snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -231,12 +230,7 @@ class TransformedTargetRegressor(BaseTransformer):
231
230
  )
232
231
  return selected_cols
233
232
 
234
- @telemetry.send_api_usage_telemetry(
235
- project=_PROJECT,
236
- subproject=_SUBPROJECT,
237
- custom_tags=dict([("autogen", True)]),
238
- )
239
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
233
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
240
234
  """Fit the model according to the given training data
241
235
  For more details on this function, see [sklearn.compose.TransformedTargetRegressor.fit]
242
236
  (https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor.fit)
@@ -263,12 +257,14 @@ class TransformedTargetRegressor(BaseTransformer):
263
257
 
264
258
  self._snowpark_cols = dataset.select(self.input_cols).columns
265
259
 
266
- # If we are already in a stored procedure, no need to kick off another one.
260
+ # If we are already in a stored procedure, no need to kick off another one.
267
261
  if SNOWML_SPROC_ENV in os.environ:
268
262
  statement_params = telemetry.get_function_usage_statement_params(
269
263
  project=_PROJECT,
270
264
  subproject=_SUBPROJECT,
271
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TransformedTargetRegressor.__class__.__name__),
265
+ function_name=telemetry.get_statement_params_full_func_name(
266
+ inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
267
+ ),
272
268
  api_calls=[Session.call],
273
269
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
274
270
  )
@@ -289,7 +285,7 @@ class TransformedTargetRegressor(BaseTransformer):
289
285
  )
290
286
  self._sklearn_object = model_trainer.train()
291
287
  self._is_fitted = True
292
- self._get_model_signatures(dataset)
288
+ self._generate_model_signatures(dataset)
293
289
  return self
294
290
 
295
291
  def _batch_inference_validate_snowpark(
@@ -365,7 +361,9 @@ class TransformedTargetRegressor(BaseTransformer):
365
361
  # when it is classifier, infer the datatype from label columns
366
362
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
367
363
  # Batch inference takes a single expected output column type. Use the first columns type for now.
368
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
364
+ label_cols_signatures = [
365
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
366
+ ]
369
367
  if len(label_cols_signatures) == 0:
370
368
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
371
369
  raise exceptions.SnowflakeMLException(
@@ -373,25 +371,22 @@ class TransformedTargetRegressor(BaseTransformer):
373
371
  original_exception=ValueError(error_str),
374
372
  )
375
373
 
376
- expected_type_inferred = convert_sp_to_sf_type(
377
- label_cols_signatures[0].as_snowpark_type()
378
- )
374
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
379
375
 
380
376
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
381
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
377
+ assert isinstance(
378
+ dataset._session, Session
379
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
382
380
 
383
381
  transform_kwargs = dict(
384
- session = dataset._session,
385
- dependencies = self._deps,
386
- drop_input_cols = self._drop_input_cols,
387
- expected_output_cols_type = expected_type_inferred,
382
+ session=dataset._session,
383
+ dependencies=self._deps,
384
+ drop_input_cols=self._drop_input_cols,
385
+ expected_output_cols_type=expected_type_inferred,
388
386
  )
389
387
 
390
388
  elif isinstance(dataset, pd.DataFrame):
391
- transform_kwargs = dict(
392
- snowpark_input_cols = self._snowpark_cols,
393
- drop_input_cols = self._drop_input_cols
394
- )
389
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
395
390
 
396
391
  transform_handlers = ModelTransformerBuilder.build(
397
392
  dataset=dataset,
@@ -431,7 +426,7 @@ class TransformedTargetRegressor(BaseTransformer):
431
426
  Transformed dataset.
432
427
  """
433
428
  super()._check_dataset_type(dataset)
434
- inference_method="transform"
429
+ inference_method = "transform"
435
430
 
436
431
  # This dictionary contains optional kwargs for batch inference. These kwargs
437
432
  # are specific to the type of dataset used.
@@ -468,17 +463,14 @@ class TransformedTargetRegressor(BaseTransformer):
468
463
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
469
464
 
470
465
  transform_kwargs = dict(
471
- session = dataset._session,
472
- dependencies = self._deps,
473
- drop_input_cols = self._drop_input_cols,
474
- expected_output_cols_type = expected_dtype,
466
+ session=dataset._session,
467
+ dependencies=self._deps,
468
+ drop_input_cols=self._drop_input_cols,
469
+ expected_output_cols_type=expected_dtype,
475
470
  )
476
471
 
477
472
  elif isinstance(dataset, pd.DataFrame):
478
- transform_kwargs = dict(
479
- snowpark_input_cols = self._snowpark_cols,
480
- drop_input_cols = self._drop_input_cols
481
- )
473
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
482
474
 
