
675
  )
680
676
  output_result, fitted_estimator = model_trainer.train_fit_predict(
681
677
  drop_input_cols=self._drop_input_cols,
682
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
678
+ expected_output_cols_list=(
679
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
680
+ ),
683
681
  )
684
682
  self._sklearn_object = fitted_estimator
685
683
  self._is_fitted = True
@@ -696,6 +694,62 @@ class SGDClassifier(BaseTransformer):
696
694
  assert self._sklearn_object is not None
697
695
  return self._sklearn_object.embedding_
698
696
 
697
+
698
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
699
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
700
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
701
+ """
702
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
703
+ # The following condition is introduced for kneighbors methods, and not used in other methods
704
+ if output_cols:
705
+ output_cols = [
706
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
707
+ for c in output_cols
708
+ ]
709
+ elif getattr(self._sklearn_object, "classes_", None) is None:
710
+ output_cols = [output_cols_prefix]
711
+ elif self._sklearn_object is not None:
712
+ classes = self._sklearn_object.classes_
713
+ if isinstance(classes, numpy.ndarray):
714
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
715
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
716
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
717
+ output_cols = []
718
+ for i, cl in enumerate(classes):
719
+ # For binary classification, there is only one output column for each class
720
+ # ndarray as the two classes are complementary.
721
+ if len(cl) == 2:
722
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
723
+ else:
724
+ output_cols.extend([
725
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
726
+ ])
727
+ else:
728
+ output_cols = []
729
+
730
+ # Make sure column names are valid snowflake identifiers.
731
+ assert output_cols is not None # Make MyPy happy
732
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
733
+
734
+ return rv
735
+
736
+ def _align_expected_output_names(
737
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
738
+ ) -> List[str]:
739
+ # in case the inferred output column names dimension is different
740
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
741
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
742
+ output_df_columns = list(output_df_pd.columns)
743
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
744
+ if self.sample_weight_col:
745
+ output_df_columns_set -= set(self.sample_weight_col)
746
+ # if the dimension of inferred output column names is correct; use it
747
+ if len(expected_output_cols_list) == len(output_df_columns_set):
748
+ return expected_output_cols_list
749
+ # otherwise, use the sklearn estimator's output
750
+ else:
751
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
752
+
699
753
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
700
754
  @telemetry.send_api_usage_telemetry(
701
755
  project=_PROJECT,
@@ -728,24 +782,28 @@ class SGDClassifier(BaseTransformer):
728
782
  # are specific to the type of dataset used.
729
783
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
730
784
 
785
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
786
+
731
787
  if isinstance(dataset, DataFrame):
732
788
  self._deps = self._batch_inference_validate_snowpark(
733
789
  dataset=dataset,
734
790
  inference_method=inference_method,
735
791
  )
736
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
792
+ assert isinstance(
793
+ dataset._session, Session
794
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
737
795
  transform_kwargs = dict(
738
796
  session=dataset._session,
739
797
  dependencies=self._deps,
740
- drop_input_cols = self._drop_input_cols,
798
+ drop_input_cols=self._drop_input_cols,
741
799
  expected_output_cols_type="float",
742
800
  )
801
+ expected_output_cols = self._align_expected_output_names(
802
+ inference_method, dataset, expected_output_cols, output_cols_prefix
803
+ )
743
804
 
744
805
  elif isinstance(dataset, pd.DataFrame):
745
- transform_kwargs = dict(
746
- snowpark_input_cols = self._snowpark_cols,
747
- drop_input_cols = self._drop_input_cols
748
- )
806
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
749
807
 
750
808
  transform_handlers = ModelTransformerBuilder.build(
751
809
  dataset=dataset,
@@ -757,7 +815,7 @@ class SGDClassifier(BaseTransformer):
757
815
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
758
816
  inference_method=inference_method,
759
817
  input_cols=self.input_cols,
760
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
818
+ expected_output_cols=expected_output_cols,
761
819
  **transform_kwargs
762
820
  )
763
821
  return output_df
@@ -789,7 +847,8 @@ class SGDClassifier(BaseTransformer):
789
847
  Output dataset with log probability of the sample for each class in the model.
790
848
  """
791
849
  super()._check_dataset_type(dataset)
792
- inference_method="predict_log_proba"
850
+ inference_method = "predict_log_proba"
851
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
793
852
 
