snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
32
  BatchInferenceKwargsTypedDict,
33
33
  ScoreKwargsTypedDict
34
34
  )
35
+ from snowflake.ml.model._signatures import utils as model_signature_utils
36
+ from snowflake.ml.model.model_signature import (
37
+ BaseFeatureSpec,
38
+ DataType,
39
+ FeatureSpec,
40
+ ModelSignature,
41
+ _infer_signature,
42
+ _rename_signature_with_snowflake_identifiers,
43
+ )
35
44
 
36
45
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
46
 
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
51
  validate_sklearn_args,
43
52
  )
44
53
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
54
  _PROJECT = "ModelDevelopment"
56
55
  # Derive subproject from module name by removing "sklearn"
57
56
  # and converting module name from underscore to CamelCase
@@ -421,12 +420,7 @@ class XGBRegressor(BaseTransformer):
421
420
  )
422
421
  return selected_cols
423
422
 
424
- @telemetry.send_api_usage_telemetry(
425
- project=_PROJECT,
426
- subproject=_SUBPROJECT,
427
- custom_tags=dict([("autogen", True)]),
428
- )
429
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRegressor":
423
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRegressor":
430
424
  """Fit gradient boosting model
431
425
  For more details on this function, see [xgboost.XGBRegressor.fit]
432
426
  (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor.fit)
@@ -453,12 +447,14 @@ class XGBRegressor(BaseTransformer):
453
447
 
454
448
  self._snowpark_cols = dataset.select(self.input_cols).columns
455
449
 
456
- # If we are already in a stored procedure, no need to kick off another one.
450
+ # If we are already in a stored procedure, no need to kick off another one.
457
451
  if SNOWML_SPROC_ENV in os.environ:
458
452
  statement_params = telemetry.get_function_usage_statement_params(
459
453
  project=_PROJECT,
460
454
  subproject=_SUBPROJECT,
461
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRegressor.__class__.__name__),
455
+ function_name=telemetry.get_statement_params_full_func_name(
456
+ inspect.currentframe(), XGBRegressor.__class__.__name__
457
+ ),
462
458
  api_calls=[Session.call],
463
459
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
464
460
  )
@@ -479,7 +475,7 @@ class XGBRegressor(BaseTransformer):
479
475
  )
480
476
  self._sklearn_object = model_trainer.train()
481
477
  self._is_fitted = True
482
- self._get_model_signatures(dataset)
478
+ self._generate_model_signatures(dataset)
483
479
  return self
484
480
 
485
481
  def _batch_inference_validate_snowpark(
@@ -555,7 +551,9 @@ class XGBRegressor(BaseTransformer):
555
551
  # when it is classifier, infer the datatype from label columns
556
552
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
557
553
  # Batch inference takes a single expected output column type. Use the first columns type for now.
558
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
554
+ label_cols_signatures = [
555
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
556
+ ]
559
557
  if len(label_cols_signatures) == 0:
560
558
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
561
559
  raise exceptions.SnowflakeMLException(
@@ -563,25 +561,22 @@ class XGBRegressor(BaseTransformer):
563
561
  original_exception=ValueError(error_str),
564
562
  )
565
563
 
566
- expected_type_inferred = convert_sp_to_sf_type(
567
- label_cols_signatures[0].as_snowpark_type()
568
- )
564
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
569
565
 
570
566
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
571
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
567
+ assert isinstance(
568
+ dataset._session, Session
569
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
572
570
 
573
571
  transform_kwargs = dict(
574
- session = dataset._session,
575
- dependencies = self._deps,
576
- drop_input_cols = self._drop_input_cols,
577
- expected_output_cols_type = expected_type_inferred,
572
+ session=dataset._session,
573
+ dependencies=self._deps,
574
+ drop_input_cols=self._drop_input_cols,
575
+ expected_output_cols_type=expected_type_inferred,
578
576
  )
579
577
 
580
578
  elif isinstance(dataset, pd.DataFrame):
581
- transform_kwargs = dict(
582
- snowpark_input_cols = self._snowpark_cols,
583
- drop_input_cols = self._drop_input_cols
584
- )
579
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
585
580
 