483
475
  transform_handlers = ModelTransformerBuilder.build(
484
476
  dataset=dataset,
@@ -497,7 +489,11 @@ class TransformedTargetRegressor(BaseTransformer):
497
489
  return output_df
498
490
 
499
491
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
500
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
492
+ def fit_predict(
493
+ self,
494
+ dataset: Union[DataFrame, pd.DataFrame],
495
+ output_cols_prefix: str = "fit_predict_",
496
+ ) -> Union[DataFrame, pd.DataFrame]:
501
497
  """ Method not supported for this class.
502
498
 
503
499
 
@@ -522,7 +518,9 @@ class TransformedTargetRegressor(BaseTransformer):
522
518
  )
523
519
  output_result, fitted_estimator = model_trainer.train_fit_predict(
524
520
  drop_input_cols=self._drop_input_cols,
525
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
521
+ expected_output_cols_list=(
522
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
523
+ ),
526
524
  )
527
525
  self._sklearn_object = fitted_estimator
528
526
  self._is_fitted = True
@@ -539,6 +537,62 @@ class TransformedTargetRegressor(BaseTransformer):
539
537
  assert self._sklearn_object is not None
540
538
  return self._sklearn_object.embedding_
541
539
 
540
+
541
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
542
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
543
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
544
+ """
545
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
546
+ # The following condition is introduced for kneighbors methods, and not used in other methods
547
+ if output_cols:
548
+ output_cols = [
549
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
550
+ for c in output_cols
551
+ ]
552
+ elif getattr(self._sklearn_object, "classes_", None) is None:
553
+ output_cols = [output_cols_prefix]
554
+ elif self._sklearn_object is not None:
555
+ classes = self._sklearn_object.classes_
556
+ if isinstance(classes, numpy.ndarray):
557
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
558
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
559
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
560
+ output_cols = []
561
+ for i, cl in enumerate(classes):
562
+ # For binary classification, there is only one output column for each class
563
+ # ndarray as the two classes are complementary.
564
+ if len(cl) == 2:
565
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
566
+ else:
567
+ output_cols.extend([
568
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
569
+ ])
570
+ else:
571
+ output_cols = []
572
+
573
+ # Make sure column names are valid snowflake identifiers.
574
+ assert output_cols is not None # Make MyPy happy
575
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
576
+
577
+ return rv
578
+
579
+ def _align_expected_output_names(
580
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
581
+ ) -> List[str]:
582
+ # in case the inferred output column names dimension is different
583
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
584
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
585
+ output_df_columns = list(output_df_pd.columns)
586
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
587
+ if self.sample_weight_col:
588
+ output_df_columns_set -= set(self.sample_weight_col)
589
+ # if the dimension of inferred output column names is correct; use it
590
+ if len(expected_output_cols_list) == len(output_df_columns_set):
591
+ return expected_output_cols_list
592
+ # otherwise, use the sklearn estimator's output
593
+ else:
594
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
595
+
542
596
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
543
597
  @telemetry.send_api_usage_telemetry(
544
598
  project=_PROJECT,
@@ -569,24 +623,28 @@ class TransformedTargetRegressor(BaseTransformer):
569
623
  # are specific to the type of dataset used.
570
624
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
571
625
 
626
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
627
+
572
628
  if isinstance(dataset, DataFrame):
573
629
  self._deps = self._batch_inference_validate_snowpark(
574
630
  dataset=dataset,
575
631
  inference_method=inference_method,
576
632
  )
577
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
+ assert isinstance(
634
+ dataset._session, Session
635
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
578
636
  transform_kwargs = dict(
579
637
  session=dataset._session,
580
638
  dependencies=self._deps,
581
- drop_input_cols = self._drop_input_cols,
639
+ drop_input_cols=self._drop_input_cols,
582
640
  expected_output_cols_type="float",
583
641
  )
642
+ expected_output_cols = self._align_expected_output_names(
643
+ inference_method, dataset, expected_output_cols, output_cols_prefix
644
+ )
584
645
 
585
646
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
647
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
648
 
591
649
  transform_handlers = ModelTransformerBuilder.build(
592
650
  dataset=dataset,
@@ -598,7 +656,7 @@ class TransformedTargetRegressor(BaseTransformer):
598
656
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
599
657
  inference_method=inference_method,
600
658
  input_cols=self.input_cols,
601
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
659
+ expected_output_cols=expected_output_cols,
602
660
  **transform_kwargs
603
661
  )
604
662
  return output_df
@@ -628,7 +686,8 @@ class TransformedTargetRegressor(BaseTransformer):
628
686
  Output dataset with log probability of the sample for each class in the model.
629
687
  """
630
688
  super()._check_dataset_type(dataset)
631
- inference_method="predict_log_proba"
689
+ inference_method = "predict_log_proba"
690
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
632
691
 
