snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -299,12 +298,7 @@ class NuSVC(BaseTransformer):
299
298
  )
300
299
  return selected_cols
301
300
 
302
- @telemetry.send_api_usage_telemetry(
303
- project=_PROJECT,
304
- subproject=_SUBPROJECT,
305
- custom_tags=dict([("autogen", True)]),
306
- )
307
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
301
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
308
302
  """Fit the SVM model according to the given training data
309
303
  For more details on this function, see [sklearn.svm.NuSVC.fit]
310
304
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC.fit)
@@ -331,12 +325,14 @@ class NuSVC(BaseTransformer):
331
325
 
332
326
  self._snowpark_cols = dataset.select(self.input_cols).columns
333
327
 
334
- # If we are already in a stored procedure, no need to kick off another one.
328
+ # If we are already in a stored procedure, no need to kick off another one.
335
329
  if SNOWML_SPROC_ENV in os.environ:
336
330
  statement_params = telemetry.get_function_usage_statement_params(
337
331
  project=_PROJECT,
338
332
  subproject=_SUBPROJECT,
339
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
333
+ function_name=telemetry.get_statement_params_full_func_name(
334
+ inspect.currentframe(), NuSVC.__class__.__name__
335
+ ),
340
336
  api_calls=[Session.call],
341
337
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
342
338
  )
@@ -357,7 +353,7 @@ class NuSVC(BaseTransformer):
357
353
  )
358
354
  self._sklearn_object = model_trainer.train()
359
355
  self._is_fitted = True
360
- self._get_model_signatures(dataset)
356
+ self._generate_model_signatures(dataset)
361
357
  return self
362
358
 
363
359
  def _batch_inference_validate_snowpark(
@@ -433,7 +429,9 @@ class NuSVC(BaseTransformer):
433
429
  # when it is classifier, infer the datatype from label columns
434
430
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
435
431
  # Batch inference takes a single expected output column type. Use the first columns type for now.
436
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
432
+ label_cols_signatures = [
433
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
434
+ ]
437
435
  if len(label_cols_signatures) == 0:
438
436
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
439
437
  raise exceptions.SnowflakeMLException(
@@ -441,25 +439,22 @@ class NuSVC(BaseTransformer):
441
439
  original_exception=ValueError(error_str),
442
440
  )
443
441
 
444
- expected_type_inferred = convert_sp_to_sf_type(
445
- label_cols_signatures[0].as_snowpark_type()
446
- )
442
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
447
443
 
448
444
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
449
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
445
+ assert isinstance(
446
+ dataset._session, Session
447
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
450
448
 
451
449
  transform_kwargs = dict(
452
- session = dataset._session,
453
- dependencies = self._deps,
454
- drop_input_cols = self._drop_input_cols,
455
- expected_output_cols_type = expected_type_inferred,
450
+ session=dataset._session,
451
+ dependencies=self._deps,
452
+ drop_input_cols=self._drop_input_cols,
453
+ expected_output_cols_type=expected_type_inferred,
456
454
  )
457
455
 
458
456
  elif isinstance(dataset, pd.DataFrame):
459
- transform_kwargs = dict(
460
- snowpark_input_cols = self._snowpark_cols,
461
- drop_input_cols = self._drop_input_cols
462
- )
457
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
463
458
 
464
459
  transform_handlers = ModelTransformerBuilder.build(
465
460
  dataset=dataset,
@@ -499,7 +494,7 @@ class NuSVC(BaseTransformer):
499
494
  Transformed dataset.
500
495
  """
501
496
  super()._check_dataset_type(dataset)
502
- inference_method="transform"
497
+ inference_method = "transform"
503
498
 
504
499
  # This dictionary contains optional kwargs for batch inference. These kwargs
505
500
  # are specific to the type of dataset used.
@@ -536,17 +531,14 @@ class NuSVC(BaseTransformer):
536
531
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
537
532
 
538
533
  transform_kwargs = dict(
539
- session = dataset._session,
540
- dependencies = self._deps,
541
- drop_input_cols = self._drop_input_cols,
542
- expected_output_cols_type = expected_dtype,
534
+ session=dataset._session,
535
+ dependencies=self._deps,
536
+ drop_input_cols=self._drop_input_cols,
537
+ expected_output_cols_type=expected_dtype,
543
538
  )
544
539
 
545
540
  elif isinstance(dataset, pd.DataFrame):
546
- transform_kwargs = dict(
547
- snowpark_input_cols = self._snowpark_cols,
548
- drop_input_cols = self._drop_input_cols
549
- )
541
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
550
542
 
551
543
  transform_handlers = ModelTransformerBuilder.build(
552
544
  dataset=dataset,
@@ -565,7 +557,11 @@ class NuSVC(BaseTransformer):
565
557
  return output_df
566
558
 
