snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -305,12 +304,7 @@ class RANSACRegressor(BaseTransformer):
|
|
305
304
|
)
|
306
305
|
return selected_cols
|
307
306
|
|
308
|
-
|
309
|
-
project=_PROJECT,
|
310
|
-
subproject=_SUBPROJECT,
|
311
|
-
custom_tags=dict([("autogen", True)]),
|
312
|
-
)
|
313
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RANSACRegressor":
|
307
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RANSACRegressor":
|
314
308
|
"""Fit estimator using RANSAC algorithm
|
315
309
|
For more details on this function, see [sklearn.linear_model.RANSACRegressor.fit]
|
316
310
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor.fit)
|
@@ -337,12 +331,14 @@ class RANSACRegressor(BaseTransformer):
|
|
337
331
|
|
338
332
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
339
333
|
|
340
|
-
|
334
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
341
335
|
if SNOWML_SPROC_ENV in os.environ:
|
342
336
|
statement_params = telemetry.get_function_usage_statement_params(
|
343
337
|
project=_PROJECT,
|
344
338
|
subproject=_SUBPROJECT,
|
345
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
339
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
340
|
+
inspect.currentframe(), RANSACRegressor.__class__.__name__
|
341
|
+
),
|
346
342
|
api_calls=[Session.call],
|
347
343
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
348
344
|
)
|
@@ -363,7 +359,7 @@ class RANSACRegressor(BaseTransformer):
|
|
363
359
|
)
|
364
360
|
self._sklearn_object = model_trainer.train()
|
365
361
|
self._is_fitted = True
|
366
|
-
self.
|
362
|
+
self._generate_model_signatures(dataset)
|
367
363
|
return self
|
368
364
|
|
369
365
|
def _batch_inference_validate_snowpark(
|
@@ -439,7 +435,9 @@ class RANSACRegressor(BaseTransformer):
|
|
439
435
|
# when it is classifier, infer the datatype from label columns
|
440
436
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
441
437
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
442
|
-
label_cols_signatures = [
|
438
|
+
label_cols_signatures = [
|
439
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
440
|
+
]
|
443
441
|
if len(label_cols_signatures) == 0:
|
444
442
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
445
443
|
raise exceptions.SnowflakeMLException(
|
@@ -447,25 +445,22 @@ class RANSACRegressor(BaseTransformer):
|
|
447
445
|
original_exception=ValueError(error_str),
|
448
446
|
)
|
449
447
|
|
450
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
451
|
-
label_cols_signatures[0].as_snowpark_type()
|
452
|
-
)
|
448
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
453
449
|
|
454
450
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
455
|
-
assert isinstance(
|
451
|
+
assert isinstance(
|
452
|
+
dataset._session, Session
|
453
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
456
454
|
|
457
455
|
transform_kwargs = dict(
|
458
|
-
session
|
459
|
-
dependencies
|
460
|
-
drop_input_cols
|
461
|
-
expected_output_cols_type
|
456
|
+
session=dataset._session,
|
457
|
+
dependencies=self._deps,
|
458
|
+
drop_input_cols=self._drop_input_cols,
|
459
|
+
expected_output_cols_type=expected_type_inferred,
|
462
460
|
)
|
463
461
|
|
464
462
|
elif isinstance(dataset, pd.DataFrame):
|
465
|
-
transform_kwargs = dict(
|
466
|
-
snowpark_input_cols = self._snowpark_cols,
|
467
|
-
drop_input_cols = self._drop_input_cols
|
468
|
-
)
|
463
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
469
464
|
|
470
465
|
transform_handlers = ModelTransformerBuilder.build(
|
471
466
|
dataset=dataset,
|
@@ -505,7 +500,7 @@ class RANSACRegressor(BaseTransformer):
|
|
505
500
|
Transformed dataset.
