snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -247,12 +246,7 @@ class Nystroem(BaseTransformer):
|
|
247
246
|
)
|
248
247
|
return selected_cols
|
249
248
|
|
250
|
-
|
251
|
-
project=_PROJECT,
|
252
|
-
subproject=_SUBPROJECT,
|
253
|
-
custom_tags=dict([("autogen", True)]),
|
254
|
-
)
|
255
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Nystroem":
|
249
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Nystroem":
|
256
250
|
"""Fit estimator to data
|
257
251
|
For more details on this function, see [sklearn.kernel_approximation.Nystroem.fit]
|
258
252
|
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem.fit)
|
@@ -279,12 +273,14 @@ class Nystroem(BaseTransformer):
|
|
279
273
|
|
280
274
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
281
275
|
|
282
|
-
|
276
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
283
277
|
if SNOWML_SPROC_ENV in os.environ:
|
284
278
|
statement_params = telemetry.get_function_usage_statement_params(
|
285
279
|
project=_PROJECT,
|
286
280
|
subproject=_SUBPROJECT,
|
287
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
281
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
282
|
+
inspect.currentframe(), Nystroem.__class__.__name__
|
283
|
+
),
|
288
284
|
api_calls=[Session.call],
|
289
285
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
290
286
|
)
|
@@ -305,7 +301,7 @@ class Nystroem(BaseTransformer):
|
|
305
301
|
)
|
306
302
|
self._sklearn_object = model_trainer.train()
|
307
303
|
self._is_fitted = True
|
308
|
-
self.
|
304
|
+
self._generate_model_signatures(dataset)
|
309
305
|
return self
|
310
306
|
|
311
307
|
def _batch_inference_validate_snowpark(
|
@@ -379,7 +375,9 @@ class Nystroem(BaseTransformer):
|
|
379
375
|
# when it is classifier, infer the datatype from label columns
|
380
376
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
381
377
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
382
|
-
label_cols_signatures = [
|
378
|
+
label_cols_signatures = [
|
379
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
380
|
+
]
|
383
381
|
if len(label_cols_signatures) == 0:
|
384
382
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
385
383
|
raise exceptions.SnowflakeMLException(
|
@@ -387,25 +385,22 @@ class Nystroem(BaseTransformer):
|
|
387
385
|
original_exception=ValueError(error_str),
|
388
386
|
)
|
389
387
|
|
390
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
391
|
-
label_cols_signatures[0].as_snowpark_type()
|
392
|
-
)
|
388
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
393
389
|
|
394
390
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
395
|
-
assert isinstance(
|
391
|
+
assert isinstance(
|
392
|
+
dataset._session, Session
|
393
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
396
394
|
|
397
395
|
transform_kwargs = dict(
|
398
|
-
session
|
399
|
-
dependencies
|
400
|
-
drop_input_cols
|
401
|
-
expected_output_cols_type
|
396
|
+
session=dataset._session,
|
397
|
+
dependencies=self._deps,
|
398
|
+
drop_input_cols=self._drop_input_cols,
|
399
|
+
expected_output_cols_type=expected_type_inferred,
|
402
400
|
)
|
403
401
|
|
404
402
|
elif isinstance(dataset, pd.DataFrame):
|
405
|
-
transform_kwargs = dict(
|
406
|
-
snowpark_input_cols = self._snowpark_cols,
|
407
|
-
drop_input_cols = self._drop_input_cols
|
408
|
-
)
|
403
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
409
404
|
|
410
405
|
transform_handlers = ModelTransformerBuilder.build(
|
411
406
|
dataset=dataset,
|
@@ -447,7 +442,7 @@ class Nystroem(BaseTransformer):
|
|
447
442
|
Transformed dataset.
