snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
32
32
|
BatchInferenceKwargsTypedDict,
|
33
33
|
ScoreKwargsTypedDict
|
34
34
|
)
|
35
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
36
|
+
from snowflake.ml.model.model_signature import (
|
37
|
+
BaseFeatureSpec,
|
38
|
+
DataType,
|
39
|
+
FeatureSpec,
|
40
|
+
ModelSignature,
|
41
|
+
_infer_signature,
|
42
|
+
_rename_signature_with_snowflake_identifiers,
|
43
|
+
)
|
35
44
|
|
36
45
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
37
46
|
|
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
42
51
|
validate_sklearn_args,
|
43
52
|
)
|
44
53
|
|
45
|
-
from snowflake.ml.model.model_signature import (
|
46
|
-
DataType,
|
47
|
-
FeatureSpec,
|
48
|
-
ModelSignature,
|
49
|
-
_infer_signature,
|
50
|
-
_rename_signature_with_snowflake_identifiers,
|
51
|
-
BaseFeatureSpec,
|
52
|
-
)
|
53
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
54
|
-
|
55
54
|
_PROJECT = "ModelDevelopment"
|
56
55
|
# Derive subproject from module name by removing "sklearn"
|
57
56
|
# and converting module name from underscore to CamelCase
|
@@ -422,12 +421,7 @@ class XGBClassifier(BaseTransformer):
|
|
422
421
|
)
|
423
422
|
return selected_cols
|
424
423
|
|
425
|
-
|
426
|
-
project=_PROJECT,
|
427
|
-
subproject=_SUBPROJECT,
|
428
|
-
custom_tags=dict([("autogen", True)]),
|
429
|
-
)
|
430
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBClassifier":
|
424
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBClassifier":
|
431
425
|
"""Fit gradient boosting classifier
|
432
426
|
For more details on this function, see [xgboost.XGBClassifier.fit]
|
433
427
|
(https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier.fit)
|
@@ -454,12 +448,14 @@ class XGBClassifier(BaseTransformer):
|
|
454
448
|
|
455
449
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
456
450
|
|
457
|
-
|
451
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
458
452
|
if SNOWML_SPROC_ENV in os.environ:
|
459
453
|
statement_params = telemetry.get_function_usage_statement_params(
|
460
454
|
project=_PROJECT,
|
461
455
|
subproject=_SUBPROJECT,
|
462
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
456
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
457
|
+
inspect.currentframe(), XGBClassifier.__class__.__name__
|
458
|
+
),
|
463
459
|
api_calls=[Session.call],
|
464
460
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
465
461
|
)
|
@@ -480,7 +476,7 @@ class XGBClassifier(BaseTransformer):
|
|
480
476
|
)
|
481
477
|
self._sklearn_object = model_trainer.train()
|
482
478
|
self._is_fitted = True
|
483
|
-
self.
|
479
|
+
self._generate_model_signatures(dataset)
|
484
480
|
return self
|
485
481
|
|
486
482
|
def _batch_inference_validate_snowpark(
|
@@ -556,7 +552,9 @@ class XGBClassifier(BaseTransformer):
|
|
556
552
|
# when it is classifier, infer the datatype from label columns
|
557
553
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
558
554
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
559
|
-
label_cols_signatures = [
|
555
|
+
label_cols_signatures = [
|
556
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
557
|
+
]
|
560
558
|
if len(label_cols_signatures) == 0:
|
561
559
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
562
560
|
raise exceptions.SnowflakeMLException(
|
@@ -564,25 +562,22 @@ class XGBClassifier(BaseTransformer):
|
|
564
562
|
original_exception=ValueError(error_str),
|
565
563
|
)
|
566
564
|
|
567
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
568
|
-
label_cols_signatures[0].as_snowpark_type()
|
569
|
-
)
|
565
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
570
566
|
|
571
567
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
572
|
-
assert isinstance(
|
568
|
+
assert isinstance(
|
569
|
+
dataset._session, Session
|
570
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
573
571
|
|
574
572
|
transform_kwargs = dict(
|
575
|
-
session
|
576
|
-
dependencies
|
577
|
-
drop_input_cols
|
578
|
-
expected_output_cols_type
|
573
|
+
session=dataset._session,
|
574
|
+
dependencies=self._deps,
|
575
|
+
drop_input_cols=self._drop_input_cols,
|
576
|
+
expected_output_cols_type=expected_type_inferred,
|
579
577
|
)
|
580
578
|
|
581
579
|
elif isinstance(dataset, pd.DataFrame):
|
582
|
-
transform_kwargs = dict(
|
583
|
-
snowpark_input_cols = self._snowpark_cols,
|
584
|
-
drop_input_cols = self._drop_input_cols
|
585
|
-
)
|
580
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
586
581
|
|
587
582
|
transform_handlers = ModelTransformerBuilder.build(
|
588
583
|
dataset=dataset,
|
@@ -622,7 +617,7 @@ class XGBClassifier(BaseTransformer):
|
|
622
617
|
Transformed dataset.
