snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -260,12 +259,7 @@ class NuSVR(BaseTransformer):
|
|
260
259
|
)
|
261
260
|
return selected_cols
|
262
261
|
|
263
|
-
|
264
|
-
project=_PROJECT,
|
265
|
-
subproject=_SUBPROJECT,
|
266
|
-
custom_tags=dict([("autogen", True)]),
|
267
|
-
)
|
268
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
|
262
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
|
269
263
|
"""Fit the SVM model according to the given training data
|
270
264
|
For more details on this function, see [sklearn.svm.NuSVR.fit]
|
271
265
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR.fit)
|
@@ -292,12 +286,14 @@ class NuSVR(BaseTransformer):
|
|
292
286
|
|
293
287
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
294
288
|
|
295
|
-
|
289
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
296
290
|
if SNOWML_SPROC_ENV in os.environ:
|
297
291
|
statement_params = telemetry.get_function_usage_statement_params(
|
298
292
|
project=_PROJECT,
|
299
293
|
subproject=_SUBPROJECT,
|
300
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
294
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
295
|
+
inspect.currentframe(), NuSVR.__class__.__name__
|
296
|
+
),
|
301
297
|
api_calls=[Session.call],
|
302
298
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
303
299
|
)
|
@@ -318,7 +314,7 @@ class NuSVR(BaseTransformer):
|
|
318
314
|
)
|
319
315
|
self._sklearn_object = model_trainer.train()
|
320
316
|
self._is_fitted = True
|
321
|
-
self.
|
317
|
+
self._generate_model_signatures(dataset)
|
322
318
|
return self
|
323
319
|
|
324
320
|
def _batch_inference_validate_snowpark(
|
@@ -394,7 +390,9 @@ class NuSVR(BaseTransformer):
|
|
394
390
|
# when it is classifier, infer the datatype from label columns
|
395
391
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
396
392
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
397
|
-
label_cols_signatures = [
|
393
|
+
label_cols_signatures = [
|
394
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
395
|
+
]
|
398
396
|
if len(label_cols_signatures) == 0:
|
399
397
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
400
398
|
raise exceptions.SnowflakeMLException(
|
@@ -402,25 +400,22 @@ class NuSVR(BaseTransformer):
|
|
402
400
|
original_exception=ValueError(error_str),
|
403
401
|
)
|
404
402
|
|
405
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
406
|
-
label_cols_signatures[0].as_snowpark_type()
|
407
|
-
)
|
403
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
408
404
|
|
409
405
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
410
|
-
assert isinstance(
|
406
|
+
assert isinstance(
|
407
|
+
dataset._session, Session
|
408
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
411
409
|
|
412
410
|
transform_kwargs = dict(
|
413
|
-
session
|
414
|
-
dependencies
|
415
|
-
drop_input_cols
|
416
|
-
expected_output_cols_type
|
411
|
+
session=dataset._session,
|
412
|
+
dependencies=self._deps,
|
413
|
+
drop_input_cols=self._drop_input_cols,
|
414
|
+
expected_output_cols_type=expected_type_inferred,
|
417
415
|
)
|
418
416
|
|
419
417
|
elif isinstance(dataset, pd.DataFrame):
|
420
|
-
transform_kwargs = dict(
|
421
|
-
snowpark_input_cols = self._snowpark_cols,
|
422
|
-
drop_input_cols = self._drop_input_cols
|
423
|
-
)
|
418
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
424
419
|
|
425
420
|
transform_handlers = ModelTransformerBuilder.build(
|
426
421
|
dataset=dataset,
|
@@ -460,7 +455,7 @@ class NuSVR(BaseTransformer):
|
|
460
455
|
Transformed dataset.