567
559
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
568
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
560
+ def fit_predict(
561
+ self,
562
+ dataset: Union[DataFrame, pd.DataFrame],
563
+ output_cols_prefix: str = "fit_predict_",
564
+ ) -> Union[DataFrame, pd.DataFrame]:
569
565
  """ Method not supported for this class.
570
566
 
571
567
 
@@ -590,7 +586,9 @@ class NuSVC(BaseTransformer):
590
586
  )
591
587
  output_result, fitted_estimator = model_trainer.train_fit_predict(
592
588
  drop_input_cols=self._drop_input_cols,
593
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
589
+ expected_output_cols_list=(
590
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
591
+ ),
594
592
  )
595
593
  self._sklearn_object = fitted_estimator
596
594
  self._is_fitted = True
@@ -607,6 +605,62 @@ class NuSVC(BaseTransformer):
607
605
  assert self._sklearn_object is not None
608
606
  return self._sklearn_object.embedding_
609
607
 
608
+
609
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
610
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
611
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
612
+ """
613
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
614
+ # The following condition is introduced for kneighbors methods, and not used in other methods
615
+ if output_cols:
616
+ output_cols = [
617
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
618
+ for c in output_cols
619
+ ]
620
+ elif getattr(self._sklearn_object, "classes_", None) is None:
621
+ output_cols = [output_cols_prefix]
622
+ elif self._sklearn_object is not None:
623
+ classes = self._sklearn_object.classes_
624
+ if isinstance(classes, numpy.ndarray):
625
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
626
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
627
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
628
+ output_cols = []
629
+ for i, cl in enumerate(classes):
630
+ # For binary classification, there is only one output column for each class
631
+ # ndarray as the two classes are complementary.
632
+ if len(cl) == 2:
633
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
634
+ else:
635
+ output_cols.extend([
636
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
637
+ ])
638
+ else:
639
+ output_cols = []
640
+
641
+ # Make sure column names are valid snowflake identifiers.
642
+ assert output_cols is not None # Make MyPy happy
643
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
644
+
645
+ return rv
646
+
647
+ def _align_expected_output_names(
648
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
649
+ ) -> List[str]:
650
+ # in case the inferred output column names dimension is different
651
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
652
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
653
+ output_df_columns = list(output_df_pd.columns)
654
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
655
+ if self.sample_weight_col:
656
+ output_df_columns_set -= set(self.sample_weight_col)
657
+ # if the dimension of inferred output column names is correct; use it
658
+ if len(expected_output_cols_list) == len(output_df_columns_set):
659
+ return expected_output_cols_list
660
+ # otherwise, use the sklearn estimator's output
661
+ else:
662
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
663
+
610
664
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
611
665
  @telemetry.send_api_usage_telemetry(
612
666
  project=_PROJECT,
@@ -639,24 +693,28 @@ class NuSVC(BaseTransformer):
639
693
  # are specific to the type of dataset used.
640
694
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
641
695
 
696
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
697
+
642
698
  if isinstance(dataset, DataFrame):
643
699
  self._deps = self._batch_inference_validate_snowpark(
644
700
  dataset=dataset,
645
701
  inference_method=inference_method,
646
702
  )
647
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
+ assert isinstance(
704
+ dataset._session, Session
705
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
706
  transform_kwargs = dict(
649
707
  session=dataset._session,
650
708
  dependencies=self._deps,
651
- drop_input_cols = self._drop_input_cols,
709
+ drop_input_cols=self._drop_input_cols,
652
710
  expected_output_cols_type="float",
653
711
  )
712
+ expected_output_cols = self._align_expected_output_names(
713
+ inference_method, dataset, expected_output_cols, output_cols_prefix
714
+ )
654
715
 
655
716
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
717
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
718
 
661
719
  transform_handlers = ModelTransformerBuilder.build(
662
720
  dataset=dataset,
@@ -668,7 +726,7 @@ class NuSVC(BaseTransformer):
668
726
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
669
727
  inference_method=inference_method,
670
728
  input_cols=self.input_cols,
671
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
729
+ expected_output_cols=expected_output_cols,
672
730
  **transform_kwargs
673
731
  )
674
732
  return output_df
@@ -700,7 +758,8 @@ class NuSVC(BaseTransformer):
700
758
  Output dataset with log probability of the sample for each class in the model.
701
759
  """
702
760
  super()._check_dataset_type(dataset)
703
- inference_method="predict_log_proba"
761
+ inference_method = "predict_log_proba"
762
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
704
763
 