794
853
  # This dictionary contains optional kwargs for batch inference. These kwargs
795
854
  # are specific to the type of dataset used.
@@ -800,18 +859,20 @@ class SGDClassifier(BaseTransformer):
800
859
  dataset=dataset,
801
860
  inference_method=inference_method,
802
861
  )
803
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
862
+ assert isinstance(
863
+ dataset._session, Session
864
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
865
  transform_kwargs = dict(
805
866
  session=dataset._session,
806
867
  dependencies=self._deps,
807
- drop_input_cols = self._drop_input_cols,
868
+ drop_input_cols=self._drop_input_cols,
808
869
  expected_output_cols_type="float",
809
870
  )
871
+ expected_output_cols = self._align_expected_output_names(
872
+ inference_method, dataset, expected_output_cols, output_cols_prefix
873
+ )
810
874
  elif isinstance(dataset, pd.DataFrame):
811
- transform_kwargs = dict(
812
- snowpark_input_cols = self._snowpark_cols,
813
- drop_input_cols = self._drop_input_cols
814
- )
875
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
815
876
 
816
877
  transform_handlers = ModelTransformerBuilder.build(
817
878
  dataset=dataset,
@@ -824,7 +885,7 @@ class SGDClassifier(BaseTransformer):
824
885
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
886
  inference_method=inference_method,
826
887
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
888
+ expected_output_cols=expected_output_cols,
828
889
  **transform_kwargs
829
890
  )
830
891
  return output_df
@@ -852,30 +913,34 @@ class SGDClassifier(BaseTransformer):
852
913
  Output dataset with results of the decision function for the samples in input dataset.
853
914
  """
854
915
  super()._check_dataset_type(dataset)
855
- inference_method="decision_function"
916
+ inference_method = "decision_function"
856
917
 
857
918
  # This dictionary contains optional kwargs for batch inference. These kwargs
858
919
  # are specific to the type of dataset used.
859
920
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
860
921
 
922
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
923
+
861
924
  if isinstance(dataset, DataFrame):
862
925
  self._deps = self._batch_inference_validate_snowpark(
863
926
  dataset=dataset,
864
927
  inference_method=inference_method,
865
928
  )
866
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
929
+ assert isinstance(
930
+ dataset._session, Session
931
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
867
932
  transform_kwargs = dict(
868
933
  session=dataset._session,
869
934
  dependencies=self._deps,
870
- drop_input_cols = self._drop_input_cols,
935
+ drop_input_cols=self._drop_input_cols,
871
936
  expected_output_cols_type="float",
872
937
  )
938
+ expected_output_cols = self._align_expected_output_names(
939
+ inference_method, dataset, expected_output_cols, output_cols_prefix
940
+ )
873
941
 
874
942
  elif isinstance(dataset, pd.DataFrame):
875
- transform_kwargs = dict(
876
- snowpark_input_cols = self._snowpark_cols,
877
- drop_input_cols = self._drop_input_cols
878
- )
943
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
879
944
 
880
945
  transform_handlers = ModelTransformerBuilder.build(
881
946
  dataset=dataset,
@@ -888,7 +953,7 @@ class SGDClassifier(BaseTransformer):
888
953
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
889
954
  inference_method=inference_method,
890
955
  input_cols=self.input_cols,
891
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
956
+ expected_output_cols=expected_output_cols,
892
957
  **transform_kwargs
893
958
  )
894
959
  return output_df
@@ -917,12 +982,14 @@ class SGDClassifier(BaseTransformer):
917
982
  Output dataset with probability of the sample for each class in the model.
918
983
  """
919
984
  super()._check_dataset_type(dataset)
920
- inference_method="score_samples"
985
+ inference_method = "score_samples"
921
986
 
922
987
  # This dictionary contains optional kwargs for batch inference. These kwargs
923
988
  # are specific to the type of dataset used.
924
989
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
925
990
 
991
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
992
+
926
993
  if isinstance(dataset, DataFrame):
927
994
  self._deps = self._batch_inference_validate_snowpark(
928
995
  dataset=dataset,
@@ -935,6 +1002,9 @@ class SGDClassifier(BaseTransformer):
935
1002
  drop_input_cols = self._drop_input_cols,
936
1003
  expected_output_cols_type="float",
937
1004
  )
1005
+ expected_output_cols = self._align_expected_output_names(
1006
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1007
+ )
938
1008
 
939
1009
  elif isinstance(dataset, pd.DataFrame):
940
1010
  transform_kwargs = dict(
@@ -953,7 +1023,7 @@ class SGDClassifier(BaseTransformer):
953
1023
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
954
1024
  inference_method=inference_method,
955
1025
  input_cols=self.input_cols,
956
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1026
+ expected_output_cols=expected_output_cols,
957
1027
  **transform_kwargs
958
1028
  )
959
1029
  return output_df
@@ -1100,50 +1170,84 @@ class SGDClassifier(BaseTransformer):
1100
1170
  )
1101
1171
  return output_df
1102
1172
 
