snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -226,12 +225,7 @@ class EllipticEnvelope(BaseTransformer):
226
225
  )
227
226
  return selected_cols
228
227
 
229
- @telemetry.send_api_usage_telemetry(
230
- project=_PROJECT,
231
- subproject=_SUBPROJECT,
232
- custom_tags=dict([("autogen", True)]),
233
- )
234
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
228
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
235
229
  """Fit the EllipticEnvelope model
236
230
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit]
237
231
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit)
@@ -258,12 +252,14 @@ class EllipticEnvelope(BaseTransformer):
258
252
 
259
253
  self._snowpark_cols = dataset.select(self.input_cols).columns
260
254
 
261
- # If we are already in a stored procedure, no need to kick off another one.
255
+ # If we are already in a stored procedure, no need to kick off another one.
262
256
  if SNOWML_SPROC_ENV in os.environ:
263
257
  statement_params = telemetry.get_function_usage_statement_params(
264
258
  project=_PROJECT,
265
259
  subproject=_SUBPROJECT,
266
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
260
+ function_name=telemetry.get_statement_params_full_func_name(
261
+ inspect.currentframe(), EllipticEnvelope.__class__.__name__
262
+ ),
267
263
  api_calls=[Session.call],
268
264
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
269
265
  )
@@ -284,7 +280,7 @@ class EllipticEnvelope(BaseTransformer):
284
280
  )
285
281
  self._sklearn_object = model_trainer.train()
286
282
  self._is_fitted = True
287
- self._get_model_signatures(dataset)
283
+ self._generate_model_signatures(dataset)
288
284
  return self
289
285
 
290
286
  def _batch_inference_validate_snowpark(
@@ -360,7 +356,9 @@ class EllipticEnvelope(BaseTransformer):
360
356
  # when it is classifier, infer the datatype from label columns
361
357
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
362
358
  # Batch inference takes a single expected output column type. Use the first columns type for now.
363
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
359
+ label_cols_signatures = [
360
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
361
+ ]
364
362
  if len(label_cols_signatures) == 0:
365
363
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
366
364
  raise exceptions.SnowflakeMLException(
@@ -368,25 +366,22 @@ class EllipticEnvelope(BaseTransformer):
368
366
  original_exception=ValueError(error_str),
369
367
  )
370
368
 
371
- expected_type_inferred = convert_sp_to_sf_type(
372
- label_cols_signatures[0].as_snowpark_type()
373
- )
369
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
374
370
 
375
371
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
376
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
372
+ assert isinstance(
373
+ dataset._session, Session
374
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
377
375
 
378
376
  transform_kwargs = dict(
379
- session = dataset._session,
380
- dependencies = self._deps,
381
- drop_input_cols = self._drop_input_cols,
382
- expected_output_cols_type = expected_type_inferred,
377
+ session=dataset._session,
378
+ dependencies=self._deps,
379
+ drop_input_cols=self._drop_input_cols,
380
+ expected_output_cols_type=expected_type_inferred,
383
381
  )
384
382
 
385
383
  elif isinstance(dataset, pd.DataFrame):
386
- transform_kwargs = dict(
387
- snowpark_input_cols = self._snowpark_cols,
388
- drop_input_cols = self._drop_input_cols
389
- )
384
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
390
385
 
391
386
  transform_handlers = ModelTransformerBuilder.build(
392
387
  dataset=dataset,
@@ -426,7 +421,7 @@ class EllipticEnvelope(BaseTransformer):
426
421
  Transformed dataset.
427
422
  """
428
423
  super()._check_dataset_type(dataset)
429
- inference_method="transform"
424
+ inference_method = "transform"
430
425
 
431
426
  # This dictionary contains optional kwargs for batch inference. These kwargs
432
427
  # are specific to the type of dataset used.
@@ -463,17 +458,14 @@ class EllipticEnvelope(BaseTransformer):
463
458
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
464
459
 
465
460
  transform_kwargs = dict(
466
- session = dataset._session,
467
- dependencies = self._deps,
468
- drop_input_cols = self._drop_input_cols,
469
- expected_output_cols_type = expected_dtype,
461
+ session=dataset._session,
462
+ dependencies=self._deps,
463
+ drop_input_cols=self._drop_input_cols,
464
+ expected_output_cols_type=expected_dtype,
470
465
  )
471
466
 
472
467
  elif isinstance(dataset, pd.DataFrame):
473
- transform_kwargs = dict(
474
- snowpark_input_cols = self._snowpark_cols,
475
- drop_input_cols = self._drop_input_cols
476
- )
468
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
477
469
 