|
448
443
|
"""
|
449
444
|
super()._check_dataset_type(dataset)
|
450
|
-
inference_method="transform"
|
445
|
+
inference_method = "transform"
|
451
446
|
|
452
447
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
453
448
|
# are specific to the type of dataset used.
|
@@ -484,17 +479,14 @@ class Nystroem(BaseTransformer):
|
|
484
479
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
485
480
|
|
486
481
|
transform_kwargs = dict(
|
487
|
-
session
|
488
|
-
dependencies
|
489
|
-
drop_input_cols
|
490
|
-
expected_output_cols_type
|
482
|
+
session=dataset._session,
|
483
|
+
dependencies=self._deps,
|
484
|
+
drop_input_cols=self._drop_input_cols,
|
485
|
+
expected_output_cols_type=expected_dtype,
|
491
486
|
)
|
492
487
|
|
493
488
|
elif isinstance(dataset, pd.DataFrame):
|
494
|
-
transform_kwargs = dict(
|
495
|
-
snowpark_input_cols = self._snowpark_cols,
|
496
|
-
drop_input_cols = self._drop_input_cols
|
497
|
-
)
|
489
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
498
490
|
|
499
491
|
transform_handlers = ModelTransformerBuilder.build(
|
500
492
|
dataset=dataset,
|
@@ -513,7 +505,11 @@ class Nystroem(BaseTransformer):
|
|
513
505
|
return output_df
|
514
506
|
|
515
507
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
516
|
-
def fit_predict(
|
508
|
+
def fit_predict(
|
509
|
+
self,
|
510
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
511
|
+
output_cols_prefix: str = "fit_predict_",
|
512
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
517
513
|
""" Method not supported for this class.
|
518
514
|
|
519
515
|
|
@@ -538,7 +534,9 @@ class Nystroem(BaseTransformer):
|
|
538
534
|
)
|
539
535
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
540
536
|
drop_input_cols=self._drop_input_cols,
|
541
|
-
expected_output_cols_list=
|
537
|
+
expected_output_cols_list=(
|
538
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
539
|
+
),
|
542
540
|
)
|
543
541
|
self._sklearn_object = fitted_estimator
|
544
542
|
self._is_fitted = True
|
@@ -555,6 +553,62 @@ class Nystroem(BaseTransformer):
|
|
555
553
|
assert self._sklearn_object is not None
|
556
554
|
return self._sklearn_object.embedding_
|
557
555
|
|
556
|
+
|
557
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
558
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
559
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
560
|
+
"""
|
561
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
562
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
563
|
+
if output_cols:
|
564
|
+
output_cols = [
|
565
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
566
|
+
for c in output_cols
|
567
|
+
]
|
568
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
569
|
+
output_cols = [output_cols_prefix]
|
570
|
+
elif self._sklearn_object is not None:
|
571
|
+
classes = self._sklearn_object.classes_
|
572
|
+
if isinstance(classes, numpy.ndarray):
|
573
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
574
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
575
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
576
|
+
output_cols = []
|
577
|
+
for i, cl in enumerate(classes):
|
578
|
+
# For binary classification, there is only one output column for each class
|
579
|
+
# ndarray as the two classes are complementary.
|
580
|
+
if len(cl) == 2:
|
581
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
582
|
+
else:
|
583
|
+
output_cols.extend([
|
584
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
585
|
+
])
|
586
|
+
else:
|
587
|
+
output_cols = []
|
588
|
+
|
589
|
+
# Make sure column names are valid snowflake identifiers.
|
590
|
+
assert output_cols is not None # Make MyPy happy
|
591
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
592
|
+
|
593
|
+
return rv
|
594
|
+
|
595
|
+
def _align_expected_output_names(
|
596
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
597
|
+
) -> List[str]:
|
598
|
+
# in case the inferred output column names dimension is different
|
599
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
600
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
601
|
+
output_df_columns = list(output_df_pd.columns)
|
602
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
603
|
+
if self.sample_weight_col:
|
604
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
605
|
+
# if the dimension of inferred output column names is correct; use it
|
606
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
607
|
+
return expected_output_cols_list
|
608
|
+
# otherwise, use the sklearn estimator's output
|
609
|
+
else:
|
610
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
611
|
+
|
558
612
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
559
613
|
@telemetry.send_api_usage_telemetry(
|
560
614
|
project=_PROJECT,
|
@@ -585,24 +639,28 @@ class Nystroem(BaseTransformer):