586
581
  transform_handlers = ModelTransformerBuilder.build(
587
582
  dataset=dataset,
@@ -621,7 +616,7 @@ class XGBRegressor(BaseTransformer):
621
616
  Transformed dataset.
622
617
  """
623
618
  super()._check_dataset_type(dataset)
624
- inference_method="transform"
619
+ inference_method = "transform"
625
620
 
626
621
  # This dictionary contains optional kwargs for batch inference. These kwargs
627
622
  # are specific to the type of dataset used.
@@ -658,17 +653,14 @@ class XGBRegressor(BaseTransformer):
658
653
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
659
654
 
660
655
  transform_kwargs = dict(
661
- session = dataset._session,
662
- dependencies = self._deps,
663
- drop_input_cols = self._drop_input_cols,
664
- expected_output_cols_type = expected_dtype,
656
+ session=dataset._session,
657
+ dependencies=self._deps,
658
+ drop_input_cols=self._drop_input_cols,
659
+ expected_output_cols_type=expected_dtype,
665
660
  )
666
661
 
667
662
  elif isinstance(dataset, pd.DataFrame):
668
- transform_kwargs = dict(
669
- snowpark_input_cols = self._snowpark_cols,
670
- drop_input_cols = self._drop_input_cols
671
- )
663
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
672
664
 
673
665
  transform_handlers = ModelTransformerBuilder.build(
674
666
  dataset=dataset,
@@ -687,7 +679,11 @@ class XGBRegressor(BaseTransformer):
687
679
  return output_df
688
680
 
689
681
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
690
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
682
+ def fit_predict(
683
+ self,
684
+ dataset: Union[DataFrame, pd.DataFrame],
685
+ output_cols_prefix: str = "fit_predict_",
686
+ ) -> Union[DataFrame, pd.DataFrame]:
691
687
  """ Method not supported for this class.
692
688
 
693
689
 
@@ -712,7 +708,9 @@ class XGBRegressor(BaseTransformer):
712
708
  )
713
709
  output_result, fitted_estimator = model_trainer.train_fit_predict(
714
710
  drop_input_cols=self._drop_input_cols,
715
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
711
+ expected_output_cols_list=(
712
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
713
+ ),
716
714
  )
717
715
  self._sklearn_object = fitted_estimator
718
716
  self._is_fitted = True
@@ -729,6 +727,62 @@ class XGBRegressor(BaseTransformer):
729
727
  assert self._sklearn_object is not None
730
728
  return self._sklearn_object.embedding_
731
729
 
730
+
731
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
732
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
733
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
734
+ """
735
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
736
+ # The following condition is introduced for kneighbors methods, and not used in other methods
737
+ if output_cols:
738
+ output_cols = [
739
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
740
+ for c in output_cols
741
+ ]
742
+ elif getattr(self._sklearn_object, "classes_", None) is None:
743
+ output_cols = [output_cols_prefix]
744
+ elif self._sklearn_object is not None:
745
+ classes = self._sklearn_object.classes_
746
+ if isinstance(classes, numpy.ndarray):
747
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
748
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
749
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
750
+ output_cols = []
751
+ for i, cl in enumerate(classes):
752
+ # For binary classification, there is only one output column for each class
753
+ # ndarray as the two classes are complementary.
754
+ if len(cl) == 2:
755
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
756
+ else:
757
+ output_cols.extend([
758
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
759
+ ])
760
+ else:
761
+ output_cols = []
762
+
763
+ # Make sure column names are valid snowflake identifiers.
764
+ assert output_cols is not None # Make MyPy happy
765
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
766
+
767
+ return rv
768
+
769
+ def _align_expected_output_names(
770
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
771
+ ) -> List[str]:
772
+ # in case the inferred output column names dimension is different
773
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
774
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
775
+ output_df_columns = list(output_df_pd.columns)
776
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
777
+ if self.sample_weight_col:
778
+ output_df_columns_set -= set(self.sample_weight_col)
779
+ # if the dimension of inferred output column names is correct; use it
780
+ if len(expected_output_cols_list) == len(output_df_columns_set):
781
+ return expected_output_cols_list
782
+ # otherwise, use the sklearn estimator's output
783
+ else:
784
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
785
+
732
786
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
733
787
  @telemetry.send_api_usage_telemetry(
734
788
  project=_PROJECT,
@@ -759,24 +813,28 @@ class XGBRegressor(BaseTransformer):
759
813
  # are specific to the type of dataset used.
760
814
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
761
815
 