|
623
618
|
"""
|
624
619
|
super()._check_dataset_type(dataset)
|
625
|
-
inference_method="transform"
|
620
|
+
inference_method = "transform"
|
626
621
|
|
627
622
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
628
623
|
# are specific to the type of dataset used.
|
@@ -659,17 +654,14 @@ class XGBClassifier(BaseTransformer):
|
|
659
654
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
655
|
|
661
656
|
transform_kwargs = dict(
|
662
|
-
session
|
663
|
-
dependencies
|
664
|
-
drop_input_cols
|
665
|
-
expected_output_cols_type
|
657
|
+
session=dataset._session,
|
658
|
+
dependencies=self._deps,
|
659
|
+
drop_input_cols=self._drop_input_cols,
|
660
|
+
expected_output_cols_type=expected_dtype,
|
666
661
|
)
|
667
662
|
|
668
663
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
664
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
665
|
|
674
666
|
transform_handlers = ModelTransformerBuilder.build(
|
675
667
|
dataset=dataset,
|
@@ -688,7 +680,11 @@ class XGBClassifier(BaseTransformer):
|
|
688
680
|
return output_df
|
689
681
|
|
690
682
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
691
|
-
def fit_predict(
|
683
|
+
def fit_predict(
|
684
|
+
self,
|
685
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
686
|
+
output_cols_prefix: str = "fit_predict_",
|
687
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
692
688
|
""" Method not supported for this class.
|
693
689
|
|
694
690
|
|
@@ -713,7 +709,9 @@ class XGBClassifier(BaseTransformer):
|
|
713
709
|
)
|
714
710
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
715
711
|
drop_input_cols=self._drop_input_cols,
|
716
|
-
expected_output_cols_list=
|
712
|
+
expected_output_cols_list=(
|
713
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
714
|
+
),
|
717
715
|
)
|
718
716
|
self._sklearn_object = fitted_estimator
|
719
717
|
self._is_fitted = True
|
@@ -730,6 +728,62 @@ class XGBClassifier(BaseTransformer):
|
|
730
728
|
assert self._sklearn_object is not None
|
731
729
|
return self._sklearn_object.embedding_
|
732
730
|
|
731
|
+
|
732
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
733
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
734
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
735
|
+
"""
|
736
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
737
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
738
|
+
if output_cols:
|
739
|
+
output_cols = [
|
740
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
741
|
+
for c in output_cols
|
742
|
+
]
|
743
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
744
|
+
output_cols = [output_cols_prefix]
|
745
|
+
elif self._sklearn_object is not None:
|
746
|
+
classes = self._sklearn_object.classes_
|
747
|
+
if isinstance(classes, numpy.ndarray):
|
748
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
749
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
750
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
751
|
+
output_cols = []
|
752
|
+
for i, cl in enumerate(classes):
|
753
|
+
# For binary classification, there is only one output column for each class
|
754
|
+
# ndarray as the two classes are complementary.
|
755
|
+
if len(cl) == 2:
|
756
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
757
|
+
else:
|
758
|
+
output_cols.extend([
|
759
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
760
|
+
])
|
761
|
+
else:
|
762
|
+
output_cols = []
|
763
|
+
|
764
|
+
# Make sure column names are valid snowflake identifiers.
|
765
|
+
assert output_cols is not None # Make MyPy happy
|
766
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
767
|
+
|
768
|
+
return rv
|
769
|
+
|
770
|
+
def _align_expected_output_names(
|
771
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
772
|
+
) -> List[str]:
|
773
|
+
# in case the inferred output column names dimension is different
|
774
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
775
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
776
|
+
output_df_columns = list(output_df_pd.columns)
|
777
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
778
|
+
if self.sample_weight_col:
|
779
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
780
|
+
# if the dimension of inferred output column names is correct; use it
|
781
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
782
|
+
return expected_output_cols_list
|
783
|
+
# otherwise, use the sklearn estimator's output
|
784
|
+
else:
|
785
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
786
|
+
|
733
787
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
734
788
|
@telemetry.send_api_usage_telemetry(
|
735
789
|
project=_PROJECT,
|
@@ -762,24 +816,28 @@ class XGBClassifier(BaseTransformer):