705
764
  # This dictionary contains optional kwargs for batch inference. These kwargs
706
765
  # are specific to the type of dataset used.
@@ -711,18 +770,20 @@ class NuSVC(BaseTransformer):
711
770
  dataset=dataset,
712
771
  inference_method=inference_method,
713
772
  )
714
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ assert isinstance(
774
+ dataset._session, Session
775
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
715
776
  transform_kwargs = dict(
716
777
  session=dataset._session,
717
778
  dependencies=self._deps,
718
- drop_input_cols = self._drop_input_cols,
779
+ drop_input_cols=self._drop_input_cols,
719
780
  expected_output_cols_type="float",
720
781
  )
782
+ expected_output_cols = self._align_expected_output_names(
783
+ inference_method, dataset, expected_output_cols, output_cols_prefix
784
+ )
721
785
  elif isinstance(dataset, pd.DataFrame):
722
- transform_kwargs = dict(
723
- snowpark_input_cols = self._snowpark_cols,
724
- drop_input_cols = self._drop_input_cols
725
- )
786
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
726
787
 
727
788
  transform_handlers = ModelTransformerBuilder.build(
728
789
  dataset=dataset,
@@ -735,7 +796,7 @@ class NuSVC(BaseTransformer):
735
796
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
736
797
  inference_method=inference_method,
737
798
  input_cols=self.input_cols,
738
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
799
+ expected_output_cols=expected_output_cols,
739
800
  **transform_kwargs
740
801
  )
741
802
  return output_df
@@ -763,30 +824,34 @@ class NuSVC(BaseTransformer):
763
824
  Output dataset with results of the decision function for the samples in input dataset.
764
825
  """
765
826
  super()._check_dataset_type(dataset)
766
- inference_method="decision_function"
827
+ inference_method = "decision_function"
767
828
 
768
829
  # This dictionary contains optional kwargs for batch inference. These kwargs
769
830
  # are specific to the type of dataset used.
770
831
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
771
832
 
833
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
834
+
772
835
  if isinstance(dataset, DataFrame):
773
836
  self._deps = self._batch_inference_validate_snowpark(
774
837
  dataset=dataset,
775
838
  inference_method=inference_method,
776
839
  )
777
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
840
+ assert isinstance(
841
+ dataset._session, Session
842
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
843
  transform_kwargs = dict(
779
844
  session=dataset._session,
780
845
  dependencies=self._deps,
781
- drop_input_cols = self._drop_input_cols,
846
+ drop_input_cols=self._drop_input_cols,
782
847
  expected_output_cols_type="float",
783
848
  )
849
+ expected_output_cols = self._align_expected_output_names(
850
+ inference_method, dataset, expected_output_cols, output_cols_prefix
851
+ )
784
852
 
785
853
  elif isinstance(dataset, pd.DataFrame):
786
- transform_kwargs = dict(
787
- snowpark_input_cols = self._snowpark_cols,
788
- drop_input_cols = self._drop_input_cols
789
- )
854
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
790
855
 
791
856
  transform_handlers = ModelTransformerBuilder.build(
792
857
  dataset=dataset,
@@ -799,7 +864,7 @@ class NuSVC(BaseTransformer):
799
864
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
800
865
  inference_method=inference_method,
801
866
  input_cols=self.input_cols,
802
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
867
+ expected_output_cols=expected_output_cols,
803
868
  **transform_kwargs
804
869
  )
805
870
  return output_df
@@ -828,12 +893,14 @@ class NuSVC(BaseTransformer):
828
893
  Output dataset with probability of the sample for each class in the model.
829
894
  """
830
895
  super()._check_dataset_type(dataset)
831
- inference_method="score_samples"
896
+ inference_method = "score_samples"
832
897
 
833
898
  # This dictionary contains optional kwargs for batch inference. These kwargs
834
899
  # are specific to the type of dataset used.
835
900
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
836
901
 
902
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
903
+
837
904
  if isinstance(dataset, DataFrame):
838
905
  self._deps = self._batch_inference_validate_snowpark(
839
906
  dataset=dataset,
@@ -846,6 +913,9 @@ class NuSVC(BaseTransformer):
846
913
  drop_input_cols = self._drop_input_cols,
847
914
  expected_output_cols_type="float",
848
915
  )
916
+ expected_output_cols = self._align_expected_output_names(
917
+ inference_method, dataset, expected_output_cols, output_cols_prefix
918
+ )
849
919
 
850
920
  elif isinstance(dataset, pd.DataFrame):
851
921
  transform_kwargs = dict(
@@ -864,7 +934,7 @@ class NuSVC(BaseTransformer):
864
934
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
865
935
  inference_method=inference_method,
866
936
  input_cols=self.input_cols,
867
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
937
+ expected_output_cols=expected_output_cols,
868
938
  **transform_kwargs
869
939
  )
870
940
  return output_df
@@ -1011,50 +1081,84 @@ class NuSVC(BaseTransformer):
1011
1081
  )
1012
1082
  return output_df
1013
1083
 