633
692
  # This dictionary contains optional kwargs for batch inference. These kwargs
634
693
  # are specific to the type of dataset used.
@@ -639,18 +698,20 @@ class TransformedTargetRegressor(BaseTransformer):
639
698
  dataset=dataset,
640
699
  inference_method=inference_method,
641
700
  )
642
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
701
+ assert isinstance(
702
+ dataset._session, Session
703
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
643
704
  transform_kwargs = dict(
644
705
  session=dataset._session,
645
706
  dependencies=self._deps,
646
- drop_input_cols = self._drop_input_cols,
707
+ drop_input_cols=self._drop_input_cols,
647
708
  expected_output_cols_type="float",
648
709
  )
710
+ expected_output_cols = self._align_expected_output_names(
711
+ inference_method, dataset, expected_output_cols, output_cols_prefix
712
+ )
649
713
  elif isinstance(dataset, pd.DataFrame):
650
- transform_kwargs = dict(
651
- snowpark_input_cols = self._snowpark_cols,
652
- drop_input_cols = self._drop_input_cols
653
- )
714
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
654
715
 
655
716
  transform_handlers = ModelTransformerBuilder.build(
656
717
  dataset=dataset,
@@ -663,7 +724,7 @@ class TransformedTargetRegressor(BaseTransformer):
663
724
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
664
725
  inference_method=inference_method,
665
726
  input_cols=self.input_cols,
666
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
727
+ expected_output_cols=expected_output_cols,
667
728
  **transform_kwargs
668
729
  )
669
730
  return output_df
@@ -689,30 +750,34 @@ class TransformedTargetRegressor(BaseTransformer):
689
750
  Output dataset with results of the decision function for the samples in input dataset.
690
751
  """
691
752
  super()._check_dataset_type(dataset)
692
- inference_method="decision_function"
753
+ inference_method = "decision_function"
693
754
 
694
755
  # This dictionary contains optional kwargs for batch inference. These kwargs
695
756
  # are specific to the type of dataset used.
696
757
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
697
758
 
759
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
760
+
698
761
  if isinstance(dataset, DataFrame):
699
762
  self._deps = self._batch_inference_validate_snowpark(
700
763
  dataset=dataset,
701
764
  inference_method=inference_method,
702
765
  )
703
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
704
769
  transform_kwargs = dict(
705
770
  session=dataset._session,
706
771
  dependencies=self._deps,
707
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
708
773
  expected_output_cols_type="float",
709
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
710
778
 
711
779
  elif isinstance(dataset, pd.DataFrame):
712
- transform_kwargs = dict(
713
- snowpark_input_cols = self._snowpark_cols,
714
- drop_input_cols = self._drop_input_cols
715
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
716
781
 
717
782
  transform_handlers = ModelTransformerBuilder.build(
718
783
  dataset=dataset,
@@ -725,7 +790,7 @@ class TransformedTargetRegressor(BaseTransformer):
725
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
791
  inference_method=inference_method,
727
792
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
729
794
  **transform_kwargs
730
795
  )
731
796
  return output_df
@@ -754,12 +819,14 @@ class TransformedTargetRegressor(BaseTransformer):
754
819
  Output dataset with probability of the sample for each class in the model.
755
820
  """
756
821
  super()._check_dataset_type(dataset)
757
- inference_method="score_samples"
822
+ inference_method = "score_samples"
758
823
 
759
824
  # This dictionary contains optional kwargs for batch inference. These kwargs
760
825
  # are specific to the type of dataset used.
761
826
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
762
827
 
828
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
829
+
763
830
  if isinstance(dataset, DataFrame):
764
831
  self._deps = self._batch_inference_validate_snowpark(
765
832
  dataset=dataset,
@@ -772,6 +839,9 @@ class TransformedTargetRegressor(BaseTransformer):
772
839
  drop_input_cols = self._drop_input_cols,
773
840
  expected_output_cols_type="float",
774
841
  )
842
+ expected_output_cols = self._align_expected_output_names(
843
+ inference_method, dataset, expected_output_cols, output_cols_prefix
844
+ )
775
845
 
776
846
  elif isinstance(dataset, pd.DataFrame):
777
847
  transform_kwargs = dict(
@@ -790,7 +860,7 @@ class TransformedTargetRegressor(BaseTransformer):
790
860
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
861
  inference_method=inference_method,
792
862
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
863
+ expected_output_cols=expected_output_cols,
794
864
  **transform_kwargs
795
865
  )
796
866
  return output_df
@@ -937,50 +1007,84 @@ class TransformedTargetRegressor(BaseTransformer):
937
1007
  )
938
1008
  return output_df
939
1009
 
