snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -206,12 +205,7 @@ class SelectKBest(BaseTransformer):
206
205
  )
207
206
  return selected_cols
208
207
 
209
- @telemetry.send_api_usage_telemetry(
210
- project=_PROJECT,
211
- subproject=_SUBPROJECT,
212
- custom_tags=dict([("autogen", True)]),
213
- )
214
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectKBest":
208
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectKBest":
215
209
  """Run score function on (X, y) and get the appropriate features
216
210
  For more details on this function, see [sklearn.feature_selection.SelectKBest.fit]
217
211
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest.fit)
@@ -238,12 +232,14 @@ class SelectKBest(BaseTransformer):
238
232
 
239
233
  self._snowpark_cols = dataset.select(self.input_cols).columns
240
234
 
241
- # If we are already in a stored procedure, no need to kick off another one.
235
+ # If we are already in a stored procedure, no need to kick off another one.
242
236
  if SNOWML_SPROC_ENV in os.environ:
243
237
  statement_params = telemetry.get_function_usage_statement_params(
244
238
  project=_PROJECT,
245
239
  subproject=_SUBPROJECT,
246
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectKBest.__class__.__name__),
240
+ function_name=telemetry.get_statement_params_full_func_name(
241
+ inspect.currentframe(), SelectKBest.__class__.__name__
242
+ ),
247
243
  api_calls=[Session.call],
248
244
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
249
245
  )
@@ -264,7 +260,7 @@ class SelectKBest(BaseTransformer):
264
260
  )
265
261
  self._sklearn_object = model_trainer.train()
266
262
  self._is_fitted = True
267
- self._get_model_signatures(dataset)
263
+ self._generate_model_signatures(dataset)
268
264
  return self
269
265
 
270
266
  def _batch_inference_validate_snowpark(
@@ -338,7 +334,9 @@ class SelectKBest(BaseTransformer):
338
334
  # when it is classifier, infer the datatype from label columns
339
335
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
340
336
  # Batch inference takes a single expected output column type. Use the first columns type for now.
341
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
337
+ label_cols_signatures = [
338
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
339
+ ]
342
340
  if len(label_cols_signatures) == 0:
343
341
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
344
342
  raise exceptions.SnowflakeMLException(
@@ -346,25 +344,22 @@ class SelectKBest(BaseTransformer):
346
344
  original_exception=ValueError(error_str),
347
345
  )
348
346
 
349
- expected_type_inferred = convert_sp_to_sf_type(
350
- label_cols_signatures[0].as_snowpark_type()
351
- )
347
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
352
348
 
353
349
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
354
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
350
+ assert isinstance(
351
+ dataset._session, Session
352
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
355
353
 
356
354
  transform_kwargs = dict(
357
- session = dataset._session,
358
- dependencies = self._deps,
359
- drop_input_cols = self._drop_input_cols,
360
- expected_output_cols_type = expected_type_inferred,
355
+ session=dataset._session,
356
+ dependencies=self._deps,
357
+ drop_input_cols=self._drop_input_cols,
358
+ expected_output_cols_type=expected_type_inferred,
361
359
  )
362
360
 
363
361
  elif isinstance(dataset, pd.DataFrame):
364
- transform_kwargs = dict(
365
- snowpark_input_cols = self._snowpark_cols,
366
- drop_input_cols = self._drop_input_cols
367
- )
362
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
368
363
 
369
364
  transform_handlers = ModelTransformerBuilder.build(
370
365
  dataset=dataset,
@@ -406,7 +401,7 @@ class SelectKBest(BaseTransformer):
406
401
  Transformed dataset.
407
402
  """
408
403
  super()._check_dataset_type(dataset)
409
- inference_method="transform"
404
+ inference_method = "transform"
410
405
 
411
406
  # This dictionary contains optional kwargs for batch inference. These kwargs
412
407
  # are specific to the type of dataset used.
@@ -443,17 +438,14 @@ class SelectKBest(BaseTransformer):
443
438
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
444
439
 
