snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -256,12 +255,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
256
255
|
)
|
257
256
|
return selected_cols
|
258
257
|
|
259
|
-
|
260
|
-
project=_PROJECT,
|
261
|
-
subproject=_SUBPROJECT,
|
262
|
-
custom_tags=dict([("autogen", True)]),
|
263
|
-
)
|
264
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
|
258
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
|
265
259
|
"""Fit linear model
|
266
260
|
For more details on this function, see [sklearn.linear_model.TheilSenRegressor.fit]
|
267
261
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor.fit)
|
@@ -288,12 +282,14 @@ class TheilSenRegressor(BaseTransformer):
|
|
288
282
|
|
289
283
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
290
284
|
|
291
|
-
|
285
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
292
286
|
if SNOWML_SPROC_ENV in os.environ:
|
293
287
|
statement_params = telemetry.get_function_usage_statement_params(
|
294
288
|
project=_PROJECT,
|
295
289
|
subproject=_SUBPROJECT,
|
296
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
290
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
291
|
+
inspect.currentframe(), TheilSenRegressor.__class__.__name__
|
292
|
+
),
|
297
293
|
api_calls=[Session.call],
|
298
294
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
299
295
|
)
|
@@ -314,7 +310,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
314
310
|
)
|
315
311
|
self._sklearn_object = model_trainer.train()
|
316
312
|
self._is_fitted = True
|
317
|
-
self.
|
313
|
+
self._generate_model_signatures(dataset)
|
318
314
|
return self
|
319
315
|
|
320
316
|
def _batch_inference_validate_snowpark(
|
@@ -390,7 +386,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
390
386
|
# when it is classifier, infer the datatype from label columns
|
391
387
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
392
388
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
393
|
-
label_cols_signatures = [
|
389
|
+
label_cols_signatures = [
|
390
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
391
|
+
]
|
394
392
|
if len(label_cols_signatures) == 0:
|
395
393
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
396
394
|
raise exceptions.SnowflakeMLException(
|
@@ -398,25 +396,22 @@ class TheilSenRegressor(BaseTransformer):
|
|
398
396
|
original_exception=ValueError(error_str),
|
399
397
|
)
|
400
398
|
|
401
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
402
|
-
label_cols_signatures[0].as_snowpark_type()
|
403
|
-
)
|
399
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
404
400
|
|
405
401
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
406
|
-
assert isinstance(
|
402
|
+
assert isinstance(
|
403
|
+
dataset._session, Session
|
404
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
407
405
|
|
408
406
|
transform_kwargs = dict(
|
409
|
-
session
|
410
|
-
dependencies
|
411
|
-
drop_input_cols
|
412
|
-
expected_output_cols_type
|
407
|
+
session=dataset._session,
|
408
|
+
dependencies=self._deps,
|
409
|
+
drop_input_cols=self._drop_input_cols,
|
410
|
+
expected_output_cols_type=expected_type_inferred,
|
413
411
|
)
|
414
412
|
|
415
413
|
elif isinstance(dataset, pd.DataFrame):
|
416
|
-
transform_kwargs = dict(
|
417
|
-
snowpark_input_cols = self._snowpark_cols,
|
418
|
-
drop_input_cols = self._drop_input_cols
|
419
|
-
)
|
414
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
420
415
|
|
421
416
|
transform_handlers = ModelTransformerBuilder.build(
|
422
417
|
dataset=dataset,
|
@@ -456,7 +451,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
456
451
|
Transformed dataset.
|
457
452
|
"""
|
458
453
|
super()._check_dataset_type(dataset)
|
459
|
-
inference_method="transform"
|
454
|
+
inference_method = "transform"
