snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -231,12 +230,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
231
230
|
)
|
232
231
|
return selected_cols
|
233
232
|
|
234
|
-
|
235
|
-
project=_PROJECT,
|
236
|
-
subproject=_SUBPROJECT,
|
237
|
-
custom_tags=dict([("autogen", True)]),
|
238
|
-
)
|
239
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
|
233
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
|
240
234
|
"""Fit the model according to the given training data
|
241
235
|
For more details on this function, see [sklearn.compose.TransformedTargetRegressor.fit]
|
242
236
|
(https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor.fit)
|
@@ -263,12 +257,14 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
263
257
|
|
264
258
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
265
259
|
|
266
|
-
|
260
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
267
261
|
if SNOWML_SPROC_ENV in os.environ:
|
268
262
|
statement_params = telemetry.get_function_usage_statement_params(
|
269
263
|
project=_PROJECT,
|
270
264
|
subproject=_SUBPROJECT,
|
271
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
265
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
266
|
+
inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
|
267
|
+
),
|
272
268
|
api_calls=[Session.call],
|
273
269
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
274
270
|
)
|
@@ -289,7 +285,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
289
285
|
)
|
290
286
|
self._sklearn_object = model_trainer.train()
|
291
287
|
self._is_fitted = True
|
292
|
-
self.
|
288
|
+
self._generate_model_signatures(dataset)
|
293
289
|
return self
|
294
290
|
|
295
291
|
def _batch_inference_validate_snowpark(
|
@@ -365,7 +361,9 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
365
361
|
# when it is classifier, infer the datatype from label columns
|
366
362
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
367
363
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
368
|
-
label_cols_signatures = [
|
364
|
+
label_cols_signatures = [
|
365
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
366
|
+
]
|
369
367
|
if len(label_cols_signatures) == 0:
|
370
368
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
371
369
|
raise exceptions.SnowflakeMLException(
|
@@ -373,25 +371,22 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
373
371
|
original_exception=ValueError(error_str),
|
374
372
|
)
|
375
373
|
|
376
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
377
|
-
label_cols_signatures[0].as_snowpark_type()
|
378
|
-
)
|
374
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
379
375
|
|
380
376
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
381
|
-
assert isinstance(
|
377
|
+
assert isinstance(
|
378
|
+
dataset._session, Session
|
379
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
382
380
|
|
383
381
|
transform_kwargs = dict(
|
384
|
-
session
|
385
|
-
dependencies
|
386
|
-
drop_input_cols
|
387
|
-
expected_output_cols_type
|
382
|
+
session=dataset._session,
|
383
|
+
dependencies=self._deps,
|
384
|
+
drop_input_cols=self._drop_input_cols,
|
385
|
+
expected_output_cols_type=expected_type_inferred,
|
388
386
|
)
|
389
387
|
|
390
388
|
elif isinstance(dataset, pd.DataFrame):
|
391
|
-
transform_kwargs = dict(
|
392
|
-
snowpark_input_cols = self._snowpark_cols,
|
393
|
-
drop_input_cols = self._drop_input_cols
|
394
|
-
)
|
389
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
395
390
|
|
396
391
|
transform_handlers = ModelTransformerBuilder.build(
|
397
392
|
dataset=dataset,
|
@@ -431,7 +426,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
431
426
|
Transformed dataset.
|
432
427
|
"""
|
433
428
|
super()._check_dataset_type(dataset)
|
434
|
-
inference_method="transform"
|
429
|
+
inference_method = "transform"