445
440
  transform_kwargs = dict(
446
- session = dataset._session,
447
- dependencies = self._deps,
448
- drop_input_cols = self._drop_input_cols,
449
- expected_output_cols_type = expected_dtype,
441
+ session=dataset._session,
442
+ dependencies=self._deps,
443
+ drop_input_cols=self._drop_input_cols,
444
+ expected_output_cols_type=expected_dtype,
450
445
  )
451
446
 
452
447
  elif isinstance(dataset, pd.DataFrame):
453
- transform_kwargs = dict(
454
- snowpark_input_cols = self._snowpark_cols,
455
- drop_input_cols = self._drop_input_cols
456
- )
448
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
457
449
 
458
450
  transform_handlers = ModelTransformerBuilder.build(
459
451
  dataset=dataset,
@@ -472,7 +464,11 @@ class SelectKBest(BaseTransformer):
472
464
  return output_df
473
465
 
474
466
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
475
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
467
+ def fit_predict(
468
+ self,
469
+ dataset: Union[DataFrame, pd.DataFrame],
470
+ output_cols_prefix: str = "fit_predict_",
471
+ ) -> Union[DataFrame, pd.DataFrame]:
476
472
  """ Method not supported for this class.
477
473
 
478
474
 
@@ -497,7 +493,9 @@ class SelectKBest(BaseTransformer):
497
493
  )
498
494
  output_result, fitted_estimator = model_trainer.train_fit_predict(
499
495
  drop_input_cols=self._drop_input_cols,
500
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
496
+ expected_output_cols_list=(
497
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
498
+ ),
501
499
  )
502
500
  self._sklearn_object = fitted_estimator
503
501
  self._is_fitted = True
@@ -514,6 +512,62 @@ class SelectKBest(BaseTransformer):
514
512
  assert self._sklearn_object is not None
515
513
  return self._sklearn_object.embedding_
516
514
 
515
+
516
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
517
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
518
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
519
+ """
520
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
521
+ # The following condition is introduced for kneighbors methods, and not used in other methods
522
+ if output_cols:
523
+ output_cols = [
524
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
525
+ for c in output_cols
526
+ ]
527
+ elif getattr(self._sklearn_object, "classes_", None) is None:
528
+ output_cols = [output_cols_prefix]
529
+ elif self._sklearn_object is not None:
530
+ classes = self._sklearn_object.classes_
531
+ if isinstance(classes, numpy.ndarray):
532
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
533
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
534
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
535
+ output_cols = []
536
+ for i, cl in enumerate(classes):
537
+ # For binary classification, there is only one output column for each class
538
+ # ndarray as the two classes are complementary.
539
+ if len(cl) == 2:
540
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
541
+ else:
542
+ output_cols.extend([
543
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
544
+ ])
545
+ else:
546
+ output_cols = []
547
+
548
+ # Make sure column names are valid snowflake identifiers.
549
+ assert output_cols is not None # Make MyPy happy
550
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
551
+
552
+ return rv
553
+
554
+ def _align_expected_output_names(
555
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
556
+ ) -> List[str]:
557
+ # in case the inferred output column names dimension is different
558
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
559
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
560
+ output_df_columns = list(output_df_pd.columns)
561
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
562
+ if self.sample_weight_col:
563
+ output_df_columns_set -= set(self.sample_weight_col)
564
+ # if the dimension of inferred output column names is correct; use it
565
+ if len(expected_output_cols_list) == len(output_df_columns_set):
566
+ return expected_output_cols_list
567
+ # otherwise, use the sklearn estimator's output
568
+ else:
569
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
570
+
517
571
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
518
572
  @telemetry.send_api_usage_telemetry(
519
573
  project=_PROJECT,
@@ -544,24 +598,28 @@ class SelectKBest(BaseTransformer):
544
598
  # are specific to the type of dataset used.
545
599
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
546
600
 