1084
+
1085
+
1086
+ def to_sklearn(self) -> Any:
1087
+ """Get sklearn.svm.NuSVC object.
1088
+ """
1089
+ if self._sklearn_object is None:
1090
+ self._sklearn_object = self._create_sklearn_object()
1091
+ return self._sklearn_object
1092
+
1093
+ def to_xgboost(self) -> Any:
1094
+ raise exceptions.SnowflakeMLException(
1095
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1096
+ original_exception=AttributeError(
1097
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1098
+ "to_xgboost()",
1099
+ "to_sklearn()"
1100
+ )
1101
+ ),
1102
+ )
1103
+
1104
+ def to_lightgbm(self) -> Any:
1105
+ raise exceptions.SnowflakeMLException(
1106
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1107
+ original_exception=AttributeError(
1108
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1109
+ "to_lightgbm()",
1110
+ "to_sklearn()"
1111
+ )
1112
+ ),
1113
+ )
1014
1114
 
1015
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1115
+ def _get_dependencies(self) -> List[str]:
1116
+ return self._deps
1117
+
1118
+
1119
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1016
1120
  self._model_signature_dict = dict()
1017
1121
 
1018
1122
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1019
1123
 
1020
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1124
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1021
1125
  outputs: List[BaseFeatureSpec] = []
1022
1126
  if hasattr(self, "predict"):
1023
1127
  # keep mypy happy
1024
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1128
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1025
1129
  # For classifier, the type of predict is the same as the type of label
1026
- if self._sklearn_object._estimator_type == 'classifier':
1027
- # label columns is the desired type for output
1130
+ if self._sklearn_object._estimator_type == "classifier":
1131
+ # label columns is the desired type for output
1028
1132
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1029
1133
  # rename the output columns
1030
1134
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1135
+ self._model_signature_dict["predict"] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1034
1138
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1035
1139
  # For outlier models, returns -1 for outliers and 1 for inliers.
1036
- # Clusterer returns int64 cluster labels.
1140
+ # Clusterer returns int64 cluster labels.
1037
1141
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1038
1142
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1039
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1040
- ([] if self._drop_input_cols else inputs)
1041
- + outputs)
1042
-
1143
+ self._model_signature_dict["predict"] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1146
+
1043
1147
  # For regressor, the type of predict is float64
1044
- elif self._sklearn_object._estimator_type == 'regressor':
1148
+ elif self._sklearn_object._estimator_type == "regressor":
1045
1149
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1150
+ self._model_signature_dict["predict"] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1153
+
1050
1154
  for prob_func in PROB_FUNCTIONS:
1051
1155
  if hasattr(self, prob_func):
1052
1156
  output_cols_prefix: str = f"{prob_func}_"
1053
1157
  output_column_names = self._get_output_column_names(output_cols_prefix)
1054
1158
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1055
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1056
- ([] if self._drop_input_cols else inputs)
1057
- + outputs)
1159
+ self._model_signature_dict[prob_func] = ModelSignature(
1160
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1161
+ )
1058
1162
 
1059
1163
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1060
1164
  items = list(self._model_signature_dict.items())
@@ -1067,10 +1171,10 @@ class NuSVC(BaseTransformer):
1067
1171
  """Returns model signature of current class.
1068
1172
 
1069
1173
  Raises:
1070
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1174
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1071
1175
 
1072
1176
  Returns:
1073
- Dict[str, ModelSignature]: each method and its input output signature
1177
+ Dict with each method and its input output signature
1074
1178
  """
1075
1179
  if self._model_signature_dict is None:
1076
1180
  raise exceptions.SnowflakeMLException(
@@ -1078,35 +1182,3 @@ class NuSVC(BaseTransformer):
1078
1182
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1079
1183
  )
1080
1184
  return self._model_signature_dict
1081
-
1082
- def to_sklearn(self) -> Any:
1083
- """Get sklearn.svm.NuSVC object.
1084
- """
1085
- if self._sklearn_object is None:
1086
- self._sklearn_object = self._create_sklearn_object()
1087
- return self._sklearn_object
1088
-
1089
- def to_xgboost(self) -> Any:
1090
- raise exceptions.SnowflakeMLException(
1091
- error_code=error_codes.METHOD_NOT_ALLOWED,
1092
- original_exception=AttributeError(
1093
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
- "to_xgboost()",
1095
- "to_sklearn()"
1096
- )
1097
- ),
1098
- )
1099
-
1100
- def to_lightgbm(self) -> Any:
1101
- raise exceptions.SnowflakeMLException(
1102
- error_code=error_codes.METHOD_NOT_ALLOWED,
1103
- original_exception=AttributeError(
1104
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
- "to_lightgbm()",
1106
- "to_sklearn()"
1107
- )
1108
- ),
1109
- )
1110
-
1111
- def _get_dependencies(self) -> List[str]:
1112
- return self._deps