|
461
456
|
"""
|
462
457
|
super()._check_dataset_type(dataset)
|
463
|
-
inference_method="transform"
|
458
|
+
inference_method = "transform"
|
464
459
|
|
465
460
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
466
461
|
# are specific to the type of dataset used.
|
@@ -497,17 +492,14 @@ class NuSVR(BaseTransformer):
|
|
497
492
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
498
493
|
|
499
494
|
transform_kwargs = dict(
|
500
|
-
session
|
501
|
-
dependencies
|
502
|
-
drop_input_cols
|
503
|
-
expected_output_cols_type
|
495
|
+
session=dataset._session,
|
496
|
+
dependencies=self._deps,
|
497
|
+
drop_input_cols=self._drop_input_cols,
|
498
|
+
expected_output_cols_type=expected_dtype,
|
504
499
|
)
|
505
500
|
|
506
501
|
elif isinstance(dataset, pd.DataFrame):
|
507
|
-
transform_kwargs = dict(
|
508
|
-
snowpark_input_cols = self._snowpark_cols,
|
509
|
-
drop_input_cols = self._drop_input_cols
|
510
|
-
)
|
502
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
511
503
|
|
512
504
|
transform_handlers = ModelTransformerBuilder.build(
|
513
505
|
dataset=dataset,
|
@@ -526,7 +518,11 @@ class NuSVR(BaseTransformer):
|
|
526
518
|
return output_df
|
527
519
|
|
528
520
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
529
|
-
def fit_predict(
|
521
|
+
def fit_predict(
|
522
|
+
self,
|
523
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
524
|
+
output_cols_prefix: str = "fit_predict_",
|
525
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
530
526
|
""" Method not supported for this class.
|
531
527
|
|
532
528
|
|
@@ -551,7 +547,9 @@ class NuSVR(BaseTransformer):
|
|
551
547
|
)
|
552
548
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
553
549
|
drop_input_cols=self._drop_input_cols,
|
554
|
-
expected_output_cols_list=
|
550
|
+
expected_output_cols_list=(
|
551
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
552
|
+
),
|
555
553
|
)
|
556
554
|
self._sklearn_object = fitted_estimator
|
557
555
|
self._is_fitted = True
|
@@ -568,6 +566,62 @@ class NuSVR(BaseTransformer):
|
|
568
566
|
assert self._sklearn_object is not None
|
569
567
|
return self._sklearn_object.embedding_
|
570
568
|
|
569
|
+
|
570
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
571
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
572
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
573
|
+
"""
|
574
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
575
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
576
|
+
if output_cols:
|
577
|
+
output_cols = [
|
578
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
579
|
+
for c in output_cols
|
580
|
+
]
|
581
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
582
|
+
output_cols = [output_cols_prefix]
|
583
|
+
elif self._sklearn_object is not None:
|
584
|
+
classes = self._sklearn_object.classes_
|
585
|
+
if isinstance(classes, numpy.ndarray):
|
586
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
587
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
588
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
589
|
+
output_cols = []
|
590
|
+
for i, cl in enumerate(classes):
|
591
|
+
# For binary classification, there is only one output column for each class
|
592
|
+
# ndarray as the two classes are complementary.
|
593
|
+
if len(cl) == 2:
|
594
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
595
|
+
else:
|
596
|
+
output_cols.extend([
|
597
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
598
|
+
])
|
599
|
+
else:
|
600
|
+
output_cols = []
|
601
|
+
|
602
|
+
# Make sure column names are valid snowflake identifiers.
|
603
|
+
assert output_cols is not None # Make MyPy happy
|
604
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
605
|
+
|
606
|
+
return rv
|
607
|
+
|
608
|
+
def _align_expected_output_names(
|
609
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
610
|
+
) -> List[str]:
|
611
|
+
# in case the inferred output column names dimension is different
|
612
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
613
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
614
|
+
output_df_columns = list(output_df_pd.columns)
|
615
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
616
|
+
if self.sample_weight_col:
|
617
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
618
|
+
# if the dimension of inferred output column names is correct; use it
|
619
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
620
|
+
return expected_output_cols_list
|
621
|
+
# otherwise, use the sklearn estimator's output
|
622
|
+
else:
|
623
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
624
|
+
|
571
625
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
572
626
|
@telemetry.send_api_usage_telemetry(
|
573
627
|
project=_PROJECT,
|
@@ -598,24 +652,28 @@ class NuSVR(BaseTransformer):
