snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -387,12 +386,7 @@ class MLPClassifier(BaseTransformer):
387
386
  )
388
387
  return selected_cols
389
388
 
390
- @telemetry.send_api_usage_telemetry(
391
- project=_PROJECT,
392
- subproject=_SUBPROJECT,
393
- custom_tags=dict([("autogen", True)]),
394
- )
395
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPClassifier":
389
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPClassifier":
396
390
  """Fit the model to data matrix X and target(s) y
397
391
  For more details on this function, see [sklearn.neural_network.MLPClassifier.fit]
398
392
  (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.fit)
@@ -419,12 +413,14 @@ class MLPClassifier(BaseTransformer):
419
413
 
420
414
  self._snowpark_cols = dataset.select(self.input_cols).columns
421
415
 
422
- # If we are already in a stored procedure, no need to kick off another one.
416
+ # If we are already in a stored procedure, no need to kick off another one.
423
417
  if SNOWML_SPROC_ENV in os.environ:
424
418
  statement_params = telemetry.get_function_usage_statement_params(
425
419
  project=_PROJECT,
426
420
  subproject=_SUBPROJECT,
427
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
421
+ function_name=telemetry.get_statement_params_full_func_name(
422
+ inspect.currentframe(), MLPClassifier.__class__.__name__
423
+ ),
428
424
  api_calls=[Session.call],
429
425
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
430
426
  )
@@ -445,7 +441,7 @@ class MLPClassifier(BaseTransformer):
445
441
  )
446
442
  self._sklearn_object = model_trainer.train()
447
443
  self._is_fitted = True
448
- self._get_model_signatures(dataset)
444
+ self._generate_model_signatures(dataset)
449
445
  return self
450
446
 
451
447
  def _batch_inference_validate_snowpark(
@@ -521,7 +517,9 @@ class MLPClassifier(BaseTransformer):
521
517
  # when it is classifier, infer the datatype from label columns
522
518
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
523
519
  # Batch inference takes a single expected output column type. Use the first columns type for now.
524
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
520
+ label_cols_signatures = [
521
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
522
+ ]
525
523
  if len(label_cols_signatures) == 0:
526
524
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
527
525
  raise exceptions.SnowflakeMLException(
@@ -529,25 +527,22 @@ class MLPClassifier(BaseTransformer):
529
527
  original_exception=ValueError(error_str),
530
528
  )
531
529
 
532
- expected_type_inferred = convert_sp_to_sf_type(
533
- label_cols_signatures[0].as_snowpark_type()
534
- )
530
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
535
531
 
536
532
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
537
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
533
+ assert isinstance(
534
+ dataset._session, Session
535
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
538
536
 
539
537
  transform_kwargs = dict(
540
- session = dataset._session,
541
- dependencies = self._deps,
542
- drop_input_cols = self._drop_input_cols,
543
- expected_output_cols_type = expected_type_inferred,
538
+ session=dataset._session,
539
+ dependencies=self._deps,
540
+ drop_input_cols=self._drop_input_cols,
541
+ expected_output_cols_type=expected_type_inferred,
544
542
  )
545
543
 
546
544
  elif isinstance(dataset, pd.DataFrame):
547
- transform_kwargs = dict(
548
- snowpark_input_cols = self._snowpark_cols,
549
- drop_input_cols = self._drop_input_cols
550
- )
545
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
551
546
 
552
547
  transform_handlers = ModelTransformerBuilder.build(
553
548
  dataset=dataset,
@@ -587,7 +582,7 @@ class MLPClassifier(BaseTransformer):
587
582
  Transformed dataset.
588
583
  """
589
584
  super()._check_dataset_type(dataset)
590
- inference_method="transform"
585
+ inference_method = "transform"
591
586
 
592
587
  # This dictionary contains optional kwargs for batch inference. These kwargs
593
588
  # are specific to the type of dataset used.
@@ -624,17 +619,14 @@ class MLPClassifier(BaseTransformer):
624
619
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
620
 