|
460
455
|
|
461
456
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
462
457
|
# are specific to the type of dataset used.
|
@@ -493,17 +488,14 @@ class TheilSenRegressor(BaseTransformer):
|
|
493
488
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
494
489
|
|
495
490
|
transform_kwargs = dict(
|
496
|
-
session
|
497
|
-
dependencies
|
498
|
-
drop_input_cols
|
499
|
-
expected_output_cols_type
|
491
|
+
session=dataset._session,
|
492
|
+
dependencies=self._deps,
|
493
|
+
drop_input_cols=self._drop_input_cols,
|
494
|
+
expected_output_cols_type=expected_dtype,
|
500
495
|
)
|
501
496
|
|
502
497
|
elif isinstance(dataset, pd.DataFrame):
|
503
|
-
transform_kwargs = dict(
|
504
|
-
snowpark_input_cols = self._snowpark_cols,
|
505
|
-
drop_input_cols = self._drop_input_cols
|
506
|
-
)
|
498
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
507
499
|
|
508
500
|
transform_handlers = ModelTransformerBuilder.build(
|
509
501
|
dataset=dataset,
|
@@ -522,7 +514,11 @@ class TheilSenRegressor(BaseTransformer):
|
|
522
514
|
return output_df
|
523
515
|
|
524
516
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
525
|
-
def fit_predict(
|
517
|
+
def fit_predict(
|
518
|
+
self,
|
519
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
520
|
+
output_cols_prefix: str = "fit_predict_",
|
521
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
526
522
|
""" Method not supported for this class.
|
527
523
|
|
528
524
|
|
@@ -547,7 +543,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
547
543
|
)
|
548
544
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
549
545
|
drop_input_cols=self._drop_input_cols,
|
550
|
-
expected_output_cols_list=
|
546
|
+
expected_output_cols_list=(
|
547
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
548
|
+
),
|
551
549
|
)
|
552
550
|
self._sklearn_object = fitted_estimator
|
553
551
|
self._is_fitted = True
|
@@ -564,6 +562,62 @@ class TheilSenRegressor(BaseTransformer):
|
|
564
562
|
assert self._sklearn_object is not None
|
565
563
|
return self._sklearn_object.embedding_
|
566
564
|
|
565
|
+
|
566
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
567
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
568
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
569
|
+
"""
|
570
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
571
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
572
|
+
if output_cols:
|
573
|
+
output_cols = [
|
574
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
575
|
+
for c in output_cols
|
576
|
+
]
|
577
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
578
|
+
output_cols = [output_cols_prefix]
|
579
|
+
elif self._sklearn_object is not None:
|
580
|
+
classes = self._sklearn_object.classes_
|
581
|
+
if isinstance(classes, numpy.ndarray):
|
582
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
583
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
584
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
585
|
+
output_cols = []
|
586
|
+
for i, cl in enumerate(classes):
|
587
|
+
# For binary classification, there is only one output column for each class
|
588
|
+
# ndarray as the two classes are complementary.
|
589
|
+
if len(cl) == 2:
|
590
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
591
|
+
else:
|
592
|
+
output_cols.extend([
|
593
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
594
|
+
])
|
595
|
+
else:
|
596
|
+
output_cols = []
|
597
|
+
|
598
|
+
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
600
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
601
|
+
|
602
|
+
return rv
|
603
|
+
|
604
|
+
def _align_expected_output_names(
|
605
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
606
|
+
) -> List[str]:
|
607
|
+
# in case the inferred output column names dimension is different
|
608
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
609
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
610
|
+
output_df_columns = list(output_df_pd.columns)
|
611
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
612
|
+
if self.sample_weight_col:
|
613
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
614
|
+
# if the dimension of inferred output column names is correct; use it
|
615
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
616
|
+
return expected_output_cols_list
|
617
|
+
# otherwise, use the sklearn estimator's output
|
618
|
+
else:
|
619
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
620
|
+
|
567
621
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
568
622
|
@telemetry.send_api_usage_telemetry(
|
569
623
|
project=_PROJECT,
|
@@ -594,24 +648,28 @@ class TheilSenRegressor(BaseTransformer):