|
|
585
639
|
# are specific to the type of dataset used.
|
586
640
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
587
641
|
|
642
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
643
|
+
|
588
644
|
if isinstance(dataset, DataFrame):
|
589
645
|
self._deps = self._batch_inference_validate_snowpark(
|
590
646
|
dataset=dataset,
|
591
647
|
inference_method=inference_method,
|
592
648
|
)
|
593
|
-
assert isinstance(
|
649
|
+
assert isinstance(
|
650
|
+
dataset._session, Session
|
651
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
594
652
|
transform_kwargs = dict(
|
595
653
|
session=dataset._session,
|
596
654
|
dependencies=self._deps,
|
597
|
-
drop_input_cols
|
655
|
+
drop_input_cols=self._drop_input_cols,
|
598
656
|
expected_output_cols_type="float",
|
599
657
|
)
|
658
|
+
expected_output_cols = self._align_expected_output_names(
|
659
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
660
|
+
)
|
600
661
|
|
601
662
|
elif isinstance(dataset, pd.DataFrame):
|
602
|
-
transform_kwargs = dict(
|
603
|
-
snowpark_input_cols = self._snowpark_cols,
|
604
|
-
drop_input_cols = self._drop_input_cols
|
605
|
-
)
|
663
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
606
664
|
|
607
665
|
transform_handlers = ModelTransformerBuilder.build(
|
608
666
|
dataset=dataset,
|
@@ -614,7 +672,7 @@ class Nystroem(BaseTransformer):
|
|
614
672
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
615
673
|
inference_method=inference_method,
|
616
674
|
input_cols=self.input_cols,
|
617
|
-
expected_output_cols=
|
675
|
+
expected_output_cols=expected_output_cols,
|
618
676
|
**transform_kwargs
|
619
677
|
)
|
620
678
|
return output_df
|
@@ -644,7 +702,8 @@ class Nystroem(BaseTransformer):
|
|
644
702
|
Output dataset with log probability of the sample for each class in the model.
|
645
703
|
"""
|
646
704
|
super()._check_dataset_type(dataset)
|
647
|
-
inference_method="predict_log_proba"
|
705
|
+
inference_method = "predict_log_proba"
|
706
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
648
707
|
|
649
708
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
650
709
|
# are specific to the type of dataset used.
|
@@ -655,18 +714,20 @@ class Nystroem(BaseTransformer):
|
|
655
714
|
dataset=dataset,
|
656
715
|
inference_method=inference_method,
|
657
716
|
)
|
658
|
-
assert isinstance(
|
717
|
+
assert isinstance(
|
718
|
+
dataset._session, Session
|
719
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
659
720
|
transform_kwargs = dict(
|
660
721
|
session=dataset._session,
|
661
722
|
dependencies=self._deps,
|
662
|
-
drop_input_cols
|
723
|
+
drop_input_cols=self._drop_input_cols,
|
663
724
|
expected_output_cols_type="float",
|
664
725
|
)
|
726
|
+
expected_output_cols = self._align_expected_output_names(
|
727
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
728
|
+
)
|
665
729
|
elif isinstance(dataset, pd.DataFrame):
|
666
|
-
transform_kwargs = dict(
|
667
|
-
snowpark_input_cols = self._snowpark_cols,
|
668
|
-
drop_input_cols = self._drop_input_cols
|
669
|
-
)
|
730
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
670
731
|
|
671
732
|
transform_handlers = ModelTransformerBuilder.build(
|
672
733
|
dataset=dataset,
|
@@ -679,7 +740,7 @@ class Nystroem(BaseTransformer):
|
|
679
740
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
680
741
|
inference_method=inference_method,
|
681
742
|
input_cols=self.input_cols,
|
682
|
-
expected_output_cols=
|
743
|
+
expected_output_cols=expected_output_cols,
|
683
744
|
**transform_kwargs
|
684
745
|
)
|
685
746
|
return output_df
|
@@ -705,30 +766,34 @@ class Nystroem(BaseTransformer):
|
|
705
766
|
Output dataset with results of the decision function for the samples in input dataset.