626
621
  transform_kwargs = dict(
627
- session = dataset._session,
628
- dependencies = self._deps,
629
- drop_input_cols = self._drop_input_cols,
630
- expected_output_cols_type = expected_dtype,
622
+ session=dataset._session,
623
+ dependencies=self._deps,
624
+ drop_input_cols=self._drop_input_cols,
625
+ expected_output_cols_type=expected_dtype,
631
626
  )
632
627
 
633
628
  elif isinstance(dataset, pd.DataFrame):
634
- transform_kwargs = dict(
635
- snowpark_input_cols = self._snowpark_cols,
636
- drop_input_cols = self._drop_input_cols
637
- )
629
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
638
630
 
639
631
  transform_handlers = ModelTransformerBuilder.build(
640
632
  dataset=dataset,
@@ -653,7 +645,11 @@ class MLPClassifier(BaseTransformer):
653
645
  return output_df
654
646
 
655
647
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
656
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
648
+ def fit_predict(
649
+ self,
650
+ dataset: Union[DataFrame, pd.DataFrame],
651
+ output_cols_prefix: str = "fit_predict_",
652
+ ) -> Union[DataFrame, pd.DataFrame]:
657
653
  """ Method not supported for this class.
658
654
 
659
655
 
@@ -678,7 +674,9 @@ class MLPClassifier(BaseTransformer):
678
674
  )
679
675
  output_result, fitted_estimator = model_trainer.train_fit_predict(
680
676
  drop_input_cols=self._drop_input_cols,
681
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
677
+ expected_output_cols_list=(
678
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
679
+ ),
682
680
  )
683
681
  self._sklearn_object = fitted_estimator
684
682
  self._is_fitted = True
@@ -695,6 +693,62 @@ class MLPClassifier(BaseTransformer):
695
693
  assert self._sklearn_object is not None
696
694
  return self._sklearn_object.embedding_
697
695
 
696
+
697
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
698
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
699
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
700
+ """
701
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
702
+ # The following condition is introduced for kneighbors methods, and not used in other methods
703
+ if output_cols:
704
+ output_cols = [
705
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
706
+ for c in output_cols
707
+ ]
708
+ elif getattr(self._sklearn_object, "classes_", None) is None:
709
+ output_cols = [output_cols_prefix]
710
+ elif self._sklearn_object is not None:
711
+ classes = self._sklearn_object.classes_
712
+ if isinstance(classes, numpy.ndarray):
713
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
714
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
715
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
716
+ output_cols = []
717
+ for i, cl in enumerate(classes):
718
+ # For binary classification, there is only one output column for each class
719
+ # ndarray as the two classes are complementary.
720
+ if len(cl) == 2:
721
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
722
+ else:
723
+ output_cols.extend([
724
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
725
+ ])
726
+ else:
727
+ output_cols = []
728
+
729
+ # Make sure column names are valid snowflake identifiers.
730
+ assert output_cols is not None # Make MyPy happy
731
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
732
+
733
+ return rv
734
+
735
+ def _align_expected_output_names(
736
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
737
+ ) -> List[str]:
738
+ # in case the inferred output column names dimension is different
739
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
740
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
741
+ output_df_columns = list(output_df_pd.columns)
742
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
743
+ if self.sample_weight_col:
744
+ output_df_columns_set -= set(self.sample_weight_col)
745
+ # if the dimension of inferred output column names is correct; use it
746
+ if len(expected_output_cols_list) == len(output_df_columns_set):
747
+ return expected_output_cols_list
748
+ # otherwise, use the sklearn estimator's output
749
+ else:
750
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
751
+
698
752
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
699
753
  @telemetry.send_api_usage_telemetry(
700
754
  project=_PROJECT,
@@ -727,24 +781,28 @@ class MLPClassifier(BaseTransformer):
727
781
  # are specific to the type of dataset used.
728
782
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
729
783
 