|
435
430
|
|
436
431
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
437
432
|
# are specific to the type of dataset used.
|
@@ -468,17 +463,14 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
468
463
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
469
464
|
|
470
465
|
transform_kwargs = dict(
|
471
|
-
session
|
472
|
-
dependencies
|
473
|
-
drop_input_cols
|
474
|
-
expected_output_cols_type
|
466
|
+
session=dataset._session,
|
467
|
+
dependencies=self._deps,
|
468
|
+
drop_input_cols=self._drop_input_cols,
|
469
|
+
expected_output_cols_type=expected_dtype,
|
475
470
|
)
|
476
471
|
|
477
472
|
elif isinstance(dataset, pd.DataFrame):
|
478
|
-
transform_kwargs = dict(
|
479
|
-
snowpark_input_cols = self._snowpark_cols,
|
480
|
-
drop_input_cols = self._drop_input_cols
|
481
|
-
)
|
473
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
482
474
|
|
483
475
|
transform_handlers = ModelTransformerBuilder.build(
|
484
476
|
dataset=dataset,
|
@@ -497,7 +489,11 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
497
489
|
return output_df
|
498
490
|
|
499
491
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
500
|
-
def fit_predict(
|
492
|
+
def fit_predict(
|
493
|
+
self,
|
494
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
495
|
+
output_cols_prefix: str = "fit_predict_",
|
496
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
501
497
|
""" Method not supported for this class.
|
502
498
|
|
503
499
|
|
@@ -522,7 +518,9 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
522
518
|
)
|
523
519
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
524
520
|
drop_input_cols=self._drop_input_cols,
|
525
|
-
expected_output_cols_list=
|
521
|
+
expected_output_cols_list=(
|
522
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
523
|
+
),
|
526
524
|
)
|
527
525
|
self._sklearn_object = fitted_estimator
|
528
526
|
self._is_fitted = True
|
@@ -539,6 +537,62 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
539
537
|
assert self._sklearn_object is not None
|
540
538
|
return self._sklearn_object.embedding_
|
541
539
|
|
540
|
+
|
541
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
542
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
543
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
544
|
+
"""
|
545
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
546
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
547
|
+
if output_cols:
|
548
|
+
output_cols = [
|
549
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
550
|
+
for c in output_cols
|
551
|
+
]
|
552
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
553
|
+
output_cols = [output_cols_prefix]
|
554
|
+
elif self._sklearn_object is not None:
|
555
|
+
classes = self._sklearn_object.classes_
|
556
|
+
if isinstance(classes, numpy.ndarray):
|
557
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
558
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
559
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
560
|
+
output_cols = []
|
561
|
+
for i, cl in enumerate(classes):
|
562
|
+
# For binary classification, there is only one output column for each class
|
563
|
+
# ndarray as the two classes are complementary.
|
564
|
+
if len(cl) == 2:
|
565
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
566
|
+
else:
|
567
|
+
output_cols.extend([
|
568
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
569
|
+
])
|
570
|
+
else:
|
571
|
+
output_cols = []
|
572
|
+
|
573
|
+
# Make sure column names are valid snowflake identifiers.
|
574
|
+
assert output_cols is not None # Make MyPy happy
|
575
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
576
|
+
|
577
|
+
return rv
|
578
|
+
|
579
|
+
def _align_expected_output_names(
|
580
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
581
|
+
) -> List[str]:
|
582
|
+
# in case the inferred output column names dimension is different
|
583
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
584
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
585
|
+
output_df_columns = list(output_df_pd.columns)
|
586
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
587
|
+
if self.sample_weight_col:
|
588
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
589
|
+
# if the dimension of inferred output column names is correct; use it
|
590
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
591
|
+
return expected_output_cols_list
|
592
|
+
# otherwise, use the sklearn estimator's output
|
593
|
+
else:
|
594
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
595
|
+
|
542
596
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
543
597
|
@telemetry.send_api_usage_telemetry(
|
544
598
|
project=_PROJECT,
|
@@ -569,24 +623,28 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
569
623
|
# are specific to the type of dataset used.
|
570
624
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
571
625
|
|
626
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
627
|
+
|
572
628
|
if isinstance(dataset, DataFrame):
|
573
629
|
self._deps = self._batch_inference_validate_snowpark(
|
574
630
|
dataset=dataset,
|
575
631
|
inference_method=inference_method,
|
576
632
|
)
|
577
|
-
assert isinstance(
|
633
|
+
assert isinstance(
|
634
|
+
dataset._session, Session
|
635
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
578
636
|
transform_kwargs = dict(
|
579
637
|
session=dataset._session,
|
580
638
|
dependencies=self._deps,
|
581
|
-
drop_input_cols
|
639
|
+
drop_input_cols=self._drop_input_cols,
|
582
640
|
expected_output_cols_type="float",
|
583
641
|
)
|
642
|
+
expected_output_cols = self._align_expected_output_names(
|
643
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
644
|
+
)
|
584
645
|
|
585
646
|
elif isinstance(dataset, pd.DataFrame):
|
586
|
-
transform_kwargs = dict(
|
587
|
-
snowpark_input_cols = self._snowpark_cols,
|
588
|
-
drop_input_cols = self._drop_input_cols
|
589
|
-
)
|
647
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
590
648
|
|
591
649
|
transform_handlers = ModelTransformerBuilder.build(
|
592
650
|
dataset=dataset,
|
@@ -598,7 +656,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
598
656
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
599
657
|
inference_method=inference_method,
|
600
658
|
input_cols=self.input_cols,
|
601
|
-
expected_output_cols=
|
659
|
+
expected_output_cols=expected_output_cols,
|
602
660
|
**transform_kwargs
|
603
661
|
)
|
604
662
|
return output_df
|
@@ -628,7 +686,8 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
628
686
|
Output dataset with log probability of the sample for each class in the model.
|
629
687
|
"""
|
630
688
|
super()._check_dataset_type(dataset)
|
631
|
-
inference_method="predict_log_proba"
|
689
|
+
inference_method = "predict_log_proba"
|
690
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
632
691
|
|
633
692
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
634
693
|
# are specific to the type of dataset used.
|
@@ -639,18 +698,20 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
639
698
|
dataset=dataset,
|
640
699
|
inference_method=inference_method,
|
641
700
|
)
|
642
|
-
assert isinstance(
|
701
|
+
assert isinstance(
|
702
|
+
dataset._session, Session
|
703
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
643
704
|
transform_kwargs = dict(
|
644
705
|
session=dataset._session,
|
645
706
|
dependencies=self._deps,
|
646
|
-
drop_input_cols
|
707
|
+
drop_input_cols=self._drop_input_cols,
|
647
708
|
expected_output_cols_type="float",
|
648
709
|
)
|
710
|
+
expected_output_cols = self._align_expected_output_names(
|
711
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
712
|
+
)
|
649
713
|
elif isinstance(dataset, pd.DataFrame):
|
650
|
-
transform_kwargs = dict(
|
651
|
-
snowpark_input_cols = self._snowpark_cols,
|
652
|
-
drop_input_cols = self._drop_input_cols
|
653
|
-
)
|
714
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
654
715
|
|
655
716
|
transform_handlers = ModelTransformerBuilder.build(
|
656
717
|
dataset=dataset,
|
@@ -663,7 +724,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
663
724
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
664
725
|
inference_method=inference_method,
|
665
726
|
input_cols=self.input_cols,
|
666
|
-
expected_output_cols=
|
727
|
+
expected_output_cols=expected_output_cols,
|
667
728
|
**transform_kwargs
|
668
729
|
)
|
669
730
|
return output_df
|
@@ -689,30 +750,34 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
689
750
|
Output dataset with results of the decision function for the samples in input dataset.
|
690
751
|
"""
|
691
752
|
super()._check_dataset_type(dataset)
|
692
|
-
inference_method="decision_function"
|
753
|
+
inference_method = "decision_function"
