snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -226,12 +225,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
226
225
|
)
|
227
226
|
return selected_cols
|
228
227
|
|
229
|
-
|
230
|
-
project=_PROJECT,
|
231
|
-
subproject=_SUBPROJECT,
|
232
|
-
custom_tags=dict([("autogen", True)]),
|
233
|
-
)
|
234
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
|
228
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
|
235
229
|
"""Fit the EllipticEnvelope model
|
236
230
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit]
|
237
231
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit)
|
@@ -258,12 +252,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
258
252
|
|
259
253
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
260
254
|
|
261
|
-
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
262
256
|
if SNOWML_SPROC_ENV in os.environ:
|
263
257
|
statement_params = telemetry.get_function_usage_statement_params(
|
264
258
|
project=_PROJECT,
|
265
259
|
subproject=_SUBPROJECT,
|
266
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
261
|
+
inspect.currentframe(), EllipticEnvelope.__class__.__name__
|
262
|
+
),
|
267
263
|
api_calls=[Session.call],
|
268
264
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
269
265
|
)
|
@@ -284,7 +280,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
284
280
|
)
|
285
281
|
self._sklearn_object = model_trainer.train()
|
286
282
|
self._is_fitted = True
|
287
|
-
self.
|
283
|
+
self._generate_model_signatures(dataset)
|
288
284
|
return self
|
289
285
|
|
290
286
|
def _batch_inference_validate_snowpark(
|
@@ -360,7 +356,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
360
356
|
# when it is classifier, infer the datatype from label columns
|
361
357
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
362
358
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
363
|
-
label_cols_signatures = [
|
359
|
+
label_cols_signatures = [
|
360
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
361
|
+
]
|
364
362
|
if len(label_cols_signatures) == 0:
|
365
363
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
366
364
|
raise exceptions.SnowflakeMLException(
|
@@ -368,25 +366,22 @@ class EllipticEnvelope(BaseTransformer):
|
|
368
366
|
original_exception=ValueError(error_str),
|
369
367
|
)
|
370
368
|
|
371
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
372
|
-
label_cols_signatures[0].as_snowpark_type()
|
373
|
-
)
|
369
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
374
370
|
|
375
371
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
376
|
-
assert isinstance(
|
372
|
+
assert isinstance(
|
373
|
+
dataset._session, Session
|
374
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
377
375
|
|
378
376
|
transform_kwargs = dict(
|
379
|
-
session
|
380
|
-
dependencies
|
381
|
-
drop_input_cols
|
382
|
-
expected_output_cols_type
|
377
|
+
session=dataset._session,
|
378
|
+
dependencies=self._deps,
|
379
|
+
drop_input_cols=self._drop_input_cols,
|
380
|
+
expected_output_cols_type=expected_type_inferred,
|
383
381
|
)
|
384
382
|
|
385
383
|
elif isinstance(dataset, pd.DataFrame):
|
386
|
-
transform_kwargs = dict(
|
387
|
-
snowpark_input_cols = self._snowpark_cols,
|
388
|
-
drop_input_cols = self._drop_input_cols
|
389
|
-
)
|
384
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
390
385
|
|
391
386
|
transform_handlers = ModelTransformerBuilder.build(
|
392
387
|
dataset=dataset,
|
@@ -426,7 +421,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
426
421
|
Transformed dataset.
|
427
422
|
"""
|
428
423
|
super()._check_dataset_type(dataset)
|
429
|
-
inference_method="transform"
|
424
|
+
inference_method = "transform"