478
470
  transform_handlers = ModelTransformerBuilder.build(
479
471
  dataset=dataset,
@@ -492,7 +484,11 @@ class EllipticEnvelope(BaseTransformer):
492
484
  return output_df
493
485
 
494
486
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
495
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
487
+ def fit_predict(
488
+ self,
489
+ dataset: Union[DataFrame, pd.DataFrame],
490
+ output_cols_prefix: str = "fit_predict_",
491
+ ) -> Union[DataFrame, pd.DataFrame]:
496
492
  """ Perform fit on X and returns labels for X
497
493
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit_predict]
498
494
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit_predict)
@@ -519,7 +515,9 @@ class EllipticEnvelope(BaseTransformer):
519
515
  )
520
516
  output_result, fitted_estimator = model_trainer.train_fit_predict(
521
517
  drop_input_cols=self._drop_input_cols,
522
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
518
+ expected_output_cols_list=(
519
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
520
+ ),
523
521
  )
524
522
  self._sklearn_object = fitted_estimator
525
523
  self._is_fitted = True
@@ -536,6 +534,62 @@ class EllipticEnvelope(BaseTransformer):
536
534
  assert self._sklearn_object is not None
537
535
  return self._sklearn_object.embedding_
538
536
 
537
+
538
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
539
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
540
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
541
+ """
542
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
543
+ # The following condition is introduced for kneighbors methods, and not used in other methods
544
+ if output_cols:
545
+ output_cols = [
546
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
547
+ for c in output_cols
548
+ ]
549
+ elif getattr(self._sklearn_object, "classes_", None) is None:
550
+ output_cols = [output_cols_prefix]
551
+ elif self._sklearn_object is not None:
552
+ classes = self._sklearn_object.classes_
553
+ if isinstance(classes, numpy.ndarray):
554
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
555
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
556
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
557
+ output_cols = []
558
+ for i, cl in enumerate(classes):
559
+ # For binary classification, there is only one output column for each class
560
+ # ndarray as the two classes are complementary.
561
+ if len(cl) == 2:
562
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
563
+ else:
564
+ output_cols.extend([
565
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
566
+ ])
567
+ else:
568
+ output_cols = []
569
+
570
+ # Make sure column names are valid snowflake identifiers.
571
+ assert output_cols is not None # Make MyPy happy
572
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
573
+
574
+ return rv
575
+
576
+ def _align_expected_output_names(
577
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
578
+ ) -> List[str]:
579
+ # in case the inferred output column names dimension is different
580
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
581
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
582
+ output_df_columns = list(output_df_pd.columns)
583
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
584
+ if self.sample_weight_col:
585
+ output_df_columns_set -= set(self.sample_weight_col)
586
+ # if the dimension of inferred output column names is correct; use it
587
+ if len(expected_output_cols_list) == len(output_df_columns_set):
588
+ return expected_output_cols_list
589
+ # otherwise, use the sklearn estimator's output
590
+ else:
591
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
592
+
539
593
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
540
594
  @telemetry.send_api_usage_telemetry(
541
595
  project=_PROJECT,
@@ -566,24 +620,28 @@ class EllipticEnvelope(BaseTransformer):
566
620
  # are specific to the type of dataset used.
567
621
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
568
622
 
623
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
624
+
569
625
  if isinstance(dataset, DataFrame):
570
626
  self._deps = self._batch_inference_validate_snowpark(
571
627
  dataset=dataset,
572
628
  inference_method=inference_method,
573
629
  )
574
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
630
+ assert isinstance(
631
+ dataset._session, Session
632
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
575
633
  transform_kwargs = dict(
576
634
  session=dataset._session,
577
635
  dependencies=self._deps,
578
- drop_input_cols = self._drop_input_cols,
636
+ drop_input_cols=self._drop_input_cols,
579
637
  expected_output_cols_type="float",
580
638
  )
639
+ expected_output_cols = self._align_expected_output_names(
640
+ inference_method, dataset, expected_output_cols, output_cols_prefix
641
+ )
581
642
 
582
643
  elif isinstance(dataset, pd.DataFrame):
583
- transform_kwargs = dict(
584
- snowpark_input_cols = self._snowpark_cols,
585
- drop_input_cols = self._drop_input_cols
586
- )
644
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
587
645
 
588
646
  transform_handlers = ModelTransformerBuilder.build(
589
647
  dataset=dataset,
@@ -595,7 +653,7 @@ class EllipticEnvelope(BaseTransformer):
595
653
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
596
654
  inference_method=inference_method,
597
655
  input_cols=self.input_cols,
598
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
656
+ expected_output_cols=expected_output_cols,
599
657
  **transform_kwargs
600
658
  )
601
659
  return output_df
@@ -625,7 +683,8 @@ class EllipticEnvelope(BaseTransformer):
625
683
  Output dataset with log probability of the sample for each class in the model.
626
684
  """
627
685
  super()._check_dataset_type(dataset)
628
- inference_method="predict_log_proba"
686
+ inference_method = "predict_log_proba"
687
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
629
688
 