|
|
598
652
|
# are specific to the type of dataset used.
|
599
653
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
600
654
|
|
655
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
656
|
+
|
601
657
|
if isinstance(dataset, DataFrame):
|
602
658
|
self._deps = self._batch_inference_validate_snowpark(
|
603
659
|
dataset=dataset,
|
604
660
|
inference_method=inference_method,
|
605
661
|
)
|
606
|
-
assert isinstance(
|
662
|
+
assert isinstance(
|
663
|
+
dataset._session, Session
|
664
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
607
665
|
transform_kwargs = dict(
|
608
666
|
session=dataset._session,
|
609
667
|
dependencies=self._deps,
|
610
|
-
drop_input_cols
|
668
|
+
drop_input_cols=self._drop_input_cols,
|
611
669
|
expected_output_cols_type="float",
|
612
670
|
)
|
671
|
+
expected_output_cols = self._align_expected_output_names(
|
672
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
673
|
+
)
|
613
674
|
|
614
675
|
elif isinstance(dataset, pd.DataFrame):
|
615
|
-
transform_kwargs = dict(
|
616
|
-
snowpark_input_cols = self._snowpark_cols,
|
617
|
-
drop_input_cols = self._drop_input_cols
|
618
|
-
)
|
676
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
619
677
|
|
620
678
|
transform_handlers = ModelTransformerBuilder.build(
|
621
679
|
dataset=dataset,
|
@@ -627,7 +685,7 @@ class NuSVR(BaseTransformer):
|
|
627
685
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
628
686
|
inference_method=inference_method,
|
629
687
|
input_cols=self.input_cols,
|
630
|
-
expected_output_cols=
|
688
|
+
expected_output_cols=expected_output_cols,
|
631
689
|
**transform_kwargs
|
632
690
|
)
|
633
691
|
return output_df
|
@@ -657,7 +715,8 @@ class NuSVR(BaseTransformer):
|
|
657
715
|
Output dataset with log probability of the sample for each class in the model.
|
658
716
|
"""
|
659
717
|
super()._check_dataset_type(dataset)
|
660
|
-
inference_method="predict_log_proba"
|
718
|
+
inference_method = "predict_log_proba"
|
719
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
661
720
|
|
662
721
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
663
722
|
# are specific to the type of dataset used.
|
@@ -668,18 +727,20 @@ class NuSVR(BaseTransformer):
|
|
668
727
|
dataset=dataset,
|
669
728
|
inference_method=inference_method,
|
670
729
|
)
|
671
|
-
assert isinstance(
|
730
|
+
assert isinstance(
|
731
|
+
dataset._session, Session
|
732
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
672
733
|
transform_kwargs = dict(
|
673
734
|
session=dataset._session,
|
674
735
|
dependencies=self._deps,
|
675
|
-
drop_input_cols
|
736
|
+
drop_input_cols=self._drop_input_cols,
|
676
737
|
expected_output_cols_type="float",
|
677
738
|
)
|
739
|
+
expected_output_cols = self._align_expected_output_names(
|
740
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
741
|
+
)
|
678
742
|
elif isinstance(dataset, pd.DataFrame):
|
679
|
-
transform_kwargs = dict(
|
680
|
-
snowpark_input_cols = self._snowpark_cols,
|
681
|
-
drop_input_cols = self._drop_input_cols
|
682
|
-
)
|
743
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
683
744
|
|
684
745
|
transform_handlers = ModelTransformerBuilder.build(
|
685
746
|
dataset=dataset,
|
@@ -692,7 +753,7 @@ class NuSVR(BaseTransformer):
|
|
692
753
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
693
754
|
inference_method=inference_method,
|
694
755
|
input_cols=self.input_cols,
|
695
|
-
expected_output_cols=
|
756
|
+
expected_output_cols=expected_output_cols,
|
696
757
|
**transform_kwargs
|
697
758
|
)
|
698
759
|
return output_df
|
@@ -718,30 +779,34 @@ class NuSVR(BaseTransformer):
|
|
718
779
|
Output dataset with results of the decision function for the samples in input dataset.