|
|
594
648
|
# are specific to the type of dataset used.
|
595
649
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
596
650
|
|
651
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
652
|
+
|
597
653
|
if isinstance(dataset, DataFrame):
|
598
654
|
self._deps = self._batch_inference_validate_snowpark(
|
599
655
|
dataset=dataset,
|
600
656
|
inference_method=inference_method,
|
601
657
|
)
|
602
|
-
assert isinstance(
|
658
|
+
assert isinstance(
|
659
|
+
dataset._session, Session
|
660
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
603
661
|
transform_kwargs = dict(
|
604
662
|
session=dataset._session,
|
605
663
|
dependencies=self._deps,
|
606
|
-
drop_input_cols
|
664
|
+
drop_input_cols=self._drop_input_cols,
|
607
665
|
expected_output_cols_type="float",
|
608
666
|
)
|
667
|
+
expected_output_cols = self._align_expected_output_names(
|
668
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
669
|
+
)
|
609
670
|
|
610
671
|
elif isinstance(dataset, pd.DataFrame):
|
611
|
-
transform_kwargs = dict(
|
612
|
-
snowpark_input_cols = self._snowpark_cols,
|
613
|
-
drop_input_cols = self._drop_input_cols
|
614
|
-
)
|
672
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
615
673
|
|
616
674
|
transform_handlers = ModelTransformerBuilder.build(
|
617
675
|
dataset=dataset,
|
@@ -623,7 +681,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
623
681
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
624
682
|
inference_method=inference_method,
|
625
683
|
input_cols=self.input_cols,
|
626
|
-
expected_output_cols=
|
684
|
+
expected_output_cols=expected_output_cols,
|
627
685
|
**transform_kwargs
|
628
686
|
)
|
629
687
|
return output_df
|
@@ -653,7 +711,8 @@ class TheilSenRegressor(BaseTransformer):
|
|
653
711
|
Output dataset with log probability of the sample for each class in the model.
|
654
712
|
"""
|
655
713
|
super()._check_dataset_type(dataset)
|
656
|
-
inference_method="predict_log_proba"
|
714
|
+
inference_method = "predict_log_proba"
|
715
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
657
716
|
|
658
717
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
659
718
|
# are specific to the type of dataset used.
|
@@ -664,18 +723,20 @@ class TheilSenRegressor(BaseTransformer):
|
|
664
723
|
dataset=dataset,
|
665
724
|
inference_method=inference_method,
|
666
725
|
)
|
667
|
-
assert isinstance(
|
726
|
+
assert isinstance(
|
727
|
+
dataset._session, Session
|
728
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
668
729
|
transform_kwargs = dict(
|
669
730
|
session=dataset._session,
|
670
731
|
dependencies=self._deps,
|
671
|
-
drop_input_cols
|
732
|
+
drop_input_cols=self._drop_input_cols,
|
672
733
|
expected_output_cols_type="float",
|
673
734
|
)
|
735
|
+
expected_output_cols = self._align_expected_output_names(
|
736
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
737
|
+
)
|
674
738
|
elif isinstance(dataset, pd.DataFrame):
|
675
|
-
transform_kwargs = dict(
|
676
|
-
snowpark_input_cols = self._snowpark_cols,
|
677
|
-
drop_input_cols = self._drop_input_cols
|
678
|
-
)
|
739
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
679
740
|
|
680
741
|
transform_handlers = ModelTransformerBuilder.build(
|
681
742
|
dataset=dataset,
|
@@ -688,7 +749,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
688
749
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
689
750
|
inference_method=inference_method,
|
690
751
|
input_cols=self.input_cols,
|
691
|
-
expected_output_cols=
|
752
|
+
expected_output_cols=expected_output_cols,
|
692
753
|
**transform_kwargs
|
693
754
|
)
|
694
755
|
return output_df
|
@@ -714,30 +775,34 @@ class TheilSenRegressor(BaseTransformer):
|
|
714
775
|
Output dataset with results of the decision function for the samples in input dataset.
