snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -260,12 +259,7 @@ class NuSVR(BaseTransformer):
260
259
  )
261
260
  return selected_cols
262
261
 
263
- @telemetry.send_api_usage_telemetry(
264
- project=_PROJECT,
265
- subproject=_SUBPROJECT,
266
- custom_tags=dict([("autogen", True)]),
267
- )
268
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
262
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
269
263
  """Fit the SVM model according to the given training data
270
264
  For more details on this function, see [sklearn.svm.NuSVR.fit]
271
265
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR.fit)
@@ -292,12 +286,14 @@ class NuSVR(BaseTransformer):
292
286
 
293
287
  self._snowpark_cols = dataset.select(self.input_cols).columns
294
288
 
295
- # If we are already in a stored procedure, no need to kick off another one.
289
+ # If we are already in a stored procedure, no need to kick off another one.
296
290
  if SNOWML_SPROC_ENV in os.environ:
297
291
  statement_params = telemetry.get_function_usage_statement_params(
298
292
  project=_PROJECT,
299
293
  subproject=_SUBPROJECT,
300
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
294
+ function_name=telemetry.get_statement_params_full_func_name(
295
+ inspect.currentframe(), NuSVR.__class__.__name__
296
+ ),
301
297
  api_calls=[Session.call],
302
298
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
303
299
  )
@@ -318,7 +314,7 @@ class NuSVR(BaseTransformer):
318
314
  )
319
315
  self._sklearn_object = model_trainer.train()
320
316
  self._is_fitted = True
321
- self._get_model_signatures(dataset)
317
+ self._generate_model_signatures(dataset)
322
318
  return self
323
319
 
324
320
  def _batch_inference_validate_snowpark(
@@ -394,7 +390,9 @@ class NuSVR(BaseTransformer):
394
390
  # when it is classifier, infer the datatype from label columns
395
391
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
396
392
  # Batch inference takes a single expected output column type. Use the first columns type for now.
397
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
393
+ label_cols_signatures = [
394
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
395
+ ]
398
396
  if len(label_cols_signatures) == 0:
399
397
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
400
398
  raise exceptions.SnowflakeMLException(
@@ -402,25 +400,22 @@ class NuSVR(BaseTransformer):
402
400
  original_exception=ValueError(error_str),
403
401
  )
404
402
 
405
- expected_type_inferred = convert_sp_to_sf_type(
406
- label_cols_signatures[0].as_snowpark_type()
407
- )
403
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
408
404
 
409
405
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
410
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
406
+ assert isinstance(
407
+ dataset._session, Session
408
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
411
409
 
412
410
  transform_kwargs = dict(
413
- session = dataset._session,
414
- dependencies = self._deps,
415
- drop_input_cols = self._drop_input_cols,
416
- expected_output_cols_type = expected_type_inferred,
411
+ session=dataset._session,
412
+ dependencies=self._deps,
413
+ drop_input_cols=self._drop_input_cols,
414
+ expected_output_cols_type=expected_type_inferred,
417
415
  )
418
416
 
419
417
  elif isinstance(dataset, pd.DataFrame):
420
- transform_kwargs = dict(
421
- snowpark_input_cols = self._snowpark_cols,
422
- drop_input_cols = self._drop_input_cols
423
- )
418
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
424
419
 
425
420
  transform_handlers = ModelTransformerBuilder.build(
426
421
  dataset=dataset,
@@ -460,7 +455,7 @@ class NuSVR(BaseTransformer):
460
455
  Transformed dataset.
461
456
  """
462
457
  super()._check_dataset_type(dataset)
463
- inference_method="transform"
458
+ inference_method = "transform"
464
459
 
465
460
  # This dictionary contains optional kwargs for batch inference. These kwargs
466
461
  # are specific to the type of dataset used.
@@ -497,17 +492,14 @@ class NuSVR(BaseTransformer):
497
492
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
498
493
 
499
494
  transform_kwargs = dict(
500
- session = dataset._session,
501
- dependencies = self._deps,
502
- drop_input_cols = self._drop_input_cols,
503
- expected_output_cols_type = expected_dtype,
495
+ session=dataset._session,
496
+ dependencies=self._deps,
497
+ drop_input_cols=self._drop_input_cols,
498
+ expected_output_cols_type=expected_dtype,
504
499
  )
505
500
 
506
501
  elif isinstance(dataset, pd.DataFrame):
507
- transform_kwargs = dict(
508
- snowpark_input_cols = self._snowpark_cols,
509
- drop_input_cols = self._drop_input_cols
510
- )
502
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
511
503
 