|
430
425
|
|
431
426
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
432
427
|
# are specific to the type of dataset used.
|
@@ -463,17 +458,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
463
458
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
464
459
|
|
465
460
|
transform_kwargs = dict(
|
466
|
-
session
|
467
|
-
dependencies
|
468
|
-
drop_input_cols
|
469
|
-
expected_output_cols_type
|
461
|
+
session=dataset._session,
|
462
|
+
dependencies=self._deps,
|
463
|
+
drop_input_cols=self._drop_input_cols,
|
464
|
+
expected_output_cols_type=expected_dtype,
|
470
465
|
)
|
471
466
|
|
472
467
|
elif isinstance(dataset, pd.DataFrame):
|
473
|
-
transform_kwargs = dict(
|
474
|
-
snowpark_input_cols = self._snowpark_cols,
|
475
|
-
drop_input_cols = self._drop_input_cols
|
476
|
-
)
|
468
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
477
469
|
|
478
470
|
transform_handlers = ModelTransformerBuilder.build(
|
479
471
|
dataset=dataset,
|
@@ -492,7 +484,11 @@ class EllipticEnvelope(BaseTransformer):
|
|
492
484
|
return output_df
|
493
485
|
|
494
486
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
495
|
-
def fit_predict(
|
487
|
+
def fit_predict(
|
488
|
+
self,
|
489
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
490
|
+
output_cols_prefix: str = "fit_predict_",
|
491
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
496
492
|
""" Perform fit on X and returns labels for X
|
497
493
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit_predict]
|
498
494
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit_predict)
|
@@ -519,7 +515,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
519
515
|
)
|
520
516
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
521
517
|
drop_input_cols=self._drop_input_cols,
|
522
|
-
expected_output_cols_list=
|
518
|
+
expected_output_cols_list=(
|
519
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
520
|
+
),
|
523
521
|
)
|
524
522
|
self._sklearn_object = fitted_estimator
|
525
523
|
self._is_fitted = True
|
@@ -536,6 +534,62 @@ class EllipticEnvelope(BaseTransformer):
|
|
536
534
|
assert self._sklearn_object is not None
|
537
535
|
return self._sklearn_object.embedding_
|
538
536
|
|
537
|
+
|
538
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
539
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
540
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
541
|
+
"""
|
542
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
543
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
544
|
+
if output_cols:
|
545
|
+
output_cols = [
|
546
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
547
|
+
for c in output_cols
|
548
|
+
]
|
549
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
550
|
+
output_cols = [output_cols_prefix]
|
551
|
+
elif self._sklearn_object is not None:
|
552
|
+
classes = self._sklearn_object.classes_
|
553
|
+
if isinstance(classes, numpy.ndarray):
|
554
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
555
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
556
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
557
|
+
output_cols = []
|
558
|
+
for i, cl in enumerate(classes):
|
559
|
+
# For binary classification, there is only one output column for each class
|
560
|
+
# ndarray as the two classes are complementary.
|
561
|
+
if len(cl) == 2:
|
562
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
563
|
+
else:
|
564
|
+
output_cols.extend([
|
565
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
566
|
+
])
|
567
|
+
else:
|
568
|
+
output_cols = []
|
569
|
+
|
570
|
+
# Make sure column names are valid snowflake identifiers.
|
571
|
+
assert output_cols is not None # Make MyPy happy
|
572
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
573
|
+
|
574
|
+
return rv
|
575
|
+
|
576
|
+
def _align_expected_output_names(
|
577
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
578
|
+
) -> List[str]:
|
579
|
+
# in case the inferred output column names dimension is different
|
580
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
581
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
582
|
+
output_df_columns = list(output_df_pd.columns)
|
583
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
584
|
+
if self.sample_weight_col:
|
585
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
586
|
+
# if the dimension of inferred output column names is correct; use it
|
587
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
588
|
+
return expected_output_cols_list
|
589
|
+
# otherwise, use the sklearn estimator's output
|
590
|
+
else:
|
591
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
592
|
+
|
539
593
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
540
594
|
@telemetry.send_api_usage_telemetry(
|
541
595
|
project=_PROJECT,
|
@@ -566,24 +620,28 @@ class EllipticEnvelope(BaseTransformer):
|
|
566
620
|
# are specific to the type of dataset used.
|
567
621
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
568
622
|
|
623
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
624
|
+
|
569
625
|
if isinstance(dataset, DataFrame):
|
570
626
|
self._deps = self._batch_inference_validate_snowpark(
|
571
627
|
dataset=dataset,
|
572
628
|
inference_method=inference_method,
|
573
629
|
)
|
574
|
-
assert isinstance(
|
630
|
+
assert isinstance(
|
631
|
+
dataset._session, Session
|
632
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
575
633
|
transform_kwargs = dict(
|
576
634
|
session=dataset._session,
|
577
635
|
dependencies=self._deps,
|
578
|
-
drop_input_cols
|
636
|
+
drop_input_cols=self._drop_input_cols,
|
579
637
|
expected_output_cols_type="float",
|
580
638
|
)
|
639
|
+
expected_output_cols = self._align_expected_output_names(
|
640
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
641
|
+
)
|
581
642
|
|
582
643
|
elif isinstance(dataset, pd.DataFrame):
|
583
|
-
transform_kwargs = dict(
|
584
|
-
snowpark_input_cols = self._snowpark_cols,
|
585
|
-
drop_input_cols = self._drop_input_cols
|
586
|
-
)
|
644
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
587
645
|
|
588
646
|
transform_handlers = ModelTransformerBuilder.build(
|
589
647
|
dataset=dataset,
|
@@ -595,7 +653,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
595
653
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
596
654
|
inference_method=inference_method,
|
597
655
|
input_cols=self.input_cols,
|
598
|
-
expected_output_cols=
|
656
|
+
expected_output_cols=expected_output_cols,
|
599
657
|
**transform_kwargs
|
600
658
|
)
|
601
659
|
return output_df
|
@@ -625,7 +683,8 @@ class EllipticEnvelope(BaseTransformer):
|
|
625
683
|
Output dataset with log probability of the sample for each class in the model.