784
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
785
+
730
786
  if isinstance(dataset, DataFrame):
731
787
  self._deps = self._batch_inference_validate_snowpark(
732
788
  dataset=dataset,
733
789
  inference_method=inference_method,
734
790
  )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
791
+ assert isinstance(
792
+ dataset._session, Session
793
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
794
  transform_kwargs = dict(
737
795
  session=dataset._session,
738
796
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
797
+ drop_input_cols=self._drop_input_cols,
740
798
  expected_output_cols_type="float",
741
799
  )
800
+ expected_output_cols = self._align_expected_output_names(
801
+ inference_method, dataset, expected_output_cols, output_cols_prefix
802
+ )
742
803
 
743
804
  elif isinstance(dataset, pd.DataFrame):
744
- transform_kwargs = dict(
745
- snowpark_input_cols = self._snowpark_cols,
746
- drop_input_cols = self._drop_input_cols
747
- )
805
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
748
806
 
749
807
  transform_handlers = ModelTransformerBuilder.build(
750
808
  dataset=dataset,
@@ -756,7 +814,7 @@ class MLPClassifier(BaseTransformer):
756
814
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
815
  inference_method=inference_method,
758
816
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
817
+ expected_output_cols=expected_output_cols,
760
818
  **transform_kwargs
761
819
  )
762
820
  return output_df
@@ -788,7 +846,8 @@ class MLPClassifier(BaseTransformer):
788
846
  Output dataset with log probability of the sample for each class in the model.
789
847
  """
790
848
  super()._check_dataset_type(dataset)
791
- inference_method="predict_log_proba"
849
+ inference_method = "predict_log_proba"
850
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
792
851
 
793
852
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
853
  # are specific to the type of dataset used.
@@ -799,18 +858,20 @@ class MLPClassifier(BaseTransformer):
799
858
  dataset=dataset,
800
859
  inference_method=inference_method,
801
860
  )
802
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
861
+ assert isinstance(
862
+ dataset._session, Session
863
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
803
864
  transform_kwargs = dict(
804
865
  session=dataset._session,
805
866
  dependencies=self._deps,
806
- drop_input_cols = self._drop_input_cols,
867
+ drop_input_cols=self._drop_input_cols,
807
868
  expected_output_cols_type="float",
808
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
809
873
  elif isinstance(dataset, pd.DataFrame):
810
- transform_kwargs = dict(
811
- snowpark_input_cols = self._snowpark_cols,
812
- drop_input_cols = self._drop_input_cols
813
- )
874
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
814
875
 
815
876
  transform_handlers = ModelTransformerBuilder.build(
816
877
  dataset=dataset,
@@ -823,7 +884,7 @@ class MLPClassifier(BaseTransformer):
823
884
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
824
885
  inference_method=inference_method,
825
886
  input_cols=self.input_cols,
826
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
887
+ expected_output_cols=expected_output_cols,
827
888
  **transform_kwargs
828
889
  )
829
890
  return output_df
@@ -849,30 +910,34 @@ class MLPClassifier(BaseTransformer):
849
910
  Output dataset with results of the decision function for the samples in input dataset.
850
911
  """
851
912
  super()._check_dataset_type(dataset)
852
- inference_method="decision_function"
913
+ inference_method = "decision_function"
853
914
 
854
915
  # This dictionary contains optional kwargs for batch inference. These kwargs
855
916
  # are specific to the type of dataset used.
856
917
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
857
918
 
919
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
920
+
858
921
  if isinstance(dataset, DataFrame):
859
922
  self._deps = self._batch_inference_validate_snowpark(
860
923
  dataset=dataset,
861
924
  inference_method=inference_method,
862
925
  )
863
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
926
+ assert isinstance(
927
+ dataset._session, Session
928
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
864
929
  transform_kwargs = dict(
865
930
  session=dataset._session,
866
931
  dependencies=self._deps,
867
- drop_input_cols = self._drop_input_cols,
932
+ drop_input_cols=self._drop_input_cols,
868
933
  expected_output_cols_type="float",
869
934
  )
935
+ expected_output_cols = self._align_expected_output_names(
936
+ inference_method, dataset, expected_output_cols, output_cols_prefix
937
+ )
870
938
 