512
504
  transform_handlers = ModelTransformerBuilder.build(
513
505
  dataset=dataset,
@@ -526,7 +518,11 @@ class NuSVR(BaseTransformer):
526
518
  return output_df
527
519
 
528
520
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
529
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
521
+ def fit_predict(
522
+ self,
523
+ dataset: Union[DataFrame, pd.DataFrame],
524
+ output_cols_prefix: str = "fit_predict_",
525
+ ) -> Union[DataFrame, pd.DataFrame]:
530
526
  """ Method not supported for this class.
531
527
 
532
528
 
@@ -551,7 +547,9 @@ class NuSVR(BaseTransformer):
551
547
  )
552
548
  output_result, fitted_estimator = model_trainer.train_fit_predict(
553
549
  drop_input_cols=self._drop_input_cols,
554
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
550
+ expected_output_cols_list=(
551
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
552
+ ),
555
553
  )
556
554
  self._sklearn_object = fitted_estimator
557
555
  self._is_fitted = True
@@ -568,6 +566,62 @@ class NuSVR(BaseTransformer):
568
566
  assert self._sklearn_object is not None
569
567
  return self._sklearn_object.embedding_
570
568
 
569
+
570
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
571
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
572
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
573
+ """
574
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
575
+ # The following condition is introduced for kneighbors methods, and not used in other methods
576
+ if output_cols:
577
+ output_cols = [
578
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
579
+ for c in output_cols
580
+ ]
581
+ elif getattr(self._sklearn_object, "classes_", None) is None:
582
+ output_cols = [output_cols_prefix]
583
+ elif self._sklearn_object is not None:
584
+ classes = self._sklearn_object.classes_
585
+ if isinstance(classes, numpy.ndarray):
586
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
587
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
588
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
589
+ output_cols = []
590
+ for i, cl in enumerate(classes):
591
+ # For binary classification, there is only one output column for each class
592
+ # ndarray as the two classes are complementary.
593
+ if len(cl) == 2:
594
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
595
+ else:
596
+ output_cols.extend([
597
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
598
+ ])
599
+ else:
600
+ output_cols = []
601
+
602
+ # Make sure column names are valid snowflake identifiers.
603
+ assert output_cols is not None # Make MyPy happy
604
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
605
+
606
+ return rv
607
+
608
+ def _align_expected_output_names(
609
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
610
+ ) -> List[str]:
611
+ # in case the inferred output column names dimension is different
612
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
613
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
614
+ output_df_columns = list(output_df_pd.columns)
615
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
616
+ if self.sample_weight_col:
617
+ output_df_columns_set -= set(self.sample_weight_col)
618
+ # if the dimension of inferred output column names is correct; use it
619
+ if len(expected_output_cols_list) == len(output_df_columns_set):
620
+ return expected_output_cols_list
621
+ # otherwise, use the sklearn estimator's output
622
+ else:
623
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
624
+
571
625
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
572
626
  @telemetry.send_api_usage_telemetry(
573
627
  project=_PROJECT,
@@ -598,24 +652,28 @@ class NuSVR(BaseTransformer):
598
652
  # are specific to the type of dataset used.
599
653
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
600
654
 
655
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
656
+
601
657
  if isinstance(dataset, DataFrame):
602
658
  self._deps = self._batch_inference_validate_snowpark(
603
659
  dataset=dataset,
604
660
  inference_method=inference_method,
605
661
  )
606
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
+ assert isinstance(
663
+ dataset._session, Session
664
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
607
665
  transform_kwargs = dict(
608
666
  session=dataset._session,
609
667
  dependencies=self._deps,
610
- drop_input_cols = self._drop_input_cols,
668
+ drop_input_cols=self._drop_input_cols,
611
669
  expected_output_cols_type="float",
612
670
  )
671
+ expected_output_cols = self._align_expected_output_names(
672
+ inference_method, dataset, expected_output_cols, output_cols_prefix
673
+ )
613
674
 
614
675
  elif isinstance(dataset, pd.DataFrame):
615
- transform_kwargs = dict(
616
- snowpark_input_cols = self._snowpark_cols,
617
- drop_input_cols = self._drop_input_cols
618
- )
676
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
619
677
 
620
678
  transform_handlers = ModelTransformerBuilder.build(
621
679
  dataset=dataset,
@@ -627,7 +685,7 @@ class NuSVR(BaseTransformer):
627
685
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
628
686
  inference_method=inference_method,
629
687
  input_cols=self.input_cols,
630
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
688
+ expected_output_cols=expected_output_cols,
631
689
  **transform_kwargs
632
690
  )
633
691
  return output_df
@@ -657,7 +715,8 @@ class NuSVR(BaseTransformer):
657
715
  Output dataset with log probability of the sample for each class in the model.
658
716
  """
659
717
  super()._check_dataset_type(dataset)
660
- inference_method="predict_log_proba"
718
+ inference_method = "predict_log_proba"
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
661
720
 
