snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -304,12 +303,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
304
303
|
)
|
305
304
|
return selected_cols
|
306
305
|
|
307
|
-
|
308
|
-
project=_PROJECT,
|
309
|
-
subproject=_SUBPROJECT,
|
310
|
-
custom_tags=dict([("autogen", True)]),
|
311
|
-
)
|
312
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
|
306
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
|
313
307
|
"""Build a decision tree regressor from the training set (X, y)
|
314
308
|
For more details on this function, see [sklearn.tree.ExtraTreeRegressor.fit]
|
315
309
|
(https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor.fit)
|
@@ -336,12 +330,14 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
336
330
|
|
337
331
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
338
332
|
|
339
|
-
|
333
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
340
334
|
if SNOWML_SPROC_ENV in os.environ:
|
341
335
|
statement_params = telemetry.get_function_usage_statement_params(
|
342
336
|
project=_PROJECT,
|
343
337
|
subproject=_SUBPROJECT,
|
344
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
338
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
339
|
+
inspect.currentframe(), ExtraTreeRegressor.__class__.__name__
|
340
|
+
),
|
345
341
|
api_calls=[Session.call],
|
346
342
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
347
343
|
)
|
@@ -362,7 +358,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
362
358
|
)
|
363
359
|
self._sklearn_object = model_trainer.train()
|
364
360
|
self._is_fitted = True
|
365
|
-
self.
|
361
|
+
self._generate_model_signatures(dataset)
|
366
362
|
return self
|
367
363
|
|
368
364
|
def _batch_inference_validate_snowpark(
|
@@ -438,7 +434,9 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
438
434
|
# when it is classifier, infer the datatype from label columns
|
439
435
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
440
436
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
441
|
-
label_cols_signatures = [
|
437
|
+
label_cols_signatures = [
|
438
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
439
|
+
]
|
442
440
|
if len(label_cols_signatures) == 0:
|
443
441
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
444
442
|
raise exceptions.SnowflakeMLException(
|
@@ -446,25 +444,22 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
446
444
|
original_exception=ValueError(error_str),
|
447
445
|
)
|
448
446
|
|
449
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
450
|
-
label_cols_signatures[0].as_snowpark_type()
|
451
|
-
)
|
447
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
452
448
|
|
453
449
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
454
|
-
assert isinstance(
|
450
|
+
assert isinstance(
|
451
|
+
dataset._session, Session
|
452
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
455
453
|
|
456
454
|
transform_kwargs = dict(
|
457
|
-
session
|
458
|
-
dependencies
|
459
|
-
drop_input_cols
|
460
|
-
expected_output_cols_type
|
455
|
+
session=dataset._session,
|
456
|
+
dependencies=self._deps,
|
457
|
+
drop_input_cols=self._drop_input_cols,
|
458
|
+
expected_output_cols_type=expected_type_inferred,
|
461
459
|
)
|
462
460
|
|
463
461
|
elif isinstance(dataset, pd.DataFrame):
|
464
|
-
transform_kwargs = dict(
|
465
|
-
snowpark_input_cols = self._snowpark_cols,
|
466
|
-
drop_input_cols = self._drop_input_cols
|
467
|
-
)
|
462
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
468
463
|
|
469
464
|
transform_handlers = ModelTransformerBuilder.build(
|
470
465
|
dataset=dataset,
|
@@ -504,7 +499,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
504
499
|
Transformed dataset.
|
505
500
|
"""
|
506
501
|
super()._check_dataset_type(dataset)
|
507
|
-
inference_method="transform"
|
502
|
+
inference_method = "transform"