601
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
602
+
547
603
  if isinstance(dataset, DataFrame):
548
604
  self._deps = self._batch_inference_validate_snowpark(
549
605
  dataset=dataset,
550
606
  inference_method=inference_method,
551
607
  )
552
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
+ assert isinstance(
609
+ dataset._session, Session
610
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
553
611
  transform_kwargs = dict(
554
612
  session=dataset._session,
555
613
  dependencies=self._deps,
556
- drop_input_cols = self._drop_input_cols,
614
+ drop_input_cols=self._drop_input_cols,
557
615
  expected_output_cols_type="float",
558
616
  )
617
+ expected_output_cols = self._align_expected_output_names(
618
+ inference_method, dataset, expected_output_cols, output_cols_prefix
619
+ )
559
620
 
560
621
  elif isinstance(dataset, pd.DataFrame):
561
- transform_kwargs = dict(
562
- snowpark_input_cols = self._snowpark_cols,
563
- drop_input_cols = self._drop_input_cols
564
- )
622
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
565
623
 
566
624
  transform_handlers = ModelTransformerBuilder.build(
567
625
  dataset=dataset,
@@ -573,7 +631,7 @@ class SelectKBest(BaseTransformer):
573
631
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
574
632
  inference_method=inference_method,
575
633
  input_cols=self.input_cols,
576
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
634
+ expected_output_cols=expected_output_cols,
577
635
  **transform_kwargs
578
636
  )
579
637
  return output_df
@@ -603,7 +661,8 @@ class SelectKBest(BaseTransformer):
603
661
  Output dataset with log probability of the sample for each class in the model.
604
662
  """
605
663
  super()._check_dataset_type(dataset)
606
- inference_method="predict_log_proba"
664
+ inference_method = "predict_log_proba"
665
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
607
666
 
608
667
  # This dictionary contains optional kwargs for batch inference. These kwargs
609
668
  # are specific to the type of dataset used.
@@ -614,18 +673,20 @@ class SelectKBest(BaseTransformer):
614
673
  dataset=dataset,
615
674
  inference_method=inference_method,
616
675
  )
617
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
676
+ assert isinstance(
677
+ dataset._session, Session
678
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
618
679
  transform_kwargs = dict(
619
680
  session=dataset._session,
620
681
  dependencies=self._deps,
621
- drop_input_cols = self._drop_input_cols,
682
+ drop_input_cols=self._drop_input_cols,
622
683
  expected_output_cols_type="float",
623
684
  )
685
+ expected_output_cols = self._align_expected_output_names(
686
+ inference_method, dataset, expected_output_cols, output_cols_prefix
687
+ )
624
688
  elif isinstance(dataset, pd.DataFrame):
625
- transform_kwargs = dict(
626
- snowpark_input_cols = self._snowpark_cols,
627
- drop_input_cols = self._drop_input_cols
628
- )
689
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
629
690
 
630
691
  transform_handlers = ModelTransformerBuilder.build(
631
692
  dataset=dataset,
@@ -638,7 +699,7 @@ class SelectKBest(BaseTransformer):
638
699
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
639
700
  inference_method=inference_method,
640
701
  input_cols=self.input_cols,
641
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
702
+ expected_output_cols=expected_output_cols,
642
703
  **transform_kwargs
643
704
  )
644
705
  return output_df
@@ -664,30 +725,34 @@ class SelectKBest(BaseTransformer):
664
725
  Output dataset with results of the decision function for the samples in input dataset.
665
726
  """
666
727
  super()._check_dataset_type(dataset)
667
- inference_method="decision_function"
728
+ inference_method = "decision_function"
668
729
 
669
730
  # This dictionary contains optional kwargs for batch inference. These kwargs
670
731
  # are specific to the type of dataset used.
671
732
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
672
733
 