|
|
762
816
|
# are specific to the type of dataset used.
|
763
817
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
764
818
|
|
819
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
820
|
+
|
765
821
|
if isinstance(dataset, DataFrame):
|
766
822
|
self._deps = self._batch_inference_validate_snowpark(
|
767
823
|
dataset=dataset,
|
768
824
|
inference_method=inference_method,
|
769
825
|
)
|
770
|
-
assert isinstance(
|
826
|
+
assert isinstance(
|
827
|
+
dataset._session, Session
|
828
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
771
829
|
transform_kwargs = dict(
|
772
830
|
session=dataset._session,
|
773
831
|
dependencies=self._deps,
|
774
|
-
drop_input_cols
|
832
|
+
drop_input_cols=self._drop_input_cols,
|
775
833
|
expected_output_cols_type="float",
|
776
834
|
)
|
835
|
+
expected_output_cols = self._align_expected_output_names(
|
836
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
837
|
+
)
|
777
838
|
|
778
839
|
elif isinstance(dataset, pd.DataFrame):
|
779
|
-
transform_kwargs = dict(
|
780
|
-
snowpark_input_cols = self._snowpark_cols,
|
781
|
-
drop_input_cols = self._drop_input_cols
|
782
|
-
)
|
840
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
783
841
|
|
784
842
|
transform_handlers = ModelTransformerBuilder.build(
|
785
843
|
dataset=dataset,
|
@@ -791,7 +849,7 @@ class XGBClassifier(BaseTransformer):
|
|
791
849
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
850
|
inference_method=inference_method,
|
793
851
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
852
|
+
expected_output_cols=expected_output_cols,
|
795
853
|
**transform_kwargs
|
796
854
|
)
|
797
855
|
return output_df
|
@@ -823,7 +881,8 @@ class XGBClassifier(BaseTransformer):
|
|
823
881
|
Output dataset with log probability of the sample for each class in the model.
|
824
882
|
"""
|
825
883
|
super()._check_dataset_type(dataset)
|
826
|
-
inference_method="predict_log_proba"
|
884
|
+
inference_method = "predict_log_proba"
|
885
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
827
886
|
|
828
887
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
829
888
|
# are specific to the type of dataset used.
|
@@ -834,18 +893,20 @@ class XGBClassifier(BaseTransformer):
|
|
834
893
|
dataset=dataset,
|
835
894
|
inference_method=inference_method,
|
836
895
|
)
|
837
|
-
assert isinstance(
|
896
|
+
assert isinstance(
|
897
|
+
dataset._session, Session
|
898
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
838
899
|
transform_kwargs = dict(
|
839
900
|
session=dataset._session,
|
840
901
|
dependencies=self._deps,
|
841
|
-
drop_input_cols
|
902
|
+
drop_input_cols=self._drop_input_cols,
|
842
903
|
expected_output_cols_type="float",
|
843
904
|
)
|
905
|
+
expected_output_cols = self._align_expected_output_names(
|
906
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
907
|
+
)
|
844
908
|
elif isinstance(dataset, pd.DataFrame):
|
845
|
-
transform_kwargs = dict(
|
846
|
-
snowpark_input_cols = self._snowpark_cols,
|
847
|
-
drop_input_cols = self._drop_input_cols
|
848
|
-
)
|
909
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
849
910
|
|
850
911
|
transform_handlers = ModelTransformerBuilder.build(
|
851
912
|
dataset=dataset,
|
@@ -858,7 +919,7 @@ class XGBClassifier(BaseTransformer):
|
|
858
919
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
859
920
|
inference_method=inference_method,
|
860
921
|
input_cols=self.input_cols,
|
861
|
-
expected_output_cols=
|
922
|
+
expected_output_cols=expected_output_cols,
|
862
923
|
**transform_kwargs
|
863
924
|
)
|
864
925
|
return output_df
|
@@ -884,30 +945,34 @@ class XGBClassifier(BaseTransformer):
|
|
884
945
|
Output dataset with results of the decision function for the samples in input dataset.