|
693
754
|
|
694
755
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
695
756
|
# are specific to the type of dataset used.
|
696
757
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
697
758
|
|
759
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
760
|
+
|
698
761
|
if isinstance(dataset, DataFrame):
|
699
762
|
self._deps = self._batch_inference_validate_snowpark(
|
700
763
|
dataset=dataset,
|
701
764
|
inference_method=inference_method,
|
702
765
|
)
|
703
|
-
assert isinstance(
|
766
|
+
assert isinstance(
|
767
|
+
dataset._session, Session
|
768
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
704
769
|
transform_kwargs = dict(
|
705
770
|
session=dataset._session,
|
706
771
|
dependencies=self._deps,
|
707
|
-
drop_input_cols
|
772
|
+
drop_input_cols=self._drop_input_cols,
|
708
773
|
expected_output_cols_type="float",
|
709
774
|
)
|
775
|
+
expected_output_cols = self._align_expected_output_names(
|
776
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
777
|
+
)
|
710
778
|
|
711
779
|
elif isinstance(dataset, pd.DataFrame):
|
712
|
-
transform_kwargs = dict(
|
713
|
-
snowpark_input_cols = self._snowpark_cols,
|
714
|
-
drop_input_cols = self._drop_input_cols
|
715
|
-
)
|
780
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
716
781
|
|
717
782
|
transform_handlers = ModelTransformerBuilder.build(
|
718
783
|
dataset=dataset,
|
@@ -725,7 +790,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
725
790
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
726
791
|
inference_method=inference_method,
|
727
792
|
input_cols=self.input_cols,
|
728
|
-
expected_output_cols=
|
793
|
+
expected_output_cols=expected_output_cols,
|
729
794
|
**transform_kwargs
|
730
795
|
)
|
731
796
|
return output_df
|
@@ -754,12 +819,14 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
754
819
|
Output dataset with probability of the sample for each class in the model.
|
755
820
|
"""
|
756
821
|
super()._check_dataset_type(dataset)
|
757
|
-
inference_method="score_samples"
|
822
|
+
inference_method = "score_samples"
|
758
823
|
|
759
824
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
760
825
|
# are specific to the type of dataset used.
|
761
826
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
762
827
|
|
828
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
829
|
+
|
763
830
|
if isinstance(dataset, DataFrame):
|
764
831
|
self._deps = self._batch_inference_validate_snowpark(
|
765
832
|
dataset=dataset,
|
@@ -772,6 +839,9 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
772
839
|
drop_input_cols = self._drop_input_cols,
|
773
840
|
expected_output_cols_type="float",
|
774
841
|
)
|
842
|
+
expected_output_cols = self._align_expected_output_names(
|
843
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
844
|
+
)
|
775
845
|
|
776
846
|
elif isinstance(dataset, pd.DataFrame):
|
777
847
|
transform_kwargs = dict(
|
@@ -790,7 +860,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
790
860
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
791
861
|
inference_method=inference_method,
|
792
862
|
input_cols=self.input_cols,
|
793
|
-
expected_output_cols=
|
863
|
+
expected_output_cols=expected_output_cols,
|
794
864
|
**transform_kwargs
|
795
865
|
)
|
796
866
|
return output_df
|
@@ -937,50 +1007,84 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
937
1007
|
)
|
938
1008
|
return output_df
|
939
1009
|
|
1010
|
+
|
1011
|
+
|
1012
|
+
def to_sklearn(self) -> Any:
|
1013
|
+
"""Get sklearn.compose.TransformedTargetRegressor object.