|
508
503
|
|
509
504
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
510
505
|
# are specific to the type of dataset used.
|
@@ -541,17 +536,14 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
541
536
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
542
537
|
|
543
538
|
transform_kwargs = dict(
|
544
|
-
session
|
545
|
-
dependencies
|
546
|
-
drop_input_cols
|
547
|
-
expected_output_cols_type
|
539
|
+
session=dataset._session,
|
540
|
+
dependencies=self._deps,
|
541
|
+
drop_input_cols=self._drop_input_cols,
|
542
|
+
expected_output_cols_type=expected_dtype,
|
548
543
|
)
|
549
544
|
|
550
545
|
elif isinstance(dataset, pd.DataFrame):
|
551
|
-
transform_kwargs = dict(
|
552
|
-
snowpark_input_cols = self._snowpark_cols,
|
553
|
-
drop_input_cols = self._drop_input_cols
|
554
|
-
)
|
546
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
555
547
|
|
556
548
|
transform_handlers = ModelTransformerBuilder.build(
|
557
549
|
dataset=dataset,
|
@@ -570,7 +562,11 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
570
562
|
return output_df
|
571
563
|
|
572
564
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
573
|
-
def fit_predict(
|
565
|
+
def fit_predict(
|
566
|
+
self,
|
567
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
568
|
+
output_cols_prefix: str = "fit_predict_",
|
569
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
574
570
|
""" Method not supported for this class.
|
575
571
|
|
576
572
|
|
@@ -595,7 +591,9 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
595
591
|
)
|
596
592
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
597
593
|
drop_input_cols=self._drop_input_cols,
|
598
|
-
expected_output_cols_list=
|
594
|
+
expected_output_cols_list=(
|
595
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
596
|
+
),
|
599
597
|
)
|
600
598
|
self._sklearn_object = fitted_estimator
|
601
599
|
self._is_fitted = True
|
@@ -612,6 +610,62 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
612
610
|
assert self._sklearn_object is not None
|
613
611
|
return self._sklearn_object.embedding_
|
614
612
|
|
613
|
+
|
614
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
615
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
616
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
617
|
+
"""
|
618
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
619
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
620
|
+
if output_cols:
|
621
|
+
output_cols = [
|
622
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
623
|
+
for c in output_cols
|
624
|
+
]
|
625
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
626
|
+
output_cols = [output_cols_prefix]
|
627
|
+
elif self._sklearn_object is not None:
|
628
|
+
classes = self._sklearn_object.classes_
|
629
|
+
if isinstance(classes, numpy.ndarray):
|
630
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
631
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
632
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
633
|
+
output_cols = []
|
634
|
+
for i, cl in enumerate(classes):
|
635
|
+
# For binary classification, there is only one output column for each class
|
636
|
+
# ndarray as the two classes are complementary.
|
637
|
+
if len(cl) == 2:
|
638
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
639
|
+
else:
|
640
|
+
output_cols.extend([
|
641
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
642
|
+
])
|
643
|
+
else:
|
644
|
+
output_cols = []
|
645
|
+
|
646
|
+
# Make sure column names are valid snowflake identifiers.
|
647
|
+
assert output_cols is not None # Make MyPy happy
|
648
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
|
+
|
650
|
+
return rv
|
651
|
+
|
652
|
+
def _align_expected_output_names(
|
653
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
654
|
+
) -> List[str]:
|
655
|
+
# in case the inferred output column names dimension is different
|
656
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
657
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
658
|
+
output_df_columns = list(output_df_pd.columns)
|
659
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
660
|
+
if self.sample_weight_col:
|
661
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
662
|
+
# if the dimension of inferred output column names is correct; use it
|
663
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
664
|
+
return expected_output_cols_list
|
665
|
+
# otherwise, use the sklearn estimator's output
|
666
|
+
else:
|
667
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
668
|
+
|
615
669
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
616
670
|
@telemetry.send_api_usage_telemetry(
|
617
671
|
project=_PROJECT,
|
@@ -642,24 +696,28 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
642
696
|
# are specific to the type of dataset used.
|
643
697
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
644
698
|
|
699
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
700
|
+
|
645
701
|
if isinstance(dataset, DataFrame):
|
646
702
|
self._deps = self._batch_inference_validate_snowpark(
|
647
703
|
dataset=dataset,
|
648
704
|
inference_method=inference_method,
|
649
705
|
)
|
650
|
-
assert isinstance(
|
706
|
+
assert isinstance(
|
707
|
+
dataset._session, Session
|
708
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
651
709
|
transform_kwargs = dict(
|
652
710
|
session=dataset._session,
|
653
711
|
dependencies=self._deps,
|
654
|
-
drop_input_cols
|
712
|
+
drop_input_cols=self._drop_input_cols,
|
655
713
|
expected_output_cols_type="float",
|
656
714
|
)
|
715
|
+
expected_output_cols = self._align_expected_output_names(
|
716
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
717
|
+
)
|
657
718
|
|
658
719
|
elif isinstance(dataset, pd.DataFrame):
|
659
|
-
transform_kwargs = dict(
|
660
|
-
snowpark_input_cols = self._snowpark_cols,
|
661
|
-
drop_input_cols = self._drop_input_cols
|
662
|
-
)
|
720
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
663
721
|
|
664
722
|
transform_handlers = ModelTransformerBuilder.build(
|
665
723
|
dataset=dataset,
|
@@ -671,7 +729,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
671
729
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
672
730
|
inference_method=inference_method,
|
673
731
|
input_cols=self.input_cols,
|
674
|
-
expected_output_cols=
|
732
|
+
expected_output_cols=expected_output_cols,
|
675
733
|
**transform_kwargs
|
676
734
|
)
|
677
735
|
return output_df
|
@@ -701,7 +759,8 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
701
759
|
Output dataset with log probability of the sample for each class in the model.
|
702
760
|
"""
|
703
761
|
super()._check_dataset_type(dataset)
|
704
|
-
inference_method="predict_log_proba"
|
762
|
+
inference_method = "predict_log_proba"
|
763
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
705
764
|
|
706
765
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
707
766
|
# are specific to the type of dataset used.
|
@@ -712,18 +771,20 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
712
771
|
dataset=dataset,
|
713
772
|
inference_method=inference_method,
|
714
773
|
)
|
715
|
-
assert isinstance(
|
774
|
+
assert isinstance(
|
775
|
+
dataset._session, Session
|
776
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
716
777
|
transform_kwargs = dict(
|
717
778
|
session=dataset._session,
|
718
779
|
dependencies=self._deps,
|
719
|
-
drop_input_cols
|
780
|
+
drop_input_cols=self._drop_input_cols,
|
720
781
|
expected_output_cols_type="float",
|
721
782
|
)
|
783
|
+
expected_output_cols = self._align_expected_output_names(
|
784
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
785
|
+
)
|
722
786
|
elif isinstance(dataset, pd.DataFrame):
|
723
|
-
transform_kwargs = dict(
|
724
|
-
snowpark_input_cols = self._snowpark_cols,
|
725
|
-
drop_input_cols = self._drop_input_cols
|
726
|
-
)
|
787
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
727
788
|
|
728
789
|
transform_handlers = ModelTransformerBuilder.build(
|
729
790
|
dataset=dataset,
|
@@ -736,7 +797,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
736
797
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
737
798
|
inference_method=inference_method,
|
738
799
|
input_cols=self.input_cols,
|
739
|
-
expected_output_cols=
|
800
|
+
expected_output_cols=expected_output_cols,
|
740
801
|
**transform_kwargs
|
741
802
|
)
|
742
803
|
return output_df
|
@@ -762,30 +823,34 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
762
823
|
Output dataset with results of the decision function for the samples in input dataset.
|
763
824
|
"""
|
764
825
|
super()._check_dataset_type(dataset)
|
765
|
-
inference_method="decision_function"
|
826
|
+
inference_method = "decision_function"