662
721
  # This dictionary contains optional kwargs for batch inference. These kwargs
663
722
  # are specific to the type of dataset used.
@@ -668,18 +727,20 @@ class NuSVR(BaseTransformer):
668
727
  dataset=dataset,
669
728
  inference_method=inference_method,
670
729
  )
671
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
730
+ assert isinstance(
731
+ dataset._session, Session
732
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
672
733
  transform_kwargs = dict(
673
734
  session=dataset._session,
674
735
  dependencies=self._deps,
675
- drop_input_cols = self._drop_input_cols,
736
+ drop_input_cols=self._drop_input_cols,
676
737
  expected_output_cols_type="float",
677
738
  )
739
+ expected_output_cols = self._align_expected_output_names(
740
+ inference_method, dataset, expected_output_cols, output_cols_prefix
741
+ )
678
742
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
743
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
744
 
684
745
  transform_handlers = ModelTransformerBuilder.build(
685
746
  dataset=dataset,
@@ -692,7 +753,7 @@ class NuSVR(BaseTransformer):
692
753
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
693
754
  inference_method=inference_method,
694
755
  input_cols=self.input_cols,
695
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
756
+ expected_output_cols=expected_output_cols,
696
757
  **transform_kwargs
697
758
  )
698
759
  return output_df
@@ -718,30 +779,34 @@ class NuSVR(BaseTransformer):
718
779
  Output dataset with results of the decision function for the samples in input dataset.
719
780
  """
720
781
  super()._check_dataset_type(dataset)
721
- inference_method="decision_function"
782
+ inference_method = "decision_function"
722
783
 
723
784
  # This dictionary contains optional kwargs for batch inference. These kwargs
724
785
  # are specific to the type of dataset used.
725
786
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
726
787
 
788
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
789
+
727
790
  if isinstance(dataset, DataFrame):
728
791
  self._deps = self._batch_inference_validate_snowpark(
729
792
  dataset=dataset,
730
793
  inference_method=inference_method,
731
794
  )
732
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
+ assert isinstance(
796
+ dataset._session, Session
797
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
733
798
  transform_kwargs = dict(
734
799
  session=dataset._session,
735
800
  dependencies=self._deps,
736
- drop_input_cols = self._drop_input_cols,
801
+ drop_input_cols=self._drop_input_cols,
737
802
  expected_output_cols_type="float",
738
803
  )
804
+ expected_output_cols = self._align_expected_output_names(
805
+ inference_method, dataset, expected_output_cols, output_cols_prefix
806
+ )
739
807
 
740
808
  elif isinstance(dataset, pd.DataFrame):
741
- transform_kwargs = dict(
742
- snowpark_input_cols = self._snowpark_cols,
743
- drop_input_cols = self._drop_input_cols
744
- )
809
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
745
810
 
746
811
  transform_handlers = ModelTransformerBuilder.build(
747
812
  dataset=dataset,
@@ -754,7 +819,7 @@ class NuSVR(BaseTransformer):
754
819
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
755
820
  inference_method=inference_method,
756
821
  input_cols=self.input_cols,
757
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
822
+ expected_output_cols=expected_output_cols,
758
823
  **transform_kwargs
759
824
  )
760
825
  return output_df
@@ -783,12 +848,14 @@ class NuSVR(BaseTransformer):
783
848
  Output dataset with probability of the sample for each class in the model.
784
849
  """
785
850
  super()._check_dataset_type(dataset)
786
- inference_method="score_samples"
851
+ inference_method = "score_samples"
787
852
 
788
853
  # This dictionary contains optional kwargs for batch inference. These kwargs
789
854
  # are specific to the type of dataset used.
790
855
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
791
856
 
857
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
858
+
792
859
  if isinstance(dataset, DataFrame):
793
860
  self._deps = self._batch_inference_validate_snowpark(
794
861
  dataset=dataset,
@@ -801,6 +868,9 @@ class NuSVR(BaseTransformer):
801
868
  drop_input_cols = self._drop_input_cols,
802
869
  expected_output_cols_type="float",
803
870
  )
871
+ expected_output_cols = self._align_expected_output_names(
872
+ inference_method, dataset, expected_output_cols, output_cols_prefix
873
+ )
804
874
 