|
719
780
|
"""
|
720
781
|
super()._check_dataset_type(dataset)
|
721
|
-
inference_method="decision_function"
|
782
|
+
inference_method = "decision_function"
|
722
783
|
|
723
784
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
724
785
|
# are specific to the type of dataset used.
|
725
786
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
726
787
|
|
788
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
789
|
+
|
727
790
|
if isinstance(dataset, DataFrame):
|
728
791
|
self._deps = self._batch_inference_validate_snowpark(
|
729
792
|
dataset=dataset,
|
730
793
|
inference_method=inference_method,
|
731
794
|
)
|
732
|
-
assert isinstance(
|
795
|
+
assert isinstance(
|
796
|
+
dataset._session, Session
|
797
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
733
798
|
transform_kwargs = dict(
|
734
799
|
session=dataset._session,
|
735
800
|
dependencies=self._deps,
|
736
|
-
drop_input_cols
|
801
|
+
drop_input_cols=self._drop_input_cols,
|
737
802
|
expected_output_cols_type="float",
|
738
803
|
)
|
804
|
+
expected_output_cols = self._align_expected_output_names(
|
805
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
806
|
+
)
|
739
807
|
|
740
808
|
elif isinstance(dataset, pd.DataFrame):
|
741
|
-
transform_kwargs = dict(
|
742
|
-
snowpark_input_cols = self._snowpark_cols,
|
743
|
-
drop_input_cols = self._drop_input_cols
|
744
|
-
)
|
809
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
745
810
|
|
746
811
|
transform_handlers = ModelTransformerBuilder.build(
|
747
812
|
dataset=dataset,
|
@@ -754,7 +819,7 @@ class NuSVR(BaseTransformer):
|
|
754
819
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
755
820
|
inference_method=inference_method,
|
756
821
|
input_cols=self.input_cols,
|
757
|
-
expected_output_cols=
|
822
|
+
expected_output_cols=expected_output_cols,
|
758
823
|
**transform_kwargs
|
759
824
|
)
|
760
825
|
return output_df
|
@@ -783,12 +848,14 @@ class NuSVR(BaseTransformer):
|
|
783
848
|
Output dataset with probability of the sample for each class in the model.
|
784
849
|
"""
|
785
850
|
super()._check_dataset_type(dataset)
|
786
|
-
inference_method="score_samples"
|
851
|
+
inference_method = "score_samples"
|
787
852
|
|
788
853
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
789
854
|
# are specific to the type of dataset used.
|
790
855
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
791
856
|
|
857
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
858
|
+
|
792
859
|
if isinstance(dataset, DataFrame):
|
793
860
|
self._deps = self._batch_inference_validate_snowpark(
|
794
861
|
dataset=dataset,
|
@@ -801,6 +868,9 @@ class NuSVR(BaseTransformer):
|
|
801
868
|
drop_input_cols = self._drop_input_cols,
|
802
869
|
expected_output_cols_type="float",
|
803
870
|
)
|
871
|
+
expected_output_cols = self._align_expected_output_names(
|
872
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
873
|
+
)
|
804
874
|
|
805
875
|
elif isinstance(dataset, pd.DataFrame):
|
806
876
|
transform_kwargs = dict(
|
@@ -819,7 +889,7 @@ class NuSVR(BaseTransformer):
|
|
819
889
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
820
890
|
inference_method=inference_method,
|
821
891
|
input_cols=self.input_cols,
|
822
|
-
expected_output_cols=
|
892
|
+
expected_output_cols=expected_output_cols,
|
823
893
|
**transform_kwargs
|
824
894
|
)
|
825
895
|
return output_df
|
@@ -966,50 +1036,84 @@ class NuSVR(BaseTransformer):
|
|
966
1036
|
)
|
967
1037
|
return output_df
|
968
1038
|
|
1039
|
+
|
1040
|
+
|
1041
|
+
def to_sklearn(self) -> Any:
|
1042
|
+
"""Get sklearn.svm.NuSVR object.