816
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
817
+
762
818
  if isinstance(dataset, DataFrame):
763
819
  self._deps = self._batch_inference_validate_snowpark(
764
820
  dataset=dataset,
765
821
  inference_method=inference_method,
766
822
  )
767
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
823
+ assert isinstance(
824
+ dataset._session, Session
825
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
768
826
  transform_kwargs = dict(
769
827
  session=dataset._session,
770
828
  dependencies=self._deps,
771
- drop_input_cols = self._drop_input_cols,
829
+ drop_input_cols=self._drop_input_cols,
772
830
  expected_output_cols_type="float",
773
831
  )
832
+ expected_output_cols = self._align_expected_output_names(
833
+ inference_method, dataset, expected_output_cols, output_cols_prefix
834
+ )
774
835
 
775
836
  elif isinstance(dataset, pd.DataFrame):
776
- transform_kwargs = dict(
777
- snowpark_input_cols = self._snowpark_cols,
778
- drop_input_cols = self._drop_input_cols
779
- )
837
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
780
838
 
781
839
  transform_handlers = ModelTransformerBuilder.build(
782
840
  dataset=dataset,
@@ -788,7 +846,7 @@ class XGBRegressor(BaseTransformer):
788
846
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
789
847
  inference_method=inference_method,
790
848
  input_cols=self.input_cols,
791
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
849
+ expected_output_cols=expected_output_cols,
792
850
  **transform_kwargs
793
851
  )
794
852
  return output_df
@@ -818,7 +876,8 @@ class XGBRegressor(BaseTransformer):
818
876
  Output dataset with log probability of the sample for each class in the model.
819
877
  """
820
878
  super()._check_dataset_type(dataset)
821
- inference_method="predict_log_proba"
879
+ inference_method = "predict_log_proba"
880
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
822
881
 
823
882
  # This dictionary contains optional kwargs for batch inference. These kwargs
824
883
  # are specific to the type of dataset used.
@@ -829,18 +888,20 @@ class XGBRegressor(BaseTransformer):
829
888
  dataset=dataset,
830
889
  inference_method=inference_method,
831
890
  )
832
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
891
+ assert isinstance(
892
+ dataset._session, Session
893
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
833
894
  transform_kwargs = dict(
834
895
  session=dataset._session,
835
896
  dependencies=self._deps,
836
- drop_input_cols = self._drop_input_cols,
897
+ drop_input_cols=self._drop_input_cols,
837
898
  expected_output_cols_type="float",
838
899
  )
900
+ expected_output_cols = self._align_expected_output_names(
901
+ inference_method, dataset, expected_output_cols, output_cols_prefix
902
+ )
839
903
  elif isinstance(dataset, pd.DataFrame):
840
- transform_kwargs = dict(
841
- snowpark_input_cols = self._snowpark_cols,
842
- drop_input_cols = self._drop_input_cols
843
- )
904
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
844
905
 
845
906
  transform_handlers = ModelTransformerBuilder.build(
846
907
  dataset=dataset,
@@ -853,7 +914,7 @@ class XGBRegressor(BaseTransformer):
853
914
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
854
915
  inference_method=inference_method,
855
916
  input_cols=self.input_cols,
856
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
917
+ expected_output_cols=expected_output_cols,
857
918
  **transform_kwargs
858
919
  )
859
920
  return output_df
@@ -879,30 +940,34 @@ class XGBRegressor(BaseTransformer):
879
940
  Output dataset with results of the decision function for the samples in input dataset.
880
941
  """
881
942
  super()._check_dataset_type(dataset)
882
- inference_method="decision_function"
943
+ inference_method = "decision_function"
883
944
 
884
945
  # This dictionary contains optional kwargs for batch inference. These kwargs
885
946
  # are specific to the type of dataset used.
886
947
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
887
948
 