|
506
501
|
"""
|
507
502
|
super()._check_dataset_type(dataset)
|
508
|
-
inference_method="transform"
|
503
|
+
inference_method = "transform"
|
509
504
|
|
510
505
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
511
506
|
# are specific to the type of dataset used.
|
@@ -542,17 +537,14 @@ class RANSACRegressor(BaseTransformer):
|
|
542
537
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
543
538
|
|
544
539
|
transform_kwargs = dict(
|
545
|
-
session
|
546
|
-
dependencies
|
547
|
-
drop_input_cols
|
548
|
-
expected_output_cols_type
|
540
|
+
session=dataset._session,
|
541
|
+
dependencies=self._deps,
|
542
|
+
drop_input_cols=self._drop_input_cols,
|
543
|
+
expected_output_cols_type=expected_dtype,
|
549
544
|
)
|
550
545
|
|
551
546
|
elif isinstance(dataset, pd.DataFrame):
|
552
|
-
transform_kwargs = dict(
|
553
|
-
snowpark_input_cols = self._snowpark_cols,
|
554
|
-
drop_input_cols = self._drop_input_cols
|
555
|
-
)
|
547
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
556
548
|
|
557
549
|
transform_handlers = ModelTransformerBuilder.build(
|
558
550
|
dataset=dataset,
|
@@ -571,7 +563,11 @@ class RANSACRegressor(BaseTransformer):
|
|
571
563
|
return output_df
|
572
564
|
|
573
565
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
574
|
-
def fit_predict(
|
566
|
+
def fit_predict(
|
567
|
+
self,
|
568
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
569
|
+
output_cols_prefix: str = "fit_predict_",
|
570
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
575
571
|
""" Method not supported for this class.
|
576
572
|
|
577
573
|
|
@@ -596,7 +592,9 @@ class RANSACRegressor(BaseTransformer):
|
|
596
592
|
)
|
597
593
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
598
594
|
drop_input_cols=self._drop_input_cols,
|
599
|
-
expected_output_cols_list=
|
595
|
+
expected_output_cols_list=(
|
596
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
597
|
+
),
|
600
598
|
)
|
601
599
|
self._sklearn_object = fitted_estimator
|
602
600
|
self._is_fitted = True
|
@@ -613,6 +611,62 @@ class RANSACRegressor(BaseTransformer):
|
|
613
611
|
assert self._sklearn_object is not None
|
614
612
|
return self._sklearn_object.embedding_
|
615
613
|
|
614
|
+
|
615
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
616
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
617
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
618
|
+
"""
|
619
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
620
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
621
|
+
if output_cols:
|
622
|
+
output_cols = [
|
623
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
624
|
+
for c in output_cols
|
625
|
+
]
|
626
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
627
|
+
output_cols = [output_cols_prefix]
|
628
|
+
elif self._sklearn_object is not None:
|
629
|
+
classes = self._sklearn_object.classes_
|
630
|
+
if isinstance(classes, numpy.ndarray):
|
631
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
632
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
633
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
634
|
+
output_cols = []
|
635
|
+
for i, cl in enumerate(classes):
|
636
|
+
# For binary classification, there is only one output column for each class
|
637
|
+
# ndarray as the two classes are complementary.
|
638
|
+
if len(cl) == 2:
|
639
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
640
|
+
else:
|
641
|
+
output_cols.extend([
|
642
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
643
|
+
])
|
644
|
+
else:
|
645
|
+
output_cols = []
|
646
|
+
|
647
|
+
# Make sure column names are valid snowflake identifiers.
|
648
|
+
assert output_cols is not None # Make MyPy happy
|
649
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
650
|
+
|
651
|
+
return rv
|
652
|
+
|
653
|
+
def _align_expected_output_names(
|
654
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
655
|
+
) -> List[str]:
|
656
|
+
# in case the inferred output column names dimension is different
|
657
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
658
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
659
|
+
output_df_columns = list(output_df_pd.columns)
|
660
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
661
|
+
if self.sample_weight_col:
|
662
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
663
|
+
# if the dimension of inferred output column names is correct; use it
|
664
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
665
|
+
return expected_output_cols_list
|
666
|
+
# otherwise, use the sklearn estimator's output
|
667
|
+
else:
|
668
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
669
|
+
|
616
670
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
617
671
|
@telemetry.send_api_usage_telemetry(
|
618
672
|
project=_PROJECT,
|
@@ -643,24 +697,28 @@ class RANSACRegressor(BaseTransformer):