|
1043
|
+
"""
|
1044
|
+
if self._sklearn_object is None:
|
1045
|
+
self._sklearn_object = self._create_sklearn_object()
|
1046
|
+
return self._sklearn_object
|
1047
|
+
|
1048
|
+
def to_xgboost(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_xgboost()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
def to_lightgbm(self) -> Any:
|
1060
|
+
raise exceptions.SnowflakeMLException(
|
1061
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1062
|
+
original_exception=AttributeError(
|
1063
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1064
|
+
"to_lightgbm()",
|
1065
|
+
"to_sklearn()"
|
1066
|
+
)
|
1067
|
+
),
|
1068
|
+
)
|
969
1069
|
|
970
|
-
def
|
1070
|
+
def _get_dependencies(self) -> List[str]:
|
1071
|
+
return self._deps
|
1072
|
+
|
1073
|
+
|
1074
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
971
1075
|
self._model_signature_dict = dict()
|
972
1076
|
|
973
1077
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
974
1078
|
|
975
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1079
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
976
1080
|
outputs: List[BaseFeatureSpec] = []
|
977
1081
|
if hasattr(self, "predict"):
|
978
1082
|
# keep mypy happy
|
979
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1083
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
980
1084
|
# For classifier, the type of predict is the same as the type of label
|
981
|
-
if self._sklearn_object._estimator_type ==
|
982
|
-
|
1085
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1086
|
+
# label columns is the desired type for output
|
983
1087
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
984
1088
|
# rename the output columns
|
985
1089
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
986
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
987
|
-
|
988
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
989
1093
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
990
1094
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
991
|
-
# Clusterer returns int64 cluster labels.
|
1095
|
+
# Clusterer returns int64 cluster labels.
|
992
1096
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
993
1097
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
994
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
995
|
-
|
996
|
-
|
997
|
-
|
1098
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1099
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1100
|
+
)
|
1101
|
+
|
998
1102
|
# For regressor, the type of predict is float64
|
999
|
-
elif self._sklearn_object._estimator_type ==
|
1103
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1000
1104
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1001
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1105
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1106
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1107
|
+
)
|
1108
|
+
|
1005
1109
|
for prob_func in PROB_FUNCTIONS:
|
1006
1110
|
if hasattr(self, prob_func):
|
1007
1111
|
output_cols_prefix: str = f"{prob_func}_"
|
1008
1112
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1009
1113
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1010
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1011
|
-
|
1012
|
-
|
1114
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1013
1117
|
|
1014
1118
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1015
1119
|
items = list(self._model_signature_dict.items())
|
@@ -1022,10 +1126,10 @@ class NuSVR(BaseTransformer):
|
|
1022
1126
|
"""Returns model signature of current class.
|
1023
1127
|
|
1024
1128
|
Raises:
|
1025
|
-
|
1129
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1026
1130
|
|
1027
1131
|
Returns:
|
1028
|
-
Dict
|
1132
|
+
Dict with each method and its input output signature
|
1029
1133
|
"""
|
1030
1134
|
if self._model_signature_dict is None:
|
1031
1135
|
raise exceptions.SnowflakeMLException(
|
@@ -1033,35 +1137,3 @@ class NuSVR(BaseTransformer):
|
|
1033
1137
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1034
1138
|
)
|
1035
1139
|
return self._model_signature_dict
|
1036
|
-
|
1037
|
-
def to_sklearn(self) -> Any:
|
1038
|
-
"""Get sklearn.svm.NuSVR object.
|
1039
|
-
"""
|
1040
|
-
if self._sklearn_object is None:
|
1041
|
-
self._sklearn_object = self._create_sklearn_object()
|
1042
|
-
return self._sklearn_object
|
1043
|
-
|
1044
|
-
def to_xgboost(self) -> Any:
|
1045
|
-
raise exceptions.SnowflakeMLException(
|
1046
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
-
original_exception=AttributeError(
|
1048
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
-
"to_xgboost()",
|
1050
|
-
"to_sklearn()"
|
1051
|
-
)
|
1052
|
-
),
|
1053
|
-
)
|
1054
|
-
|
1055
|
-
def to_lightgbm(self) -> Any:
|
1056
|
-
raise exceptions.SnowflakeMLException(
|
1057
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1058
|
-
original_exception=AttributeError(
|
1059
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1060
|
-
"to_lightgbm()",
|
1061
|
-
"to_sklearn()"
|
1062
|
-
)
|
1063
|
-
),
|
1064
|
-
)
|
1065
|
-
|
1066
|
-
def _get_dependencies(self) -> List[str]:
|
1067
|
-
return self._deps
|