|
626
684
|
"""
|
627
685
|
super()._check_dataset_type(dataset)
|
628
|
-
inference_method="predict_log_proba"
|
686
|
+
inference_method = "predict_log_proba"
|
687
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
629
688
|
|
630
689
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
631
690
|
# are specific to the type of dataset used.
|
@@ -636,18 +695,20 @@ class EllipticEnvelope(BaseTransformer):
|
|
636
695
|
dataset=dataset,
|
637
696
|
inference_method=inference_method,
|
638
697
|
)
|
639
|
-
assert isinstance(
|
698
|
+
assert isinstance(
|
699
|
+
dataset._session, Session
|
700
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
640
701
|
transform_kwargs = dict(
|
641
702
|
session=dataset._session,
|
642
703
|
dependencies=self._deps,
|
643
|
-
drop_input_cols
|
704
|
+
drop_input_cols=self._drop_input_cols,
|
644
705
|
expected_output_cols_type="float",
|
645
706
|
)
|
707
|
+
expected_output_cols = self._align_expected_output_names(
|
708
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
709
|
+
)
|
646
710
|
elif isinstance(dataset, pd.DataFrame):
|
647
|
-
transform_kwargs = dict(
|
648
|
-
snowpark_input_cols = self._snowpark_cols,
|
649
|
-
drop_input_cols = self._drop_input_cols
|
650
|
-
)
|
711
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
651
712
|
|
652
713
|
transform_handlers = ModelTransformerBuilder.build(
|
653
714
|
dataset=dataset,
|
@@ -660,7 +721,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
660
721
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
661
722
|
inference_method=inference_method,
|
662
723
|
input_cols=self.input_cols,
|
663
|
-
expected_output_cols=
|
724
|
+
expected_output_cols=expected_output_cols,
|
664
725
|
**transform_kwargs
|
665
726
|
)
|
666
727
|
return output_df
|
@@ -688,30 +749,34 @@ class EllipticEnvelope(BaseTransformer):
|
|
688
749
|
Output dataset with results of the decision function for the samples in input dataset.
|
689
750
|
"""
|
690
751
|
super()._check_dataset_type(dataset)
|
691
|
-
inference_method="decision_function"
|
752
|
+
inference_method = "decision_function"
|
692
753
|
|
693
754
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
694
755
|
# are specific to the type of dataset used.
|
695
756
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
696
757
|
|
758
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
759
|
+
|
697
760
|
if isinstance(dataset, DataFrame):
|
698
761
|
self._deps = self._batch_inference_validate_snowpark(
|
699
762
|
dataset=dataset,
|
700
763
|
inference_method=inference_method,
|
701
764
|
)
|
702
|
-
assert isinstance(
|
765
|
+
assert isinstance(
|
766
|
+
dataset._session, Session
|
767
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
703
768
|
transform_kwargs = dict(
|
704
769
|
session=dataset._session,
|
705
770
|
dependencies=self._deps,
|
706
|
-
drop_input_cols
|
771
|
+
drop_input_cols=self._drop_input_cols,
|
707
772
|
expected_output_cols_type="float",
|
708
773
|
)
|
774
|
+
expected_output_cols = self._align_expected_output_names(
|
775
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
776
|
+
)
|
709
777
|
|
710
778
|
elif isinstance(dataset, pd.DataFrame):
|
711
|
-
transform_kwargs = dict(
|
712
|
-
snowpark_input_cols = self._snowpark_cols,
|
713
|
-
drop_input_cols = self._drop_input_cols
|
714
|
-
)
|
779
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
715
780
|
|
716
781
|
transform_handlers = ModelTransformerBuilder.build(
|
717
782
|
dataset=dataset,
|
@@ -724,7 +789,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
724
789
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
725
790
|
inference_method=inference_method,
|
726
791
|
input_cols=self.input_cols,
|
727
|
-
expected_output_cols=
|
792
|
+
expected_output_cols=expected_output_cols,
|
728
793
|
**transform_kwargs
|
729
794
|
)
|
730
795
|
return output_df
|
@@ -755,12 +820,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
755
820
|
Output dataset with probability of the sample for each class in the model.