|
|
643
697
|
# are specific to the type of dataset used.
|
644
698
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
645
699
|
|
700
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
701
|
+
|
646
702
|
if isinstance(dataset, DataFrame):
|
647
703
|
self._deps = self._batch_inference_validate_snowpark(
|
648
704
|
dataset=dataset,
|
649
705
|
inference_method=inference_method,
|
650
706
|
)
|
651
|
-
assert isinstance(
|
707
|
+
assert isinstance(
|
708
|
+
dataset._session, Session
|
709
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
652
710
|
transform_kwargs = dict(
|
653
711
|
session=dataset._session,
|
654
712
|
dependencies=self._deps,
|
655
|
-
drop_input_cols
|
713
|
+
drop_input_cols=self._drop_input_cols,
|
656
714
|
expected_output_cols_type="float",
|
657
715
|
)
|
716
|
+
expected_output_cols = self._align_expected_output_names(
|
717
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
718
|
+
)
|
658
719
|
|
659
720
|
elif isinstance(dataset, pd.DataFrame):
|
660
|
-
transform_kwargs = dict(
|
661
|
-
snowpark_input_cols = self._snowpark_cols,
|
662
|
-
drop_input_cols = self._drop_input_cols
|
663
|
-
)
|
721
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
664
722
|
|
665
723
|
transform_handlers = ModelTransformerBuilder.build(
|
666
724
|
dataset=dataset,
|
@@ -672,7 +730,7 @@ class RANSACRegressor(BaseTransformer):
|
|
672
730
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
673
731
|
inference_method=inference_method,
|
674
732
|
input_cols=self.input_cols,
|
675
|
-
expected_output_cols=
|
733
|
+
expected_output_cols=expected_output_cols,
|
676
734
|
**transform_kwargs
|
677
735
|
)
|
678
736
|
return output_df
|
@@ -702,7 +760,8 @@ class RANSACRegressor(BaseTransformer):
|
|
702
760
|
Output dataset with log probability of the sample for each class in the model.
|
703
761
|
"""
|
704
762
|
super()._check_dataset_type(dataset)
|
705
|
-
inference_method="predict_log_proba"
|
763
|
+
inference_method = "predict_log_proba"
|
764
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
706
765
|
|
707
766
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
708
767
|
# are specific to the type of dataset used.
|
@@ -713,18 +772,20 @@ class RANSACRegressor(BaseTransformer):
|
|
713
772
|
dataset=dataset,
|
714
773
|
inference_method=inference_method,
|
715
774
|
)
|
716
|
-
assert isinstance(
|
775
|
+
assert isinstance(
|
776
|
+
dataset._session, Session
|
777
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
717
778
|
transform_kwargs = dict(
|
718
779
|
session=dataset._session,
|
719
780
|
dependencies=self._deps,
|
720
|
-
drop_input_cols
|
781
|
+
drop_input_cols=self._drop_input_cols,
|
721
782
|
expected_output_cols_type="float",
|
722
783
|
)
|
784
|
+
expected_output_cols = self._align_expected_output_names(
|
785
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
786
|
+
)
|
723
787
|
elif isinstance(dataset, pd.DataFrame):
|
724
|
-
transform_kwargs = dict(
|
725
|
-
snowpark_input_cols = self._snowpark_cols,
|
726
|
-
drop_input_cols = self._drop_input_cols
|
727
|
-
)
|
788
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
728
789
|
|
729
790
|
transform_handlers = ModelTransformerBuilder.build(
|
730
791
|
dataset=dataset,
|
@@ -737,7 +798,7 @@ class RANSACRegressor(BaseTransformer):
|
|
737
798
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
738
799
|
inference_method=inference_method,
|
739
800
|
input_cols=self.input_cols,
|
740
|
-
expected_output_cols=
|
801
|
+
expected_output_cols=expected_output_cols,
|
741
802
|
**transform_kwargs
|
742
803
|
)
|
743
804
|
return output_df
|
@@ -763,30 +824,34 @@ class RANSACRegressor(BaseTransformer):
|
|
763
824
|
Output dataset with results of the decision function for the samples in input dataset.