871
939
  elif isinstance(dataset, pd.DataFrame):
872
- transform_kwargs = dict(
873
- snowpark_input_cols = self._snowpark_cols,
874
- drop_input_cols = self._drop_input_cols
875
- )
940
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
876
941
 
877
942
  transform_handlers = ModelTransformerBuilder.build(
878
943
  dataset=dataset,
@@ -885,7 +950,7 @@ class MLPClassifier(BaseTransformer):
885
950
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
886
951
  inference_method=inference_method,
887
952
  input_cols=self.input_cols,
888
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
953
+ expected_output_cols=expected_output_cols,
889
954
  **transform_kwargs
890
955
  )
891
956
  return output_df
@@ -914,12 +979,14 @@ class MLPClassifier(BaseTransformer):
914
979
  Output dataset with probability of the sample for each class in the model.
915
980
  """
916
981
  super()._check_dataset_type(dataset)
917
- inference_method="score_samples"
982
+ inference_method = "score_samples"
918
983
 
919
984
  # This dictionary contains optional kwargs for batch inference. These kwargs
920
985
  # are specific to the type of dataset used.
921
986
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
922
987
 
988
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
989
+
923
990
  if isinstance(dataset, DataFrame):
924
991
  self._deps = self._batch_inference_validate_snowpark(
925
992
  dataset=dataset,
@@ -932,6 +999,9 @@ class MLPClassifier(BaseTransformer):
932
999
  drop_input_cols = self._drop_input_cols,
933
1000
  expected_output_cols_type="float",
934
1001
  )
1002
+ expected_output_cols = self._align_expected_output_names(
1003
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1004
+ )
935
1005
 
936
1006
  elif isinstance(dataset, pd.DataFrame):
937
1007
  transform_kwargs = dict(
@@ -950,7 +1020,7 @@ class MLPClassifier(BaseTransformer):
950
1020
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
951
1021
  inference_method=inference_method,
952
1022
  input_cols=self.input_cols,
953
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1023
+ expected_output_cols=expected_output_cols,
954
1024
  **transform_kwargs
955
1025
  )
956
1026
  return output_df
@@ -1097,50 +1167,84 @@ class MLPClassifier(BaseTransformer):
1097
1167
  )
1098
1168
  return output_df
1099
1169
 
1170
+
1171
+
1172
+ def to_sklearn(self) -> Any:
1173
+ """Get sklearn.neural_network.MLPClassifier object.
1174
+ """
1175
+ if self._sklearn_object is None:
1176
+ self._sklearn_object = self._create_sklearn_object()
1177
+ return self._sklearn_object
1178
+
1179
+ def to_xgboost(self) -> Any:
1180
+ raise exceptions.SnowflakeMLException(
1181
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1182
+ original_exception=AttributeError(
1183
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1184
+ "to_xgboost()",
1185
+ "to_sklearn()"
1186
+ )
1187
+ ),
1188
+ )
1189
+
1190
+ def to_lightgbm(self) -> Any:
1191
+ raise exceptions.SnowflakeMLException(
1192
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1193
+ original_exception=AttributeError(
1194
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1195
+ "to_lightgbm()",
1196
+ "to_sklearn()"
1197
+ )
1198
+ ),
1199
+ )
1100
1200
 
1101
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1201
+ def _get_dependencies(self) -> List[str]:
1202
+ return self._deps
1203
+
1204
+
1205
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1102
1206
  self._model_signature_dict = dict()
1103
1207
 