|
706
767
|
"""
|
707
768
|
super()._check_dataset_type(dataset)
|
708
|
-
inference_method="decision_function"
|
769
|
+
inference_method = "decision_function"
|
709
770
|
|
710
771
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
711
772
|
# are specific to the type of dataset used.
|
712
773
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
713
774
|
|
775
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
776
|
+
|
714
777
|
if isinstance(dataset, DataFrame):
|
715
778
|
self._deps = self._batch_inference_validate_snowpark(
|
716
779
|
dataset=dataset,
|
717
780
|
inference_method=inference_method,
|
718
781
|
)
|
719
|
-
assert isinstance(
|
782
|
+
assert isinstance(
|
783
|
+
dataset._session, Session
|
784
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
720
785
|
transform_kwargs = dict(
|
721
786
|
session=dataset._session,
|
722
787
|
dependencies=self._deps,
|
723
|
-
drop_input_cols
|
788
|
+
drop_input_cols=self._drop_input_cols,
|
724
789
|
expected_output_cols_type="float",
|
725
790
|
)
|
791
|
+
expected_output_cols = self._align_expected_output_names(
|
792
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
793
|
+
)
|
726
794
|
|
727
795
|
elif isinstance(dataset, pd.DataFrame):
|
728
|
-
transform_kwargs = dict(
|
729
|
-
snowpark_input_cols = self._snowpark_cols,
|
730
|
-
drop_input_cols = self._drop_input_cols
|
731
|
-
)
|
796
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
732
797
|
|
733
798
|
transform_handlers = ModelTransformerBuilder.build(
|
734
799
|
dataset=dataset,
|
@@ -741,7 +806,7 @@ class Nystroem(BaseTransformer):
|
|
741
806
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
742
807
|
inference_method=inference_method,
|
743
808
|
input_cols=self.input_cols,
|
744
|
-
expected_output_cols=
|
809
|
+
expected_output_cols=expected_output_cols,
|
745
810
|
**transform_kwargs
|
746
811
|
)
|
747
812
|
return output_df
|
@@ -770,12 +835,14 @@ class Nystroem(BaseTransformer):
|
|
770
835
|
Output dataset with probability of the sample for each class in the model.
|
771
836
|
"""
|
772
837
|
super()._check_dataset_type(dataset)
|
773
|
-
inference_method="score_samples"
|
838
|
+
inference_method = "score_samples"
|
774
839
|
|
775
840
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
776
841
|
# are specific to the type of dataset used.
|
777
842
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
778
843
|
|
844
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
845
|
+
|
779
846
|
if isinstance(dataset, DataFrame):
|
780
847
|
self._deps = self._batch_inference_validate_snowpark(
|
781
848
|
dataset=dataset,
|
@@ -788,6 +855,9 @@ class Nystroem(BaseTransformer):
|
|
788
855
|
drop_input_cols = self._drop_input_cols,
|
789
856
|
expected_output_cols_type="float",
|
790
857
|
)
|
858
|
+
expected_output_cols = self._align_expected_output_names(
|
859
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
860
|
+
)
|
791
861
|
|
792
862
|
elif isinstance(dataset, pd.DataFrame):
|
793
863
|
transform_kwargs = dict(
|
@@ -806,7 +876,7 @@ class Nystroem(BaseTransformer):
|
|
806
876
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
807
877
|
inference_method=inference_method,
|
808
878
|
input_cols=self.input_cols,
|
809
|
-
expected_output_cols=
|
879
|
+
expected_output_cols=expected_output_cols,
|
810
880
|
**transform_kwargs
|
811
881
|
)
|
812
882
|
return output_df
|
@@ -951,50 +1021,84 @@ class Nystroem(BaseTransformer):
|
|
951
1021
|
)
|
952
1022
|
return output_df
|
953
1023
|
|
1024
|
+
|
1025
|
+
|
1026
|
+
def to_sklearn(self) -> Any:
|
1027
|
+
"""Get sklearn.kernel_approximation.Nystroem object.