1010
+
1011
+
1012
+ def to_sklearn(self) -> Any:
1013
+ """Get sklearn.compose.TransformedTargetRegressor object.
1014
+ """
1015
+ if self._sklearn_object is None:
1016
+ self._sklearn_object = self._create_sklearn_object()
1017
+ return self._sklearn_object
1018
+
1019
+ def to_xgboost(self) -> Any:
1020
+ raise exceptions.SnowflakeMLException(
1021
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1022
+ original_exception=AttributeError(
1023
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
+ "to_xgboost()",
1025
+ "to_sklearn()"
1026
+ )
1027
+ ),
1028
+ )
1029
+
1030
+ def to_lightgbm(self) -> Any:
1031
+ raise exceptions.SnowflakeMLException(
1032
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1033
+ original_exception=AttributeError(
1034
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1035
+ "to_lightgbm()",
1036
+ "to_sklearn()"
1037
+ )
1038
+ ),
1039
+ )
940
1040
 
941
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1041
+ def _get_dependencies(self) -> List[str]:
1042
+ return self._deps
1043
+
1044
+
1045
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
942
1046
  self._model_signature_dict = dict()
943
1047
 
944
1048
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
945
1049
 
946
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1050
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
947
1051
  outputs: List[BaseFeatureSpec] = []
948
1052
  if hasattr(self, "predict"):
949
1053
  # keep mypy happy
950
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1054
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
951
1055
  # For classifier, the type of predict is the same as the type of label
952
- if self._sklearn_object._estimator_type == 'classifier':
953
- # label columns is the desired type for output
1056
+ if self._sklearn_object._estimator_type == "classifier":
1057
+ # label columns is the desired type for output
954
1058
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
955
1059
  # rename the output columns
956
1060
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
957
- self._model_signature_dict["predict"] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1061
+ self._model_signature_dict["predict"] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
960
1064
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
961
1065
  # For outlier models, returns -1 for outliers and 1 for inliers.
962
- # Clusterer returns int64 cluster labels.
1066
+ # Clusterer returns int64 cluster labels.
963
1067
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
964
1068
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
965
- self._model_signature_dict["predict"] = ModelSignature(inputs,
966
- ([] if self._drop_input_cols else inputs)
967
- + outputs)
968
-
1069
+ self._model_signature_dict["predict"] = ModelSignature(
1070
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1071
+ )
1072
+
969
1073
  # For regressor, the type of predict is float64
970
- elif self._sklearn_object._estimator_type == 'regressor':
1074
+ elif self._sklearn_object._estimator_type == "regressor":
971
1075
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
972
- self._model_signature_dict["predict"] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
975
-
1076
+ self._model_signature_dict["predict"] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
1079
+
976
1080
  for prob_func in PROB_FUNCTIONS:
977
1081
  if hasattr(self, prob_func):
978
1082
  output_cols_prefix: str = f"{prob_func}_"
979
1083
  output_column_names = self._get_output_column_names(output_cols_prefix)
980
1084
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
981
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
982
- ([] if self._drop_input_cols else inputs)
983
- + outputs)
1085
+ self._model_signature_dict[prob_func] = ModelSignature(
1086
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1087
+ )
984
1088
 
985
1089
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
986
1090
  items = list(self._model_signature_dict.items())
@@ -993,10 +1097,10 @@ class TransformedTargetRegressor(BaseTransformer):
993
1097
  """Returns model signature of current class.
994
1098
 
995
1099
  Raises:
996
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1100
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
997
1101
 
998
1102
  Returns:
999
- Dict[str, ModelSignature]: each method and its input output signature
1103
+ Dict with each method and its input output signature
1000
1104
  """
1001
1105
  if self._model_signature_dict is None:
1002
1106
  raise exceptions.SnowflakeMLException(
@@ -1004,35 +1108,3 @@ class TransformedTargetRegressor(BaseTransformer):
1004
1108
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1005
1109
  )
1006
1110
  return self._model_signature_dict
1007
-
1008
- def to_sklearn(self) -> Any:
1009
- """Get sklearn.compose.TransformedTargetRegressor object.
1010
- """
1011
- if self._sklearn_object is None:
1012
- self._sklearn_object = self._create_sklearn_object()
1013
- return self._sklearn_object
1014
-
1015
- def to_xgboost(self) -> Any:
1016
- raise exceptions.SnowflakeMLException(
1017
- error_code=error_codes.METHOD_NOT_ALLOWED,
1018
- original_exception=AttributeError(
1019
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
- "to_xgboost()",
1021
- "to_sklearn()"
1022
- )
1023
- ),
1024
- )
1025
-
1026
- def to_lightgbm(self) -> Any:
1027
- raise exceptions.SnowflakeMLException(
1028
- error_code=error_codes.METHOD_NOT_ALLOWED,
1029
- original_exception=AttributeError(
1030
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
- "to_lightgbm()",
1032
- "to_sklearn()"
1033
- )
1034
- ),
1035
- )
1036
-
1037
- def _get_dependencies(self) -> List[str]:
1038
- return self._deps