|
885
946
|
"""
|
886
947
|
super()._check_dataset_type(dataset)
|
887
|
-
inference_method="decision_function"
|
948
|
+
inference_method = "decision_function"
|
888
949
|
|
889
950
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
890
951
|
# are specific to the type of dataset used.
|
891
952
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
892
953
|
|
954
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
955
|
+
|
893
956
|
if isinstance(dataset, DataFrame):
|
894
957
|
self._deps = self._batch_inference_validate_snowpark(
|
895
958
|
dataset=dataset,
|
896
959
|
inference_method=inference_method,
|
897
960
|
)
|
898
|
-
assert isinstance(
|
961
|
+
assert isinstance(
|
962
|
+
dataset._session, Session
|
963
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
899
964
|
transform_kwargs = dict(
|
900
965
|
session=dataset._session,
|
901
966
|
dependencies=self._deps,
|
902
|
-
drop_input_cols
|
967
|
+
drop_input_cols=self._drop_input_cols,
|
903
968
|
expected_output_cols_type="float",
|
904
969
|
)
|
970
|
+
expected_output_cols = self._align_expected_output_names(
|
971
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
972
|
+
)
|
905
973
|
|
906
974
|
elif isinstance(dataset, pd.DataFrame):
|
907
|
-
transform_kwargs = dict(
|
908
|
-
snowpark_input_cols = self._snowpark_cols,
|
909
|
-
drop_input_cols = self._drop_input_cols
|
910
|
-
)
|
975
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
911
976
|
|
912
977
|
transform_handlers = ModelTransformerBuilder.build(
|
913
978
|
dataset=dataset,
|
@@ -920,7 +985,7 @@ class XGBClassifier(BaseTransformer):
|
|
920
985
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
921
986
|
inference_method=inference_method,
|
922
987
|
input_cols=self.input_cols,
|
923
|
-
expected_output_cols=
|
988
|
+
expected_output_cols=expected_output_cols,
|
924
989
|
**transform_kwargs
|
925
990
|
)
|
926
991
|
return output_df
|
@@ -949,12 +1014,14 @@ class XGBClassifier(BaseTransformer):
|
|
949
1014
|
Output dataset with probability of the sample for each class in the model.
|
950
1015
|
"""
|
951
1016
|
super()._check_dataset_type(dataset)
|
952
|
-
inference_method="score_samples"
|
1017
|
+
inference_method = "score_samples"
|
953
1018
|
|
954
1019
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
955
1020
|
# are specific to the type of dataset used.
|
956
1021
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
957
1022
|
|
1023
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
1024
|
+
|
958
1025
|
if isinstance(dataset, DataFrame):
|
959
1026
|
self._deps = self._batch_inference_validate_snowpark(
|
960
1027
|
dataset=dataset,
|
@@ -967,6 +1034,9 @@ class XGBClassifier(BaseTransformer):
|
|
967
1034
|
drop_input_cols = self._drop_input_cols,
|
968
1035
|
expected_output_cols_type="float",
|
969
1036
|
)
|
1037
|
+
expected_output_cols = self._align_expected_output_names(
|
1038
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
1039
|
+
)
|
970
1040
|
|
971
1041
|
elif isinstance(dataset, pd.DataFrame):
|
972
1042
|
transform_kwargs = dict(
|
@@ -985,7 +1055,7 @@ class XGBClassifier(BaseTransformer):
|
|
985
1055
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
986
1056
|
inference_method=inference_method,
|
987
1057
|
input_cols=self.input_cols,
|
988
|
-
expected_output_cols=
|
1058
|
+
expected_output_cols=expected_output_cols,
|
989
1059
|
**transform_kwargs
|
990
1060
|
)
|
991
1061
|
return output_df
|
@@ -1132,50 +1202,84 @@ class XGBClassifier(BaseTransformer):
|
|
1132
1202
|
)
|
1133
1203
|
return output_df
|
1134
1204
|
|
1205
|
+
|
1206
|
+
|
1207
|
+
def to_xgboost(self) -> Any:
|
1208
|
+
"""Get xgboost.XGBClassifier object.