|
1028
|
+
"""
|
1029
|
+
if self._sklearn_object is None:
|
1030
|
+
self._sklearn_object = self._create_sklearn_object()
|
1031
|
+
return self._sklearn_object
|
1032
|
+
|
1033
|
+
def to_xgboost(self) -> Any:
|
1034
|
+
raise exceptions.SnowflakeMLException(
|
1035
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1036
|
+
original_exception=AttributeError(
|
1037
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1038
|
+
"to_xgboost()",
|
1039
|
+
"to_sklearn()"
|
1040
|
+
)
|
1041
|
+
),
|
1042
|
+
)
|
1043
|
+
|
1044
|
+
def to_lightgbm(self) -> Any:
|
1045
|
+
raise exceptions.SnowflakeMLException(
|
1046
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
+
original_exception=AttributeError(
|
1048
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
+
"to_lightgbm()",
|
1050
|
+
"to_sklearn()"
|
1051
|
+
)
|
1052
|
+
),
|
1053
|
+
)
|
954
1054
|
|
955
|
-
def
|
1055
|
+
def _get_dependencies(self) -> List[str]:
|
1056
|
+
return self._deps
|
1057
|
+
|
1058
|
+
|
1059
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
956
1060
|
self._model_signature_dict = dict()
|
957
1061
|
|
958
1062
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
959
1063
|
|
960
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1064
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
961
1065
|
outputs: List[BaseFeatureSpec] = []
|
962
1066
|
if hasattr(self, "predict"):
|
963
1067
|
# keep mypy happy
|
964
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1068
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
965
1069
|
# For classifier, the type of predict is the same as the type of label
|
966
|
-
if self._sklearn_object._estimator_type ==
|
967
|
-
|
1070
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1071
|
+
# label columns is the desired type for output
|
968
1072
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
969
1073
|
# rename the output columns
|
970
1074
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
971
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
972
|
-
|
973
|
-
|
1075
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1076
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1077
|
+
)
|
974
1078
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
975
1079
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
976
|
-
# Clusterer returns int64 cluster labels.
|
1080
|
+
# Clusterer returns int64 cluster labels.
|
977
1081
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
978
1082
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
979
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
980
|
-
|
981
|
-
|
982
|
-
|
1083
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1084
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1085
|
+
)
|
1086
|
+
|
983
1087
|
# For regressor, the type of predict is float64
|
984
|
-
elif self._sklearn_object._estimator_type ==
|
1088
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
985
1089
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
986
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
987
|
-
|
988
|
-
|
989
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
1093
|
+
|
990
1094
|
for prob_func in PROB_FUNCTIONS:
|
991
1095
|
if hasattr(self, prob_func):
|
992
1096
|
output_cols_prefix: str = f"{prob_func}_"
|
993
1097
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
994
1098
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
995
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
996
|
-
|
997
|
-
|
1099
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1100
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1101
|
+
)
|
998
1102
|
|
999
1103
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1000
1104
|
items = list(self._model_signature_dict.items())
|
@@ -1007,10 +1111,10 @@ class Nystroem(BaseTransformer):
|
|
1007
1111
|
"""Returns model signature of current class.
|
1008
1112
|
|
1009
1113
|
Raises:
|
1010
|
-
|
1114
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1011
1115
|
|
1012
1116
|
Returns:
|
1013
|
-
Dict
|
1117
|
+
Dict with each method and its input output signature
|
1014
1118
|
"""
|
1015
1119
|
if self._model_signature_dict is None:
|
1016
1120
|
raise exceptions.SnowflakeMLException(
|
@@ -1018,35 +1122,3 @@ class Nystroem(BaseTransformer):
|
|
1018
1122
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1019
1123
|
)
|
1020
1124
|
return self._model_signature_dict
|
1021
|
-
|
1022
|
-
def to_sklearn(self) -> Any:
|
1023
|
-
"""Get sklearn.kernel_approximation.Nystroem object.
|
1024
|
-
"""
|
1025
|
-
if self._sklearn_object is None:
|
1026
|
-
self._sklearn_object = self._create_sklearn_object()
|
1027
|
-
return self._sklearn_object
|
1028
|
-
|
1029
|
-
def to_xgboost(self) -> Any:
|
1030
|
-
raise exceptions.SnowflakeMLException(
|
1031
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1032
|
-
original_exception=AttributeError(
|
1033
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1034
|
-
"to_xgboost()",
|
1035
|
-
"to_sklearn()"
|
1036
|
-
)
|
1037
|
-
),
|
1038
|
-
)
|
1039
|
-
|
1040
|
-
def to_lightgbm(self) -> Any:
|
1041
|
-
raise exceptions.SnowflakeMLException(
|
1042
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
-
original_exception=AttributeError(
|
1044
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
-
"to_lightgbm()",
|
1046
|
-
"to_sklearn()"
|
1047
|
-
)
|
1048
|
-
),
|
1049
|
-
)
|
1050
|
-
|
1051
|
-
def _get_dependencies(self) -> List[str]:
|
1052
|
-
return self._deps
|