805
875
  elif isinstance(dataset, pd.DataFrame):
806
876
  transform_kwargs = dict(
@@ -819,7 +889,7 @@ class NuSVR(BaseTransformer):
819
889
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
820
890
  inference_method=inference_method,
821
891
  input_cols=self.input_cols,
822
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
892
+ expected_output_cols=expected_output_cols,
823
893
  **transform_kwargs
824
894
  )
825
895
  return output_df
@@ -966,50 +1036,84 @@ class NuSVR(BaseTransformer):
966
1036
  )
967
1037
  return output_df
968
1038
 
1039
+
1040
+
1041
+ def to_sklearn(self) -> Any:
1042
+ """Get sklearn.svm.NuSVR object.
1043
+ """
1044
+ if self._sklearn_object is None:
1045
+ self._sklearn_object = self._create_sklearn_object()
1046
+ return self._sklearn_object
1047
+
1048
+ def to_xgboost(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_xgboost()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
1058
+
1059
+ def to_lightgbm(self) -> Any:
1060
+ raise exceptions.SnowflakeMLException(
1061
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1062
+ original_exception=AttributeError(
1063
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1064
+ "to_lightgbm()",
1065
+ "to_sklearn()"
1066
+ )
1067
+ ),
1068
+ )
969
1069
 
970
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1070
+ def _get_dependencies(self) -> List[str]:
1071
+ return self._deps
1072
+
1073
+
1074
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
971
1075
  self._model_signature_dict = dict()
972
1076
 
973
1077
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
974
1078
 
975
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1079
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
976
1080
  outputs: List[BaseFeatureSpec] = []
977
1081
  if hasattr(self, "predict"):
978
1082
  # keep mypy happy
979
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1083
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
980
1084
  # For classifier, the type of predict is the same as the type of label
981
- if self._sklearn_object._estimator_type == 'classifier':
982
- # label columns is the desired type for output
1085
+ if self._sklearn_object._estimator_type == "classifier":
1086
+ # label columns is the desired type for output
983
1087
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
984
1088
  # rename the output columns
985
1089
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
986
- self._model_signature_dict["predict"] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
1090
+ self._model_signature_dict["predict"] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
989
1093
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
990
1094
  # For outlier models, returns -1 for outliers and 1 for inliers.
991
- # Clusterer returns int64 cluster labels.
1095
+ # Clusterer returns int64 cluster labels.
992
1096
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
993
1097
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
1101
+
998
1102
  # For regressor, the type of predict is float64
999
- elif self._sklearn_object._estimator_type == 'regressor':
1103
+ elif self._sklearn_object._estimator_type == "regressor":
1000
1104
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1004
-
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1108
+
1005
1109
  for prob_func in PROB_FUNCTIONS:
1006
1110
  if hasattr(self, prob_func):
1007
1111
  output_cols_prefix: str = f"{prob_func}_"
1008
1112
  output_column_names = self._get_output_column_names(output_cols_prefix)
1009
1113
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1010
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1114
+ self._model_signature_dict[prob_func] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1013
1117
 
1014
1118
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1015
1119
  items = list(self._model_signature_dict.items())
@@ -1022,10 +1126,10 @@ class NuSVR(BaseTransformer):
1022
1126
  """Returns model signature of current class.
1023
1127
 
1024
1128
  Raises:
1025
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1129
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1026
1130
 
1027
1131
  Returns:
1028
- Dict[str, ModelSignature]: each method and its input output signature
1132
+ Dict with each method and its input output signature
1029
1133
  """
1030
1134
  if self._model_signature_dict is None:
1031
1135
  raise exceptions.SnowflakeMLException(
@@ -1033,35 +1137,3 @@ class NuSVR(BaseTransformer):
1033
1137
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1034
1138
  )
1035
1139
  return self._model_signature_dict
1036
-
1037
- def to_sklearn(self) -> Any:
1038
- """Get sklearn.svm.NuSVR object.
1039
- """
1040
- if self._sklearn_object is None:
1041
- self._sklearn_object = self._create_sklearn_object()
1042
- return self._sklearn_object
1043
-
1044
- def to_xgboost(self) -> Any:
1045
- raise exceptions.SnowflakeMLException(
1046
- error_code=error_codes.METHOD_NOT_ALLOWED,
1047
- original_exception=AttributeError(
1048
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1049
- "to_xgboost()",
1050
- "to_sklearn()"
1051
- )
1052
- ),
1053
- )
1054
-
1055
- def to_lightgbm(self) -> Any:
1056
- raise exceptions.SnowflakeMLException(
1057
- error_code=error_codes.METHOD_NOT_ALLOWED,
1058
- original_exception=AttributeError(
1059
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
- "to_lightgbm()",
1061
- "to_sklearn()"
1062
- )
1063
- ),
1064
- )
1065
-
1066
- def _get_dependencies(self) -> List[str]:
1067
- return self._deps