1104
1208
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1105
1209
 
1106
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1210
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1107
1211
  outputs: List[BaseFeatureSpec] = []
1108
1212
  if hasattr(self, "predict"):
1109
1213
  # keep mypy happy
1110
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1214
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1111
1215
  # For classifier, the type of predict is the same as the type of label
1112
- if self._sklearn_object._estimator_type == 'classifier':
1113
- # label columns is the desired type for output
1216
+ if self._sklearn_object._estimator_type == "classifier":
1217
+ # label columns is the desired type for output
1114
1218
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1115
1219
  # rename the output columns
1116
1220
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1117
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1118
- ([] if self._drop_input_cols else inputs)
1119
- + outputs)
1221
+ self._model_signature_dict["predict"] = ModelSignature(
1222
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1223
+ )
1120
1224
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1121
1225
  # For outlier models, returns -1 for outliers and 1 for inliers.
1122
- # Clusterer returns int64 cluster labels.
1226
+ # Clusterer returns int64 cluster labels.
1123
1227
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1124
1228
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1125
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1126
- ([] if self._drop_input_cols else inputs)
1127
- + outputs)
1128
-
1229
+ self._model_signature_dict["predict"] = ModelSignature(
1230
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1231
+ )
1232
+
1129
1233
  # For regressor, the type of predict is float64
1130
- elif self._sklearn_object._estimator_type == 'regressor':
1234
+ elif self._sklearn_object._estimator_type == "regressor":
1131
1235
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1132
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1133
- ([] if self._drop_input_cols else inputs)
1134
- + outputs)
1135
-
1236
+ self._model_signature_dict["predict"] = ModelSignature(
1237
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1238
+ )
1239
+
1136
1240
  for prob_func in PROB_FUNCTIONS:
1137
1241
  if hasattr(self, prob_func):
1138
1242
  output_cols_prefix: str = f"{prob_func}_"
1139
1243
  output_column_names = self._get_output_column_names(output_cols_prefix)
1140
1244
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1141
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1142
- ([] if self._drop_input_cols else inputs)
1143
- + outputs)
1245
+ self._model_signature_dict[prob_func] = ModelSignature(
1246
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1247
+ )
1144
1248
 
1145
1249
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1146
1250
  items = list(self._model_signature_dict.items())
@@ -1153,10 +1257,10 @@ class MLPClassifier(BaseTransformer):
1153
1257
  """Returns model signature of current class.
1154
1258
 
1155
1259
  Raises:
1156
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1260
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1157
1261
 
1158
1262
  Returns:
1159
- Dict[str, ModelSignature]: each method and its input output signature
1263
+ Dict with each method and its input output signature
1160
1264
  """
1161
1265
  if self._model_signature_dict is None:
1162
1266
  raise exceptions.SnowflakeMLException(
@@ -1164,35 +1268,3 @@ class MLPClassifier(BaseTransformer):
1164
1268
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1165
1269
  )
1166
1270
  return self._model_signature_dict
1167
-
1168
- def to_sklearn(self) -> Any:
1169
- """Get sklearn.neural_network.MLPClassifier object.
1170
- """
1171
- if self._sklearn_object is None:
1172
- self._sklearn_object = self._create_sklearn_object()
1173
- return self._sklearn_object
1174
-
1175
- def to_xgboost(self) -> Any:
1176
- raise exceptions.SnowflakeMLException(
1177
- error_code=error_codes.METHOD_NOT_ALLOWED,
1178
- original_exception=AttributeError(
1179
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1180
- "to_xgboost()",
1181
- "to_sklearn()"
1182
- )
1183
- ),
1184
- )
1185
-
1186
- def to_lightgbm(self) -> Any:
1187
- raise exceptions.SnowflakeMLException(
1188
- error_code=error_codes.METHOD_NOT_ALLOWED,
1189
- original_exception=AttributeError(
1190
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1191
- "to_lightgbm()",
1192
- "to_sklearn()"
1193
- )
1194
- ),
1195
- )
1196
-
1197
- def _get_dependencies(self) -> List[str]:
1198
- return self._deps