|
715
776
|
"""
|
716
777
|
super()._check_dataset_type(dataset)
|
717
|
-
inference_method="decision_function"
|
778
|
+
inference_method = "decision_function"
|
718
779
|
|
719
780
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
720
781
|
# are specific to the type of dataset used.
|
721
782
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
722
783
|
|
784
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
785
|
+
|
723
786
|
if isinstance(dataset, DataFrame):
|
724
787
|
self._deps = self._batch_inference_validate_snowpark(
|
725
788
|
dataset=dataset,
|
726
789
|
inference_method=inference_method,
|
727
790
|
)
|
728
|
-
assert isinstance(
|
791
|
+
assert isinstance(
|
792
|
+
dataset._session, Session
|
793
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
729
794
|
transform_kwargs = dict(
|
730
795
|
session=dataset._session,
|
731
796
|
dependencies=self._deps,
|
732
|
-
drop_input_cols
|
797
|
+
drop_input_cols=self._drop_input_cols,
|
733
798
|
expected_output_cols_type="float",
|
734
799
|
)
|
800
|
+
expected_output_cols = self._align_expected_output_names(
|
801
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
802
|
+
)
|
735
803
|
|
736
804
|
elif isinstance(dataset, pd.DataFrame):
|
737
|
-
transform_kwargs = dict(
|
738
|
-
snowpark_input_cols = self._snowpark_cols,
|
739
|
-
drop_input_cols = self._drop_input_cols
|
740
|
-
)
|
805
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
741
806
|
|
742
807
|
transform_handlers = ModelTransformerBuilder.build(
|
743
808
|
dataset=dataset,
|
@@ -750,7 +815,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
750
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
751
816
|
inference_method=inference_method,
|
752
817
|
input_cols=self.input_cols,
|
753
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
754
819
|
**transform_kwargs
|
755
820
|
)
|
756
821
|
return output_df
|
@@ -779,12 +844,14 @@ class TheilSenRegressor(BaseTransformer):
|
|
779
844
|
Output dataset with probability of the sample for each class in the model.
|
780
845
|
"""
|
781
846
|
super()._check_dataset_type(dataset)
|
782
|
-
inference_method="score_samples"
|
847
|
+
inference_method = "score_samples"
|
783
848
|
|
784
849
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
785
850
|
# are specific to the type of dataset used.
|
786
851
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
787
852
|
|
853
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
854
|
+
|
788
855
|
if isinstance(dataset, DataFrame):
|
789
856
|
self._deps = self._batch_inference_validate_snowpark(
|
790
857
|
dataset=dataset,
|
@@ -797,6 +864,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
797
864
|
drop_input_cols = self._drop_input_cols,
|
798
865
|
expected_output_cols_type="float",
|
799
866
|
)
|
867
|
+
expected_output_cols = self._align_expected_output_names(
|
868
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
869
|
+
)
|
800
870
|
|
801
871
|
elif isinstance(dataset, pd.DataFrame):
|
802
872
|
transform_kwargs = dict(
|
@@ -815,7 +885,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
815
885
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
816
886
|
inference_method=inference_method,
|
817
887
|
input_cols=self.input_cols,
|
818
|
-
expected_output_cols=
|
888
|
+
expected_output_cols=expected_output_cols,
|
819
889
|
**transform_kwargs
|
820
890
|
)
|
821
891
|
return output_df
|
@@ -962,50 +1032,84 @@ class TheilSenRegressor(BaseTransformer):
|
|
962
1032
|
)
|
963
1033
|
return output_df
|
964
1034
|
|
1035
|
+
|
1036
|
+
|
1037
|
+
def to_sklearn(self) -> Any:
|
1038
|
+
"""Get sklearn.linear_model.TheilSenRegressor object.