949
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
950
+
888
951
  if isinstance(dataset, DataFrame):
889
952
  self._deps = self._batch_inference_validate_snowpark(
890
953
  dataset=dataset,
891
954
  inference_method=inference_method,
892
955
  )
893
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
956
+ assert isinstance(
957
+ dataset._session, Session
958
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
894
959
  transform_kwargs = dict(
895
960
  session=dataset._session,
896
961
  dependencies=self._deps,
897
- drop_input_cols = self._drop_input_cols,
962
+ drop_input_cols=self._drop_input_cols,
898
963
  expected_output_cols_type="float",
899
964
  )
965
+ expected_output_cols = self._align_expected_output_names(
966
+ inference_method, dataset, expected_output_cols, output_cols_prefix
967
+ )
900
968
 
901
969
  elif isinstance(dataset, pd.DataFrame):
902
- transform_kwargs = dict(
903
- snowpark_input_cols = self._snowpark_cols,
904
- drop_input_cols = self._drop_input_cols
905
- )
970
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
906
971
 
907
972
  transform_handlers = ModelTransformerBuilder.build(
908
973
  dataset=dataset,
@@ -915,7 +980,7 @@ class XGBRegressor(BaseTransformer):
915
980
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
916
981
  inference_method=inference_method,
917
982
  input_cols=self.input_cols,
918
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
983
+ expected_output_cols=expected_output_cols,
919
984
  **transform_kwargs
920
985
  )
921
986
  return output_df
@@ -944,12 +1009,14 @@ class XGBRegressor(BaseTransformer):
944
1009
  Output dataset with probability of the sample for each class in the model.
945
1010
  """
946
1011
  super()._check_dataset_type(dataset)
947
- inference_method="score_samples"
1012
+ inference_method = "score_samples"
948
1013
 
949
1014
  # This dictionary contains optional kwargs for batch inference. These kwargs
950
1015
  # are specific to the type of dataset used.
951
1016
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
952
1017
 
1018
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
1019
+
953
1020
  if isinstance(dataset, DataFrame):
954
1021
  self._deps = self._batch_inference_validate_snowpark(
955
1022
  dataset=dataset,
@@ -962,6 +1029,9 @@ class XGBRegressor(BaseTransformer):
962
1029
  drop_input_cols = self._drop_input_cols,
963
1030
  expected_output_cols_type="float",
964
1031
  )
1032
+ expected_output_cols = self._align_expected_output_names(
1033
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1034
+ )
965
1035
 
966
1036
  elif isinstance(dataset, pd.DataFrame):
967
1037
  transform_kwargs = dict(
@@ -980,7 +1050,7 @@ class XGBRegressor(BaseTransformer):
980
1050
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
981
1051
  inference_method=inference_method,
982
1052
  input_cols=self.input_cols,
983
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1053
+ expected_output_cols=expected_output_cols,
984
1054
  **transform_kwargs
985
1055
  )
986
1056
  return output_df
@@ -1127,50 +1197,84 @@ class XGBRegressor(BaseTransformer):
1127
1197
  )
1128
1198
  return output_df
1129
1199
 
1200
+
1201
+
1202
+ def to_xgboost(self) -> Any:
1203
+ """Get xgboost.XGBRegressor object.
1204
+ """
1205
+ if self._sklearn_object is None:
1206
+ self._sklearn_object = self._create_sklearn_object()
1207
+ return self._sklearn_object
1208
+
1209
+ def to_sklearn(self) -> Any:
1210
+ raise exceptions.SnowflakeMLException(
1211
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1212
+ original_exception=AttributeError(
1213
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1214
+ "to_sklearn()",
1215
+ "to_xgboost()"
1216
+ )
1217
+ ),
1218
+ )
1219
+
1220
+ def to_lightgbm(self) -> Any:
1221
+ raise exceptions.SnowflakeMLException(
1222
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1223
+ original_exception=AttributeError(
1224
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1225
+ "to_lightgbm()",
1226
+ "to_xgboost()"
1227
+ )
1228
+ ),
1229
+ )
1130
1230
 
1131
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1231
+ def _get_dependencies(self) -> List[str]:
1232
+ return self._deps
1233
+
1234
+
1235
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1132
1236
  self._model_signature_dict = dict()
1133
1237
 