|
1209
|
+
"""
|
1210
|
+
if self._sklearn_object is None:
|
1211
|
+
self._sklearn_object = self._create_sklearn_object()
|
1212
|
+
return self._sklearn_object
|
1213
|
+
|
1214
|
+
def to_sklearn(self) -> Any:
|
1215
|
+
raise exceptions.SnowflakeMLException(
|
1216
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1217
|
+
original_exception=AttributeError(
|
1218
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1219
|
+
"to_sklearn()",
|
1220
|
+
"to_xgboost()"
|
1221
|
+
)
|
1222
|
+
),
|
1223
|
+
)
|
1224
|
+
|
1225
|
+
def to_lightgbm(self) -> Any:
|
1226
|
+
raise exceptions.SnowflakeMLException(
|
1227
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1228
|
+
original_exception=AttributeError(
|
1229
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1230
|
+
"to_lightgbm()",
|
1231
|
+
"to_xgboost()"
|
1232
|
+
)
|
1233
|
+
),
|
1234
|
+
)
|
1135
1235
|
|
1136
|
-
def
|
1236
|
+
def _get_dependencies(self) -> List[str]:
|
1237
|
+
return self._deps
|
1238
|
+
|
1239
|
+
|
1240
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1137
1241
|
self._model_signature_dict = dict()
|
1138
1242
|
|
1139
1243
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1140
1244
|
|
1141
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1245
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1142
1246
|
outputs: List[BaseFeatureSpec] = []
|
1143
1247
|
if hasattr(self, "predict"):
|
1144
1248
|
# keep mypy happy
|
1145
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1249
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1146
1250
|
# For classifier, the type of predict is the same as the type of label
|
1147
|
-
if self._sklearn_object._estimator_type ==
|
1148
|
-
|
1251
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1252
|
+
# label columns is the desired type for output
|
1149
1253
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1150
1254
|
# rename the output columns
|
1151
1255
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1152
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1153
|
-
|
1154
|
-
|
1256
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1257
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1258
|
+
)
|
1155
1259
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1156
1260
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1157
|
-
# Clusterer returns int64 cluster labels.
|
1261
|
+
# Clusterer returns int64 cluster labels.
|
1158
1262
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1159
1263
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1160
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1264
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1265
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1266
|
+
)
|
1267
|
+
|
1164
1268
|
# For regressor, the type of predict is float64
|
1165
|
-
elif self._sklearn_object._estimator_type ==
|
1269
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1166
1270
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1167
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1271
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1272
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1273
|
+
)
|
1274
|
+
|
1171
1275
|
for prob_func in PROB_FUNCTIONS:
|
1172
1276
|
if hasattr(self, prob_func):
|
1173
1277
|
output_cols_prefix: str = f"{prob_func}_"
|
1174
1278
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1175
1279
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1176
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1177
|
-
|
1178
|
-
|
1280
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1281
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1282
|
+
)
|
1179
1283
|
|
1180
1284
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1181
1285
|
items = list(self._model_signature_dict.items())
|
@@ -1188,10 +1292,10 @@ class XGBClassifier(BaseTransformer):
|
|
1188
1292
|
"""Returns model signature of current class.
|
1189
1293
|
|
1190
1294
|
Raises:
|
1191
|
-
|
1295
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1192
1296
|
|
1193
1297
|
Returns:
|
1194
|
-
Dict
|
1298
|
+
Dict with each method and its input output signature
|
1195
1299
|
"""
|
1196
1300
|
if self._model_signature_dict is None:
|
1197
1301
|
raise exceptions.SnowflakeMLException(
|
@@ -1199,35 +1303,3 @@ class XGBClassifier(BaseTransformer):
|
|
1199
1303
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1200
1304
|
)
|
1201
1305
|
return self._model_signature_dict
|
1202
|
-
|
1203
|
-
def to_xgboost(self) -> Any:
|
1204
|
-
"""Get xgboost.XGBClassifier object.
|
1205
|
-
"""
|
1206
|
-
if self._sklearn_object is None:
|
1207
|
-
self._sklearn_object = self._create_sklearn_object()
|
1208
|
-
return self._sklearn_object
|
1209
|
-
|
1210
|
-
def to_sklearn(self) -> Any:
|
1211
|
-
raise exceptions.SnowflakeMLException(
|
1212
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1213
|
-
original_exception=AttributeError(
|
1214
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1215
|
-
"to_sklearn()",
|
1216
|
-
"to_xgboost()"
|
1217
|
-
)
|
1218
|
-
),
|
1219
|
-
)
|
1220
|
-
|
1221
|
-
def to_lightgbm(self) -> Any:
|
1222
|
-
raise exceptions.SnowflakeMLException(
|
1223
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1224
|
-
original_exception=AttributeError(
|
1225
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1226
|
-
"to_lightgbm()",
|
1227
|
-
"to_xgboost()"
|
1228
|
-
)
|
1229
|
-
),
|
1230
|
-
)
|
1231
|
-
|
1232
|
-
def _get_dependencies(self) -> List[str]:
|
1233
|
-
return self._deps
|