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
735
+
673
736
  if isinstance(dataset, DataFrame):
674
737
  self._deps = self._batch_inference_validate_snowpark(
675
738
  dataset=dataset,
676
739
  inference_method=inference_method,
677
740
  )
678
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
744
  transform_kwargs = dict(
680
745
  session=dataset._session,
681
746
  dependencies=self._deps,
682
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
683
748
  expected_output_cols_type="float",
684
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
685
753
 
686
754
  elif isinstance(dataset, pd.DataFrame):
687
- transform_kwargs = dict(
688
- snowpark_input_cols = self._snowpark_cols,
689
- drop_input_cols = self._drop_input_cols
690
- )
755
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
691
756
 
692
757
  transform_handlers = ModelTransformerBuilder.build(
693
758
  dataset=dataset,
@@ -700,7 +765,7 @@ class SelectKBest(BaseTransformer):
700
765
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
701
766
  inference_method=inference_method,
702
767
  input_cols=self.input_cols,
703
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
768
+ expected_output_cols=expected_output_cols,
704
769
  **transform_kwargs
705
770
  )
706
771
  return output_df
@@ -729,12 +794,14 @@ class SelectKBest(BaseTransformer):
729
794
  Output dataset with probability of the sample for each class in the model.
730
795
  """
731
796
  super()._check_dataset_type(dataset)
732
- inference_method="score_samples"
797
+ inference_method = "score_samples"
733
798
 
734
799
  # This dictionary contains optional kwargs for batch inference. These kwargs
735
800
  # are specific to the type of dataset used.
736
801
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
737
802
 
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
804
+
738
805
  if isinstance(dataset, DataFrame):
739
806
  self._deps = self._batch_inference_validate_snowpark(
740
807
  dataset=dataset,
@@ -747,6 +814,9 @@ class SelectKBest(BaseTransformer):
747
814
  drop_input_cols = self._drop_input_cols,
748
815
  expected_output_cols_type="float",
749
816
  )
817
+ expected_output_cols = self._align_expected_output_names(
818
+ inference_method, dataset, expected_output_cols, output_cols_prefix
819
+ )
750
820
 
751
821
  elif isinstance(dataset, pd.DataFrame):
752
822
  transform_kwargs = dict(
@@ -765,7 +835,7 @@ class SelectKBest(BaseTransformer):
765
835
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
766
836
  inference_method=inference_method,
767
837
  input_cols=self.input_cols,
768
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
838
+ expected_output_cols=expected_output_cols,
769
839
  **transform_kwargs
770
840
  )
771
841
  return output_df
@@ -910,50 +980,84 @@ class SelectKBest(BaseTransformer):
910
980
  )
911
981
  return output_df
912
982
 
983
+
984
+
985
+ def to_sklearn(self) -> Any:
986
+ """Get sklearn.feature_selection.SelectKBest object.
987
+ """
988
+ if self._sklearn_object is None:
989
+ self._sklearn_object = self._create_sklearn_object()
990
+ return self._sklearn_object
991
+
992
+ def to_xgboost(self) -> Any:
993
+ raise exceptions.SnowflakeMLException(
994
+ error_code=error_codes.METHOD_NOT_ALLOWED,
995
+ original_exception=AttributeError(
996
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
997
+ "to_xgboost()",
998
+ "to_sklearn()"
999
+ )
1000
+ ),
1001
+ )
1002
+
1003
+ def to_lightgbm(self) -> Any:
1004
+ raise exceptions.SnowflakeMLException(
1005
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1006
+ original_exception=AttributeError(
1007
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
+ "to_lightgbm()",
1009
+ "to_sklearn()"
1010
+ )
1011
+ ),
1012
+ )
913
1013
 
914
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1014
+ def _get_dependencies(self) -> List[str]:
1015
+ return self._deps
1016
+
1017
+
1018
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
915
1019
  self._model_signature_dict = dict()
916
1020
 