|
756
821
|
"""
|
757
822
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
823
|
+
inference_method = "score_samples"
|
759
824
|
|
760
825
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
826
|
# are specific to the type of dataset used.
|
762
827
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
828
|
|
829
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
830
|
+
|
764
831
|
if isinstance(dataset, DataFrame):
|
765
832
|
self._deps = self._batch_inference_validate_snowpark(
|
766
833
|
dataset=dataset,
|
@@ -773,6 +840,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
773
840
|
drop_input_cols = self._drop_input_cols,
|
774
841
|
expected_output_cols_type="float",
|
775
842
|
)
|
843
|
+
expected_output_cols = self._align_expected_output_names(
|
844
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
845
|
+
)
|
776
846
|
|
777
847
|
elif isinstance(dataset, pd.DataFrame):
|
778
848
|
transform_kwargs = dict(
|
@@ -791,7 +861,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
791
861
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
862
|
inference_method=inference_method,
|
793
863
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
864
|
+
expected_output_cols=expected_output_cols,
|
795
865
|
**transform_kwargs
|
796
866
|
)
|
797
867
|
return output_df
|
@@ -938,50 +1008,84 @@ class EllipticEnvelope(BaseTransformer):
|
|
938
1008
|
)
|
939
1009
|
return output_df
|
940
1010
|
|
1011
|
+
|
1012
|
+
|
1013
|
+
def to_sklearn(self) -> Any:
|
1014
|
+
"""Get sklearn.covariance.EllipticEnvelope object.
|
1015
|
+
"""
|
1016
|
+
if self._sklearn_object is None:
|
1017
|
+
self._sklearn_object = self._create_sklearn_object()
|
1018
|
+
return self._sklearn_object
|
1019
|
+
|
1020
|
+
def to_xgboost(self) -> Any:
|
1021
|
+
raise exceptions.SnowflakeMLException(
|
1022
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1023
|
+
original_exception=AttributeError(
|
1024
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1025
|
+
"to_xgboost()",
|
1026
|
+
"to_sklearn()"
|
1027
|
+
)
|
1028
|
+
),
|
1029
|
+
)
|
1030
|
+
|
1031
|
+
def to_lightgbm(self) -> Any:
|
1032
|
+
raise exceptions.SnowflakeMLException(
|
1033
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1034
|
+
original_exception=AttributeError(
|
1035
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1036
|
+
"to_lightgbm()",
|
1037
|
+
"to_sklearn()"
|
1038
|
+
)
|
1039
|
+
),
|
1040
|
+
)
|
941
1041
|
|
942
|
-
def
|
1042
|
+
def _get_dependencies(self) -> List[str]:
|
1043
|
+
return self._deps
|
1044
|
+
|
1045
|
+
|
1046
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1047
|
self._model_signature_dict = dict()
|
944
1048
|
|
945
1049
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1050
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1051
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1052
|
outputs: List[BaseFeatureSpec] = []
|
949
1053
|
if hasattr(self, "predict"):
|
950
1054
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1055
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1056
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1057
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1058
|
+
# label columns is the desired type for output
|
955
1059
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1060
|
# rename the output columns
|
957
1061
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1062
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1063
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1064
|
+
)
|
961
1065
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1066
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1067
|
+
# Clusterer returns int64 cluster labels.
|
964
1068
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1069
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1070
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1071
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1072
|
+
)
|
1073
|
+
|
970
1074
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1075
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1076
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1077
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1078
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1079
|
+
)
|
1080
|
+
|
977
1081
|
for prob_func in PROB_FUNCTIONS:
|
978
1082
|
if hasattr(self, prob_func):
|
979
1083
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1084
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1085
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1086
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
985
1089
|
|
986
1090
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1091
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1098,10 @@ class EllipticEnvelope(BaseTransformer):
|
|
994
1098
|
"""Returns model signature of current class.
|
995
1099
|
|
996
1100
|
Raises:
|
997
|
-
|
1101
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1102
|
|
999
1103
|
Returns:
|
1000
|
-
Dict
|
1104
|
+
Dict with each method and its input output signature
|
1001
1105
|
"""
|
1002
1106
|
if self._model_signature_dict is None:
|
1003
1107
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1109,3 @@ class EllipticEnvelope(BaseTransformer):
|
|
1005
1109
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1110
|
)
|
1007
1111
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_sklearn(self) -> Any:
|
1010
|
-
"""Get sklearn.covariance.EllipticEnvelope object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_xgboost(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_xgboost()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_lightgbm(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_lightgbm()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|