|
764
825
|
"""
|
765
826
|
super()._check_dataset_type(dataset)
|
766
|
-
inference_method="decision_function"
|
827
|
+
inference_method = "decision_function"
|
767
828
|
|
768
829
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
769
830
|
# are specific to the type of dataset used.
|
770
831
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
771
832
|
|
833
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
834
|
+
|
772
835
|
if isinstance(dataset, DataFrame):
|
773
836
|
self._deps = self._batch_inference_validate_snowpark(
|
774
837
|
dataset=dataset,
|
775
838
|
inference_method=inference_method,
|
776
839
|
)
|
777
|
-
assert isinstance(
|
840
|
+
assert isinstance(
|
841
|
+
dataset._session, Session
|
842
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
778
843
|
transform_kwargs = dict(
|
779
844
|
session=dataset._session,
|
780
845
|
dependencies=self._deps,
|
781
|
-
drop_input_cols
|
846
|
+
drop_input_cols=self._drop_input_cols,
|
782
847
|
expected_output_cols_type="float",
|
783
848
|
)
|
849
|
+
expected_output_cols = self._align_expected_output_names(
|
850
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
851
|
+
)
|
784
852
|
|
785
853
|
elif isinstance(dataset, pd.DataFrame):
|
786
|
-
transform_kwargs = dict(
|
787
|
-
snowpark_input_cols = self._snowpark_cols,
|
788
|
-
drop_input_cols = self._drop_input_cols
|
789
|
-
)
|
854
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
790
855
|
|
791
856
|
transform_handlers = ModelTransformerBuilder.build(
|
792
857
|
dataset=dataset,
|
@@ -799,7 +864,7 @@ class RANSACRegressor(BaseTransformer):
|
|
799
864
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
800
865
|
inference_method=inference_method,
|
801
866
|
input_cols=self.input_cols,
|
802
|
-
expected_output_cols=
|
867
|
+
expected_output_cols=expected_output_cols,
|
803
868
|
**transform_kwargs
|
804
869
|
)
|
805
870
|
return output_df
|
@@ -828,12 +893,14 @@ class RANSACRegressor(BaseTransformer):
|
|
828
893
|
Output dataset with probability of the sample for each class in the model.
|
829
894
|
"""
|
830
895
|
super()._check_dataset_type(dataset)
|
831
|
-
inference_method="score_samples"
|
896
|
+
inference_method = "score_samples"
|
832
897
|
|
833
898
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
834
899
|
# are specific to the type of dataset used.
|
835
900
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
836
901
|
|
902
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
903
|
+
|
837
904
|
if isinstance(dataset, DataFrame):
|
838
905
|
self._deps = self._batch_inference_validate_snowpark(
|
839
906
|
dataset=dataset,
|
@@ -846,6 +913,9 @@ class RANSACRegressor(BaseTransformer):
|
|
846
913
|
drop_input_cols = self._drop_input_cols,
|
847
914
|
expected_output_cols_type="float",
|
848
915
|
)
|
916
|
+
expected_output_cols = self._align_expected_output_names(
|
917
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
918
|
+
)
|
849
919
|
|
850
920
|
elif isinstance(dataset, pd.DataFrame):
|
851
921
|
transform_kwargs = dict(
|
@@ -864,7 +934,7 @@ class RANSACRegressor(BaseTransformer):
|
|
864
934
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
865
935
|
inference_method=inference_method,
|
866
936
|
input_cols=self.input_cols,
|
867
|
-
expected_output_cols=
|
937
|
+
expected_output_cols=expected_output_cols,
|
868
938
|
**transform_kwargs
|
869
939
|
)
|
870
940
|
return output_df
|
@@ -1011,50 +1081,84 @@ class RANSACRegressor(BaseTransformer):
|
|
1011
1081
|
)
|
1012
1082
|
return output_df
|
1013
1083
|
|
1084
|
+
|
1085
|
+
|
1086
|
+
def to_sklearn(self) -> Any:
|
1087
|
+
"""Get sklearn.linear_model.RANSACRegressor object.