630
689
  # This dictionary contains optional kwargs for batch inference. These kwargs
631
690
  # are specific to the type of dataset used.
@@ -636,18 +695,20 @@ class EllipticEnvelope(BaseTransformer):
636
695
  dataset=dataset,
637
696
  inference_method=inference_method,
638
697
  )
639
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
+ assert isinstance(
699
+ dataset._session, Session
700
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
640
701
  transform_kwargs = dict(
641
702
  session=dataset._session,
642
703
  dependencies=self._deps,
643
- drop_input_cols = self._drop_input_cols,
704
+ drop_input_cols=self._drop_input_cols,
644
705
  expected_output_cols_type="float",
645
706
  )
707
+ expected_output_cols = self._align_expected_output_names(
708
+ inference_method, dataset, expected_output_cols, output_cols_prefix
709
+ )
646
710
  elif isinstance(dataset, pd.DataFrame):
647
- transform_kwargs = dict(
648
- snowpark_input_cols = self._snowpark_cols,
649
- drop_input_cols = self._drop_input_cols
650
- )
711
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
651
712
 
652
713
  transform_handlers = ModelTransformerBuilder.build(
653
714
  dataset=dataset,
@@ -660,7 +721,7 @@ class EllipticEnvelope(BaseTransformer):
660
721
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
661
722
  inference_method=inference_method,
662
723
  input_cols=self.input_cols,
663
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
724
+ expected_output_cols=expected_output_cols,
664
725
  **transform_kwargs
665
726
  )
666
727
  return output_df
@@ -688,30 +749,34 @@ class EllipticEnvelope(BaseTransformer):
688
749
  Output dataset with results of the decision function for the samples in input dataset.
689
750
  """
690
751
  super()._check_dataset_type(dataset)
691
- inference_method="decision_function"
752
+ inference_method = "decision_function"
692
753
 
693
754
  # This dictionary contains optional kwargs for batch inference. These kwargs
694
755
  # are specific to the type of dataset used.
695
756
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
696
757
 
758
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
+
697
760
  if isinstance(dataset, DataFrame):
698
761
  self._deps = self._batch_inference_validate_snowpark(
699
762
  dataset=dataset,
700
763
  inference_method=inference_method,
701
764
  )
702
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
765
+ assert isinstance(
766
+ dataset._session, Session
767
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
768
  transform_kwargs = dict(
704
769
  session=dataset._session,
705
770
  dependencies=self._deps,
706
- drop_input_cols = self._drop_input_cols,
771
+ drop_input_cols=self._drop_input_cols,
707
772
  expected_output_cols_type="float",
708
773
  )
774
+ expected_output_cols = self._align_expected_output_names(
775
+ inference_method, dataset, expected_output_cols, output_cols_prefix
776
+ )
709
777
 
710
778
  elif isinstance(dataset, pd.DataFrame):
711
- transform_kwargs = dict(
712
- snowpark_input_cols = self._snowpark_cols,
713
- drop_input_cols = self._drop_input_cols
714
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
715
780
 
716
781
  transform_handlers = ModelTransformerBuilder.build(
717
782
  dataset=dataset,
@@ -724,7 +789,7 @@ class EllipticEnvelope(BaseTransformer):
724
789
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
725
790
  inference_method=inference_method,
726
791
  input_cols=self.input_cols,
727
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
792
+ expected_output_cols=expected_output_cols,
728
793
  **transform_kwargs
729
794
  )
730
795
  return output_df
@@ -755,12 +820,14 @@ class EllipticEnvelope(BaseTransformer):
755
820
  Output dataset with probability of the sample for each class in the model.
756
821
  """
757
822
  super()._check_dataset_type(dataset)
758
- inference_method="score_samples"
823
+ inference_method = "score_samples"
759
824
 
760
825
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
826
  # are specific to the type of dataset used.
762
827
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
828
 
829
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
830
+
764
831
  if isinstance(dataset, DataFrame):
765
832
  self._deps = self._batch_inference_validate_snowpark(
766
833
  dataset=dataset,
@@ -773,6 +840,9 @@ class EllipticEnvelope(BaseTransformer):
773
840
  drop_input_cols = self._drop_input_cols,
774
841
  expected_output_cols_type="float",
775
842
  )
843
+ expected_output_cols = self._align_expected_output_names(
844
+ inference_method, dataset, expected_output_cols, output_cols_prefix
845
+ )
776
846
 