|
1014
|
+
"""
|
1015
|
+
if self._sklearn_object is None:
|
1016
|
+
self._sklearn_object = self._create_sklearn_object()
|
1017
|
+
return self._sklearn_object
|
1018
|
+
|
1019
|
+
def to_xgboost(self) -> Any:
|
1020
|
+
raise exceptions.SnowflakeMLException(
|
1021
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1022
|
+
original_exception=AttributeError(
|
1023
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1024
|
+
"to_xgboost()",
|
1025
|
+
"to_sklearn()"
|
1026
|
+
)
|
1027
|
+
),
|
1028
|
+
)
|
1029
|
+
|
1030
|
+
def to_lightgbm(self) -> Any:
|
1031
|
+
raise exceptions.SnowflakeMLException(
|
1032
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1033
|
+
original_exception=AttributeError(
|
1034
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1035
|
+
"to_lightgbm()",
|
1036
|
+
"to_sklearn()"
|
1037
|
+
)
|
1038
|
+
),
|
1039
|
+
)
|
940
1040
|
|
941
|
-
def
|
1041
|
+
def _get_dependencies(self) -> List[str]:
|
1042
|
+
return self._deps
|
1043
|
+
|
1044
|
+
|
1045
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
942
1046
|
self._model_signature_dict = dict()
|
943
1047
|
|
944
1048
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
945
1049
|
|
946
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1050
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
947
1051
|
outputs: List[BaseFeatureSpec] = []
|
948
1052
|
if hasattr(self, "predict"):
|
949
1053
|
# keep mypy happy
|
950
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1054
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
951
1055
|
# For classifier, the type of predict is the same as the type of label
|
952
|
-
if self._sklearn_object._estimator_type ==
|
953
|
-
|
1056
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1057
|
+
# label columns is the desired type for output
|
954
1058
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
955
1059
|
# rename the output columns
|
956
1060
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
957
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
958
|
-
|
959
|
-
|
1061
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
960
1064
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
961
1065
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
962
|
-
# Clusterer returns int64 cluster labels.
|
1066
|
+
# Clusterer returns int64 cluster labels.
|
963
1067
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
964
1068
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
965
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
966
|
-
|
967
|
-
|
968
|
-
|
1069
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1070
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1071
|
+
)
|
1072
|
+
|
969
1073
|
# For regressor, the type of predict is float64
|
970
|
-
elif self._sklearn_object._estimator_type ==
|
1074
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
971
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
972
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
973
|
-
|
974
|
-
|
975
|
-
|
1076
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
1079
|
+
|
976
1080
|
for prob_func in PROB_FUNCTIONS:
|
977
1081
|
if hasattr(self, prob_func):
|
978
1082
|
output_cols_prefix: str = f"{prob_func}_"
|
979
1083
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
980
1084
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
981
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
982
|
-
|
983
|
-
|
1085
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
984
1088
|
|
985
1089
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
986
1090
|
items = list(self._model_signature_dict.items())
|
@@ -993,10 +1097,10 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
993
1097
|
"""Returns model signature of current class.
|
994
1098
|
|
995
1099
|
Raises:
|
996
|
-
|
1100
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
997
1101
|
|
998
1102
|
Returns:
|
999
|
-
Dict
|
1103
|
+
Dict with each method and its input output signature
|
1000
1104
|
"""
|
1001
1105
|
if self._model_signature_dict is None:
|
1002
1106
|
raise exceptions.SnowflakeMLException(
|
@@ -1004,35 +1108,3 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
1004
1108
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1005
1109
|
)
|
1006
1110
|
return self._model_signature_dict
|
1007
|
-
|
1008
|
-
def to_sklearn(self) -> Any:
|
1009
|
-
"""Get sklearn.compose.TransformedTargetRegressor object.
|
1010
|
-
"""
|
1011
|
-
if self._sklearn_object is None:
|
1012
|
-
self._sklearn_object = self._create_sklearn_object()
|
1013
|
-
return self._sklearn_object
|
1014
|
-
|
1015
|
-
def to_xgboost(self) -> Any:
|
1016
|
-
raise exceptions.SnowflakeMLException(
|
1017
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1018
|
-
original_exception=AttributeError(
|
1019
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1020
|
-
"to_xgboost()",
|
1021
|
-
"to_sklearn()"
|
1022
|
-
)
|
1023
|
-
),
|
1024
|
-
)
|
1025
|
-
|
1026
|
-
def to_lightgbm(self) -> Any:
|
1027
|
-
raise exceptions.SnowflakeMLException(
|
1028
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1029
|
-
original_exception=AttributeError(
|
1030
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1031
|
-
"to_lightgbm()",
|
1032
|
-
"to_sklearn()"
|
1033
|
-
)
|
1034
|
-
),
|
1035
|
-
)
|
1036
|
-
|
1037
|
-
def _get_dependencies(self) -> List[str]:
|
1038
|
-
return self._deps
|