917
1021
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
918
1022
 
919
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1023
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
920
1024
  outputs: List[BaseFeatureSpec] = []
921
1025
  if hasattr(self, "predict"):
922
1026
  # keep mypy happy
923
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1027
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
924
1028
  # For classifier, the type of predict is the same as the type of label
925
- if self._sklearn_object._estimator_type == 'classifier':
926
- # label columns is the desired type for output
1029
+ if self._sklearn_object._estimator_type == "classifier":
1030
+ # label columns is the desired type for output
927
1031
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
928
1032
  # rename the output columns
929
1033
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
930
- self._model_signature_dict["predict"] = ModelSignature(inputs,
931
- ([] if self._drop_input_cols else inputs)
932
- + outputs)
1034
+ self._model_signature_dict["predict"] = ModelSignature(
1035
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1036
+ )
933
1037
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
934
1038
  # For outlier models, returns -1 for outliers and 1 for inliers.
935
- # Clusterer returns int64 cluster labels.
1039
+ # Clusterer returns int64 cluster labels.
936
1040
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
937
1041
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
938
- self._model_signature_dict["predict"] = ModelSignature(inputs,
939
- ([] if self._drop_input_cols else inputs)
940
- + outputs)
941
-
1042
+ self._model_signature_dict["predict"] = ModelSignature(
1043
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1044
+ )
1045
+
942
1046
  # For regressor, the type of predict is float64
943
- elif self._sklearn_object._estimator_type == 'regressor':
1047
+ elif self._sklearn_object._estimator_type == "regressor":
944
1048
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
945
- self._model_signature_dict["predict"] = ModelSignature(inputs,
946
- ([] if self._drop_input_cols else inputs)
947
- + outputs)
948
-
1049
+ self._model_signature_dict["predict"] = ModelSignature(
1050
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1051
+ )
1052
+
949
1053
  for prob_func in PROB_FUNCTIONS:
950
1054
  if hasattr(self, prob_func):
951
1055
  output_cols_prefix: str = f"{prob_func}_"
952
1056
  output_column_names = self._get_output_column_names(output_cols_prefix)
953
1057
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
954
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
1058
+ self._model_signature_dict[prob_func] = ModelSignature(
1059
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1060
+ )
957
1061
 
958
1062
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
959
1063
  items = list(self._model_signature_dict.items())
@@ -966,10 +1070,10 @@ class SelectKBest(BaseTransformer):
966
1070
  """Returns model signature of current class.
967
1071
 
968
1072
  Raises:
969
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1073
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
970
1074
 
971
1075
  Returns:
972
- Dict[str, ModelSignature]: each method and its input output signature
1076
+ Dict with each method and its input output signature
973
1077
  """
974
1078
  if self._model_signature_dict is None:
975
1079
  raise exceptions.SnowflakeMLException(
@@ -977,35 +1081,3 @@ class SelectKBest(BaseTransformer):
977
1081
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
978
1082
  )
979
1083
  return self._model_signature_dict
980
-
981
- def to_sklearn(self) -> Any:
982
- """Get sklearn.feature_selection.SelectKBest object.
983
- """
984
- if self._sklearn_object is None:
985
- self._sklearn_object = self._create_sklearn_object()
986
- return self._sklearn_object
987
-
988
- def to_xgboost(self) -> Any:
989
- raise exceptions.SnowflakeMLException(
990
- error_code=error_codes.METHOD_NOT_ALLOWED,
991
- original_exception=AttributeError(
992
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
993
- "to_xgboost()",
994
- "to_sklearn()"
995
- )
996
- ),
997
- )
998
-
999
- def to_lightgbm(self) -> Any:
1000
- raise exceptions.SnowflakeMLException(
1001
- error_code=error_codes.METHOD_NOT_ALLOWED,
1002
- original_exception=AttributeError(
1003
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1004
- "to_lightgbm()",
1005
- "to_sklearn()"
1006
- )
1007
- ),
1008
- )
1009
-
1010
- def _get_dependencies(self) -> List[str]:
1011
- return self._deps