|
1039
|
+
"""
|
1040
|
+
if self._sklearn_object is None:
|
1041
|
+
self._sklearn_object = self._create_sklearn_object()
|
1042
|
+
return self._sklearn_object
|
1043
|
+
|
1044
|
+
def to_xgboost(self) -> Any:
|
1045
|
+
raise exceptions.SnowflakeMLException(
|
1046
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
+
original_exception=AttributeError(
|
1048
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
+
"to_xgboost()",
|
1050
|
+
"to_sklearn()"
|
1051
|
+
)
|
1052
|
+
),
|
1053
|
+
)
|
1054
|
+
|
1055
|
+
def to_lightgbm(self) -> Any:
|
1056
|
+
raise exceptions.SnowflakeMLException(
|
1057
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1058
|
+
original_exception=AttributeError(
|
1059
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1060
|
+
"to_lightgbm()",
|
1061
|
+
"to_sklearn()"
|
1062
|
+
)
|
1063
|
+
),
|
1064
|
+
)
|
965
1065
|
|
966
|
-
def
|
1066
|
+
def _get_dependencies(self) -> List[str]:
|
1067
|
+
return self._deps
|
1068
|
+
|
1069
|
+
|
1070
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
967
1071
|
self._model_signature_dict = dict()
|
968
1072
|
|
969
1073
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
970
1074
|
|
971
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1075
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
972
1076
|
outputs: List[BaseFeatureSpec] = []
|
973
1077
|
if hasattr(self, "predict"):
|
974
1078
|
# keep mypy happy
|
975
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1079
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
976
1080
|
# For classifier, the type of predict is the same as the type of label
|
977
|
-
if self._sklearn_object._estimator_type ==
|
978
|
-
|
1081
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1082
|
+
# label columns is the desired type for output
|
979
1083
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
980
1084
|
# rename the output columns
|
981
1085
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
985
1089
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
986
1090
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
987
|
-
# Clusterer returns int64 cluster labels.
|
1091
|
+
# Clusterer returns int64 cluster labels.
|
988
1092
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
989
1093
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
990
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
991
|
-
|
992
|
-
|
993
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
994
1098
|
# For regressor, the type of predict is float64
|
995
|
-
elif self._sklearn_object._estimator_type ==
|
1099
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
996
1100
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
997
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
998
|
-
|
999
|
-
|
1000
|
-
|
1101
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1102
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1103
|
+
)
|
1104
|
+
|
1001
1105
|
for prob_func in PROB_FUNCTIONS:
|
1002
1106
|
if hasattr(self, prob_func):
|
1003
1107
|
output_cols_prefix: str = f"{prob_func}_"
|
1004
1108
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1005
1109
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1006
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1007
|
-
|
1008
|
-
|
1110
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1111
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1112
|
+
)
|
1009
1113
|
|
1010
1114
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1011
1115
|
items = list(self._model_signature_dict.items())
|
@@ -1018,10 +1122,10 @@ class TheilSenRegressor(BaseTransformer):
|
|
1018
1122
|
"""Returns model signature of current class.
|
1019
1123
|
|
1020
1124
|
Raises:
|
1021
|
-
|
1125
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1022
1126
|
|
1023
1127
|
Returns:
|
1024
|
-
Dict
|
1128
|
+
Dict with each method and its input output signature
|
1025
1129
|
"""
|
1026
1130
|
if self._model_signature_dict is None:
|
1027
1131
|
raise exceptions.SnowflakeMLException(
|
@@ -1029,35 +1133,3 @@ class TheilSenRegressor(BaseTransformer):
|
|
1029
1133
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1030
1134
|
)
|
1031
1135
|
return self._model_signature_dict
|
1032
|
-
|
1033
|
-
def to_sklearn(self) -> Any:
|
1034
|
-
"""Get sklearn.linear_model.TheilSenRegressor object.
|
1035
|
-
"""
|
1036
|
-
if self._sklearn_object is None:
|
1037
|
-
self._sklearn_object = self._create_sklearn_object()
|
1038
|
-
return self._sklearn_object
|
1039
|
-
|
1040
|
-
def to_xgboost(self) -> Any:
|
1041
|
-
raise exceptions.SnowflakeMLException(
|
1042
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
-
original_exception=AttributeError(
|
1044
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
-
"to_xgboost()",
|
1046
|
-
"to_sklearn()"
|
1047
|
-
)
|
1048
|
-
),
|
1049
|
-
)
|
1050
|
-
|
1051
|
-
def to_lightgbm(self) -> Any:
|
1052
|
-
raise exceptions.SnowflakeMLException(
|
1053
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
-
original_exception=AttributeError(
|
1055
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
-
"to_lightgbm()",
|
1057
|
-
"to_sklearn()"
|
1058
|
-
)
|
1059
|
-
),
|
1060
|
-
)
|
1061
|
-
|
1062
|
-
def _get_dependencies(self) -> List[str]:
|
1063
|
-
return self._deps
|