|
1088
|
+
"""
|
1089
|
+
if self._sklearn_object is None:
|
1090
|
+
self._sklearn_object = self._create_sklearn_object()
|
1091
|
+
return self._sklearn_object
|
1092
|
+
|
1093
|
+
def to_xgboost(self) -> Any:
|
1094
|
+
raise exceptions.SnowflakeMLException(
|
1095
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1096
|
+
original_exception=AttributeError(
|
1097
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1098
|
+
"to_xgboost()",
|
1099
|
+
"to_sklearn()"
|
1100
|
+
)
|
1101
|
+
),
|
1102
|
+
)
|
1103
|
+
|
1104
|
+
def to_lightgbm(self) -> Any:
|
1105
|
+
raise exceptions.SnowflakeMLException(
|
1106
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1107
|
+
original_exception=AttributeError(
|
1108
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1109
|
+
"to_lightgbm()",
|
1110
|
+
"to_sklearn()"
|
1111
|
+
)
|
1112
|
+
),
|
1113
|
+
)
|
1014
1114
|
|
1015
|
-
def
|
1115
|
+
def _get_dependencies(self) -> List[str]:
|
1116
|
+
return self._deps
|
1117
|
+
|
1118
|
+
|
1119
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1016
1120
|
self._model_signature_dict = dict()
|
1017
1121
|
|
1018
1122
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1019
1123
|
|
1020
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1124
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1021
1125
|
outputs: List[BaseFeatureSpec] = []
|
1022
1126
|
if hasattr(self, "predict"):
|
1023
1127
|
# keep mypy happy
|
1024
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1128
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1025
1129
|
# For classifier, the type of predict is the same as the type of label
|
1026
|
-
if self._sklearn_object._estimator_type ==
|
1027
|
-
|
1130
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1131
|
+
# label columns is the desired type for output
|
1028
1132
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1029
1133
|
# rename the output columns
|
1030
1134
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1031
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1032
|
-
|
1033
|
-
|
1135
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1136
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1137
|
+
)
|
1034
1138
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1035
1139
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1036
|
-
# Clusterer returns int64 cluster labels.
|
1140
|
+
# Clusterer returns int64 cluster labels.
|
1037
1141
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1038
1142
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1039
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1040
|
-
|
1041
|
-
|
1042
|
-
|
1143
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1144
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1145
|
+
)
|
1146
|
+
|
1043
1147
|
# For regressor, the type of predict is float64
|
1044
|
-
elif self._sklearn_object._estimator_type ==
|
1148
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1045
1149
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1046
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1150
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1151
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1152
|
+
)
|
1153
|
+
|
1050
1154
|
for prob_func in PROB_FUNCTIONS:
|
1051
1155
|
if hasattr(self, prob_func):
|
1052
1156
|
output_cols_prefix: str = f"{prob_func}_"
|
1053
1157
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1054
1158
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1055
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1056
|
-
|
1057
|
-
|
1159
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1160
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1161
|
+
)
|
1058
1162
|
|
1059
1163
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1060
1164
|
items = list(self._model_signature_dict.items())
|
@@ -1067,10 +1171,10 @@ class RANSACRegressor(BaseTransformer):
|
|
1067
1171
|
"""Returns model signature of current class.
|
1068
1172
|
|
1069
1173
|
Raises:
|
1070
|
-
|
1174
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1071
1175
|
|
1072
1176
|
Returns:
|
1073
|
-
Dict
|
1177
|
+
Dict with each method and its input output signature
|
1074
1178
|
"""
|
1075
1179
|
if self._model_signature_dict is None:
|
1076
1180
|
raise exceptions.SnowflakeMLException(
|
@@ -1078,35 +1182,3 @@ class RANSACRegressor(BaseTransformer):
|
|
1078
1182
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1079
1183
|
)
|
1080
1184
|
return self._model_signature_dict
|
1081
|
-
|
1082
|
-
def to_sklearn(self) -> Any:
|
1083
|
-
"""Get sklearn.linear_model.RANSACRegressor object.
|
1084
|
-
"""
|
1085
|
-
if self._sklearn_object is None:
|
1086
|
-
self._sklearn_object = self._create_sklearn_object()
|
1087
|
-
return self._sklearn_object
|
1088
|
-
|
1089
|
-
def to_xgboost(self) -> Any:
|
1090
|
-
raise exceptions.SnowflakeMLException(
|
1091
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1092
|
-
original_exception=AttributeError(
|
1093
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1094
|
-
"to_xgboost()",
|
1095
|
-
"to_sklearn()"
|
1096
|
-
)
|
1097
|
-
),
|
1098
|
-
)
|
1099
|
-
|
1100
|
-
def to_lightgbm(self) -> Any:
|
1101
|
-
raise exceptions.SnowflakeMLException(
|
1102
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1103
|
-
original_exception=AttributeError(
|
1104
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1105
|
-
"to_lightgbm()",
|
1106
|
-
"to_sklearn()"
|
1107
|
-
)
|
1108
|
-
),
|
1109
|
-
)
|
1110
|
-
|
1111
|
-
def _get_dependencies(self) -> List[str]:
|
1112
|
-
return self._deps
|