|
766
827
|
|
767
828
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
768
829
|
# are specific to the type of dataset used.
|
769
830
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
770
831
|
|
832
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
833
|
+
|
771
834
|
if isinstance(dataset, DataFrame):
|
772
835
|
self._deps = self._batch_inference_validate_snowpark(
|
773
836
|
dataset=dataset,
|
774
837
|
inference_method=inference_method,
|
775
838
|
)
|
776
|
-
assert isinstance(
|
839
|
+
assert isinstance(
|
840
|
+
dataset._session, Session
|
841
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
777
842
|
transform_kwargs = dict(
|
778
843
|
session=dataset._session,
|
779
844
|
dependencies=self._deps,
|
780
|
-
drop_input_cols
|
845
|
+
drop_input_cols=self._drop_input_cols,
|
781
846
|
expected_output_cols_type="float",
|
782
847
|
)
|
848
|
+
expected_output_cols = self._align_expected_output_names(
|
849
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
850
|
+
)
|
783
851
|
|
784
852
|
elif isinstance(dataset, pd.DataFrame):
|
785
|
-
transform_kwargs = dict(
|
786
|
-
snowpark_input_cols = self._snowpark_cols,
|
787
|
-
drop_input_cols = self._drop_input_cols
|
788
|
-
)
|
853
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
789
854
|
|
790
855
|
transform_handlers = ModelTransformerBuilder.build(
|
791
856
|
dataset=dataset,
|
@@ -798,7 +863,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
798
863
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
799
864
|
inference_method=inference_method,
|
800
865
|
input_cols=self.input_cols,
|
801
|
-
expected_output_cols=
|
866
|
+
expected_output_cols=expected_output_cols,
|
802
867
|
**transform_kwargs
|
803
868
|
)
|
804
869
|
return output_df
|
@@ -827,12 +892,14 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
827
892
|
Output dataset with probability of the sample for each class in the model.
|
828
893
|
"""
|
829
894
|
super()._check_dataset_type(dataset)
|
830
|
-
inference_method="score_samples"
|
895
|
+
inference_method = "score_samples"
|
831
896
|
|
832
897
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
833
898
|
# are specific to the type of dataset used.
|
834
899
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
835
900
|
|
901
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
902
|
+
|
836
903
|
if isinstance(dataset, DataFrame):
|
837
904
|
self._deps = self._batch_inference_validate_snowpark(
|
838
905
|
dataset=dataset,
|
@@ -845,6 +912,9 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
845
912
|
drop_input_cols = self._drop_input_cols,
|
846
913
|
expected_output_cols_type="float",
|
847
914
|
)
|
915
|
+
expected_output_cols = self._align_expected_output_names(
|
916
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
917
|
+
)
|
848
918
|
|
849
919
|
elif isinstance(dataset, pd.DataFrame):
|
850
920
|
transform_kwargs = dict(
|
@@ -863,7 +933,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
863
933
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
864
934
|
inference_method=inference_method,
|
865
935
|
input_cols=self.input_cols,
|
866
|
-
expected_output_cols=
|
936
|
+
expected_output_cols=expected_output_cols,
|
867
937
|
**transform_kwargs
|
868
938
|
)
|
869
939
|
return output_df
|
@@ -1010,50 +1080,84 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
1010
1080
|
)
|
1011
1081
|
return output_df
|
1012
1082
|
|
1083
|
+
|
1084
|
+
|
1085
|
+
def to_sklearn(self) -> Any:
|
1086
|
+
"""Get sklearn.tree.ExtraTreeRegressor object.
|
1087
|
+
"""
|
1088
|
+
if self._sklearn_object is None:
|
1089
|
+
self._sklearn_object = self._create_sklearn_object()
|
1090
|
+
return self._sklearn_object
|
1091
|
+
|
1092
|
+
def to_xgboost(self) -> Any:
|
1093
|
+
raise exceptions.SnowflakeMLException(
|
1094
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1095
|
+
original_exception=AttributeError(
|
1096
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1097
|
+
"to_xgboost()",
|
1098
|
+
"to_sklearn()"
|
1099
|
+
)
|
1100
|
+
),
|
1101
|
+
)
|
1102
|
+
|
1103
|
+
def to_lightgbm(self) -> Any:
|
1104
|
+
raise exceptions.SnowflakeMLException(
|
1105
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1106
|
+
original_exception=AttributeError(
|
1107
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1108
|
+
"to_lightgbm()",
|
1109
|
+
"to_sklearn()"
|
1110
|
+
)
|
1111
|
+
),
|
1112
|
+
)
|
1013
1113
|
|
1014
|
-
def
|
1114
|
+
def _get_dependencies(self) -> List[str]:
|
1115
|
+
return self._deps
|
1116
|
+
|
1117
|
+
|
1118
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1015
1119
|
self._model_signature_dict = dict()
|
1016
1120
|
|
1017
1121
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1018
1122
|
|
1019
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1123
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1020
1124
|
outputs: List[BaseFeatureSpec] = []
|
1021
1125
|
if hasattr(self, "predict"):
|
1022
1126
|
# keep mypy happy
|
1023
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1127
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1024
1128
|
# For classifier, the type of predict is the same as the type of label
|
1025
|
-
if self._sklearn_object._estimator_type ==
|
1026
|
-
|
1129
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1130
|
+
# label columns is the desired type for output
|
1027
1131
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1028
1132
|
# rename the output columns
|
1029
1133
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1030
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1031
|
-
|
1032
|
-
|
1134
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1135
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1136
|
+
)