777
847
  elif isinstance(dataset, pd.DataFrame):
778
848
  transform_kwargs = dict(
@@ -791,7 +861,7 @@ class EllipticEnvelope(BaseTransformer):
791
861
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
862
  inference_method=inference_method,
793
863
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
864
+ expected_output_cols=expected_output_cols,
795
865
  **transform_kwargs
796
866
  )
797
867
  return output_df
@@ -938,50 +1008,84 @@ class EllipticEnvelope(BaseTransformer):
938
1008
  )
939
1009
  return output_df
940
1010
 
1011
+
1012
+
1013
+ def to_sklearn(self) -> Any:
1014
+ """Get sklearn.covariance.EllipticEnvelope object.
1015
+ """
1016
+ if self._sklearn_object is None:
1017
+ self._sklearn_object = self._create_sklearn_object()
1018
+ return self._sklearn_object
1019
+
1020
+ def to_xgboost(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_xgboost()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
1030
+
1031
+ def to_lightgbm(self) -> Any:
1032
+ raise exceptions.SnowflakeMLException(
1033
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1034
+ original_exception=AttributeError(
1035
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
+ "to_lightgbm()",
1037
+ "to_sklearn()"
1038
+ )
1039
+ ),
1040
+ )
941
1041
 
942
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1042
+ def _get_dependencies(self) -> List[str]:
1043
+ return self._deps
1044
+
1045
+
1046
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
943
1047
  self._model_signature_dict = dict()
944
1048
 
945
1049
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
946
1050
 
947
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1051
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
948
1052
  outputs: List[BaseFeatureSpec] = []
949
1053
  if hasattr(self, "predict"):
950
1054
  # keep mypy happy
951
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1055
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
952
1056
  # For classifier, the type of predict is the same as the type of label
953
- if self._sklearn_object._estimator_type == 'classifier':
954
- # label columns is the desired type for output
1057
+ if self._sklearn_object._estimator_type == "classifier":
1058
+ # label columns is the desired type for output
955
1059
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
956
1060
  # rename the output columns
957
1061
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
958
- self._model_signature_dict["predict"] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1062
+ self._model_signature_dict["predict"] = ModelSignature(
1063
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1064
+ )
961
1065
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
1066
  # For outlier models, returns -1 for outliers and 1 for inliers.
963
- # Clusterer returns int64 cluster labels.
1067
+ # Clusterer returns int64 cluster labels.
964
1068
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
1069
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1070
+ self._model_signature_dict["predict"] = ModelSignature(
1071
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1072
+ )
1073
+
970
1074
  # For regressor, the type of predict is float64
971
- elif self._sklearn_object._estimator_type == 'regressor':
1075
+ elif self._sklearn_object._estimator_type == "regressor":
972
1076
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
973
- self._model_signature_dict["predict"] = ModelSignature(inputs,
974
- ([] if self._drop_input_cols else inputs)
975
- + outputs)
976
-
1077
+ self._model_signature_dict["predict"] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
1080
+
977
1081
  for prob_func in PROB_FUNCTIONS:
978
1082
  if hasattr(self, prob_func):
979
1083
  output_cols_prefix: str = f"{prob_func}_"
980
1084
  output_column_names = self._get_output_column_names(output_cols_prefix)
981
1085
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
982
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1086
+ self._model_signature_dict[prob_func] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
985
1089
 
986
1090
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
987
1091
  items = list(self._model_signature_dict.items())
@@ -994,10 +1098,10 @@ class EllipticEnvelope(BaseTransformer):
994
1098
  """Returns model signature of current class.
995
1099
 
996
1100
  Raises:
997
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1101
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
998
1102
 
999
1103
  Returns:
1000
- Dict[str, ModelSignature]: each method and its input output signature
1104
+ Dict with each method and its input output signature
1001
1105
  """
1002
1106
  if self._model_signature_dict is None:
1003
1107
  raise exceptions.SnowflakeMLException(
@@ -1005,35 +1109,3 @@ class EllipticEnvelope(BaseTransformer):
1005
1109
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1006
1110
  )
1007
1111
  return self._model_signature_dict
1008
-
1009
- def to_sklearn(self) -> Any:
1010
- """Get sklearn.covariance.EllipticEnvelope object.
1011
- """
1012
- if self._sklearn_object is None:
1013
- self._sklearn_object = self._create_sklearn_object()
1014
- return self._sklearn_object
1015
-
1016
- def to_xgboost(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_xgboost()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def to_lightgbm(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_lightgbm()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def _get_dependencies(self) -> List[str]:
1039
- return self._deps