1134
1238
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1135
1239
 
1136
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1240
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1137
1241
  outputs: List[BaseFeatureSpec] = []
1138
1242
  if hasattr(self, "predict"):
1139
1243
  # keep mypy happy
1140
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1244
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1141
1245
  # For classifier, the type of predict is the same as the type of label
1142
- if self._sklearn_object._estimator_type == 'classifier':
1143
- # label columns is the desired type for output
1246
+ if self._sklearn_object._estimator_type == "classifier":
1247
+ # label columns is the desired type for output
1144
1248
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1145
1249
  # rename the output columns
1146
1250
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1147
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1148
- ([] if self._drop_input_cols else inputs)
1149
- + outputs)
1251
+ self._model_signature_dict["predict"] = ModelSignature(
1252
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1253
+ )
1150
1254
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1151
1255
  # For outlier models, returns -1 for outliers and 1 for inliers.
1152
- # Clusterer returns int64 cluster labels.
1256
+ # Clusterer returns int64 cluster labels.
1153
1257
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1154
1258
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1155
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1156
- ([] if self._drop_input_cols else inputs)
1157
- + outputs)
1158
-
1259
+ self._model_signature_dict["predict"] = ModelSignature(
1260
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1261
+ )
1262
+
1159
1263
  # For regressor, the type of predict is float64
1160
- elif self._sklearn_object._estimator_type == 'regressor':
1264
+ elif self._sklearn_object._estimator_type == "regressor":
1161
1265
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1162
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1163
- ([] if self._drop_input_cols else inputs)
1164
- + outputs)
1165
-
1266
+ self._model_signature_dict["predict"] = ModelSignature(
1267
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1268
+ )
1269
+
1166
1270
  for prob_func in PROB_FUNCTIONS:
1167
1271
  if hasattr(self, prob_func):
1168
1272
  output_cols_prefix: str = f"{prob_func}_"
1169
1273
  output_column_names = self._get_output_column_names(output_cols_prefix)
1170
1274
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1171
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1172
- ([] if self._drop_input_cols else inputs)
1173
- + outputs)
1275
+ self._model_signature_dict[prob_func] = ModelSignature(
1276
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1277
+ )
1174
1278
 
1175
1279
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1176
1280
  items = list(self._model_signature_dict.items())
@@ -1183,10 +1287,10 @@ class XGBRegressor(BaseTransformer):
1183
1287
  """Returns model signature of current class.
1184
1288
 
1185
1289
  Raises:
1186
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1290
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1187
1291
 
1188
1292
  Returns:
1189
- Dict[str, ModelSignature]: each method and its input output signature
1293
+ Dict with each method and its input output signature
1190
1294
  """
1191
1295
  if self._model_signature_dict is None:
1192
1296
  raise exceptions.SnowflakeMLException(
@@ -1194,35 +1298,3 @@ class XGBRegressor(BaseTransformer):
1194
1298
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1195
1299
  )
1196
1300
  return self._model_signature_dict
1197
-
1198
- def to_xgboost(self) -> Any:
1199
- """Get xgboost.XGBRegressor object.
1200
- """
1201
- if self._sklearn_object is None:
1202
- self._sklearn_object = self._create_sklearn_object()
1203
- return self._sklearn_object
1204
-
1205
- def to_sklearn(self) -> Any:
1206
- raise exceptions.SnowflakeMLException(
1207
- error_code=error_codes.METHOD_NOT_ALLOWED,
1208
- original_exception=AttributeError(
1209
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1210
- "to_sklearn()",
1211
- "to_xgboost()"
1212
- )
1213
- ),
1214
- )
1215
-
1216
- def to_lightgbm(self) -> Any:
1217
- raise exceptions.SnowflakeMLException(
1218
- error_code=error_codes.METHOD_NOT_ALLOWED,
1219
- original_exception=AttributeError(
1220
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1221
- "to_lightgbm()",
1222
- "to_xgboost()"
1223
- )
1224
- ),
1225
- )
1226
-
1227
- def _get_dependencies(self) -> List[str]:
1228
- return self._deps