|
1033
1137
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1034
1138
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1035
|
-
# Clusterer returns int64 cluster labels.
|
1139
|
+
# Clusterer returns int64 cluster labels.
|
1036
1140
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1037
1141
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1038
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1039
|
-
|
1040
|
-
|
1041
|
-
|
1142
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1143
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1144
|
+
)
|
1145
|
+
|
1042
1146
|
# For regressor, the type of predict is float64
|
1043
|
-
elif self._sklearn_object._estimator_type ==
|
1147
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1044
1148
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1045
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1046
|
-
|
1047
|
-
|
1048
|
-
|
1149
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1150
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1151
|
+
)
|
1152
|
+
|
1049
1153
|
for prob_func in PROB_FUNCTIONS:
|
1050
1154
|
if hasattr(self, prob_func):
|
1051
1155
|
output_cols_prefix: str = f"{prob_func}_"
|
1052
1156
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1053
1157
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1054
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1055
|
-
|
1056
|
-
|
1158
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1159
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1160
|
+
)
|
1057
1161
|
|
1058
1162
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1059
1163
|
items = list(self._model_signature_dict.items())
|
@@ -1066,10 +1170,10 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
1066
1170
|
"""Returns model signature of current class.
|
1067
1171
|
|
1068
1172
|
Raises:
|
1069
|
-
|
1173
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1070
1174
|
|
1071
1175
|
Returns:
|
1072
|
-
Dict
|
1176
|
+
Dict with each method and its input output signature
|
1073
1177
|
"""
|
1074
1178
|
if self._model_signature_dict is None:
|
1075
1179
|
raise exceptions.SnowflakeMLException(
|
@@ -1077,35 +1181,3 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
1077
1181
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1078
1182
|
)
|
1079
1183
|
return self._model_signature_dict
|
1080
|
-
|
1081
|
-
def to_sklearn(self) -> Any:
|
1082
|
-
"""Get sklearn.tree.ExtraTreeRegressor object.
|
1083
|
-
"""
|
1084
|
-
if self._sklearn_object is None:
|
1085
|
-
self._sklearn_object = self._create_sklearn_object()
|
1086
|
-
return self._sklearn_object
|
1087
|
-
|
1088
|
-
def to_xgboost(self) -> Any:
|
1089
|
-
raise exceptions.SnowflakeMLException(
|
1090
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1091
|
-
original_exception=AttributeError(
|
1092
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1093
|
-
"to_xgboost()",
|
1094
|
-
"to_sklearn()"
|
1095
|
-
)
|
1096
|
-
),
|
1097
|
-
)
|
1098
|
-
|
1099
|
-
def to_lightgbm(self) -> Any:
|
1100
|
-
raise exceptions.SnowflakeMLException(
|
1101
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1102
|
-
original_exception=AttributeError(
|
1103
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1104
|
-
"to_lightgbm()",
|
1105
|
-
"to_sklearn()"
|
1106
|
-
)
|
1107
|
-
),
|
1108
|
-
)
|
1109
|
-
|
1110
|
-
def _get_dependencies(self) -> List[str]:
|
1111
|
-
return self._deps
|