1173
+
1174
+
1175
+ def to_sklearn(self) -> Any:
1176
+ """Get sklearn.linear_model.SGDClassifier object.
1177
+ """
1178
+ if self._sklearn_object is None:
1179
+ self._sklearn_object = self._create_sklearn_object()
1180
+ return self._sklearn_object
1181
+
1182
+ def to_xgboost(self) -> Any:
1183
+ raise exceptions.SnowflakeMLException(
1184
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1185
+ original_exception=AttributeError(
1186
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1187
+ "to_xgboost()",
1188
+ "to_sklearn()"
1189
+ )
1190
+ ),
1191
+ )
1192
+
1193
+ def to_lightgbm(self) -> Any:
1194
+ raise exceptions.SnowflakeMLException(
1195
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1196
+ original_exception=AttributeError(
1197
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1198
+ "to_lightgbm()",
1199
+ "to_sklearn()"
1200
+ )
1201
+ ),
1202
+ )
1103
1203
 
1104
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1204
+ def _get_dependencies(self) -> List[str]:
1205
+ return self._deps
1206
+
1207
+
1208
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1105
1209
  self._model_signature_dict = dict()
1106
1210
 
1107
1211
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1108
1212
 
1109
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1213
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1110
1214
  outputs: List[BaseFeatureSpec] = []
1111
1215
  if hasattr(self, "predict"):
1112
1216
  # keep mypy happy
1113
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1217
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1114
1218
  # For classifier, the type of predict is the same as the type of label
1115
- if self._sklearn_object._estimator_type == 'classifier':
1116
- # label columns is the desired type for output
1219
+ if self._sklearn_object._estimator_type == "classifier":
1220
+ # label columns is the desired type for output
1117
1221
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1118
1222
  # rename the output columns
1119
1223
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1120
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1121
- ([] if self._drop_input_cols else inputs)
1122
- + outputs)
1224
+ self._model_signature_dict["predict"] = ModelSignature(
1225
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1226
+ )
1123
1227
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1124
1228
  # For outlier models, returns -1 for outliers and 1 for inliers.
1125
- # Clusterer returns int64 cluster labels.
1229
+ # Clusterer returns int64 cluster labels.
1126
1230
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1127
1231
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1128
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1129
- ([] if self._drop_input_cols else inputs)
1130
- + outputs)
1131
-
1232
+ self._model_signature_dict["predict"] = ModelSignature(
1233
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1234
+ )
1235
+
1132
1236
  # For regressor, the type of predict is float64
1133
- elif self._sklearn_object._estimator_type == 'regressor':
1237
+ elif self._sklearn_object._estimator_type == "regressor":
1134
1238
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1135
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1136
- ([] if self._drop_input_cols else inputs)
1137
- + outputs)
1138
-
1239
+ self._model_signature_dict["predict"] = ModelSignature(
1240
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1241
+ )
1242
+
1139
1243
  for prob_func in PROB_FUNCTIONS:
1140
1244
  if hasattr(self, prob_func):
1141
1245
  output_cols_prefix: str = f"{prob_func}_"
1142
1246
  output_column_names = self._get_output_column_names(output_cols_prefix)
1143
1247
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1144
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1145
- ([] if self._drop_input_cols else inputs)
1146
- + outputs)
1248
+ self._model_signature_dict[prob_func] = ModelSignature(
1249
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1250
+ )
1147
1251
 
1148
1252
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1149
1253
  items = list(self._model_signature_dict.items())
@@ -1156,10 +1260,10 @@ class SGDClassifier(BaseTransformer):
1156
1260
  """Returns model signature of current class.
1157
1261
 
1158
1262
  Raises:
1159
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1263
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1160
1264
 
1161
1265
  Returns:
1162
- Dict[str, ModelSignature]: each method and its input output signature
1266
+ Dict with each method and its input output signature
1163
1267
  """
1164
1268
  if self._model_signature_dict is None:
1165
1269
  raise exceptions.SnowflakeMLException(
@@ -1167,35 +1271,3 @@ class SGDClassifier(BaseTransformer):
1167
1271
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1168
1272
  )
1169
1273
  return self._model_signature_dict
1170
-
1171
- def to_sklearn(self) -> Any:
1172
- """Get sklearn.linear_model.SGDClassifier object.
1173
- """
1174
- if self._sklearn_object is None:
1175
- self._sklearn_object = self._create_sklearn_object()
1176
- return self._sklearn_object
1177
-
1178
- def to_xgboost(self) -> Any:
1179
- raise exceptions.SnowflakeMLException(
1180
- error_code=error_codes.METHOD_NOT_ALLOWED,
1181
- original_exception=AttributeError(
1182
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1183
- "to_xgboost()",
1184
- "to_sklearn()"
1185
- )
1186
- ),
1187
- )
1188
-
1189
- def to_lightgbm(self) -> Any:
1190
- raise exceptions.SnowflakeMLException(
1191
- error_code=error_codes.METHOD_NOT_ALLOWED,
1192
- original_exception=AttributeError(
1193
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1194
- "to_lightgbm()",
1195
- "to_sklearn()"
1196
- )
1197
- ),
1198
- )
1199
-
1200
- def _get_dependencies(self) -> List[str]:
1201
- return self._deps