snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -221,12 +220,7 @@ class MinCovDet(BaseTransformer):
221
220
  )
222
221
  return selected_cols
223
222
 
224
- @telemetry.send_api_usage_telemetry(
225
- project=_PROJECT,
226
- subproject=_SUBPROJECT,
227
- custom_tags=dict([("autogen", True)]),
228
- )
229
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MinCovDet":
223
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MinCovDet":
230
224
  """Fit a Minimum Covariance Determinant with the FastMCD algorithm
231
225
  For more details on this function, see [sklearn.covariance.MinCovDet.fit]
232
226
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html#sklearn.covariance.MinCovDet.fit)
@@ -253,12 +247,14 @@ class MinCovDet(BaseTransformer):
253
247
 
254
248
  self._snowpark_cols = dataset.select(self.input_cols).columns
255
249
 
256
- # If we are already in a stored procedure, no need to kick off another one.
250
+ # If we are already in a stored procedure, no need to kick off another one.
257
251
  if SNOWML_SPROC_ENV in os.environ:
258
252
  statement_params = telemetry.get_function_usage_statement_params(
259
253
  project=_PROJECT,
260
254
  subproject=_SUBPROJECT,
261
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MinCovDet.__class__.__name__),
255
+ function_name=telemetry.get_statement_params_full_func_name(
256
+ inspect.currentframe(), MinCovDet.__class__.__name__
257
+ ),
262
258
  api_calls=[Session.call],
263
259
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
264
260
  )
@@ -279,7 +275,7 @@ class MinCovDet(BaseTransformer):
279
275
  )
280
276
  self._sklearn_object = model_trainer.train()
281
277
  self._is_fitted = True
282
- self._get_model_signatures(dataset)
278
+ self._generate_model_signatures(dataset)
283
279
  return self
284
280
 
285
281
  def _batch_inference_validate_snowpark(
@@ -353,7 +349,9 @@ class MinCovDet(BaseTransformer):
353
349
  # when it is classifier, infer the datatype from label columns
354
350
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
351
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
352
+ label_cols_signatures = [
353
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
354
+ ]
357
355
  if len(label_cols_signatures) == 0:
358
356
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
357
  raise exceptions.SnowflakeMLException(
@@ -361,25 +359,22 @@ class MinCovDet(BaseTransformer):
361
359
  original_exception=ValueError(error_str),
362
360
  )
363
361
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
362
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
363
 
368
364
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
365
+ assert isinstance(
366
+ dataset._session, Session
367
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
368
 
371
369
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
370
+ session=dataset._session,
371
+ dependencies=self._deps,
372
+ drop_input_cols=self._drop_input_cols,
373
+ expected_output_cols_type=expected_type_inferred,
376
374
  )
377
375
 
378
376
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
377
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
378
 
384
379
  transform_handlers = ModelTransformerBuilder.build(
385
380
  dataset=dataset,
@@ -419,7 +414,7 @@ class MinCovDet(BaseTransformer):
419
414
  Transformed dataset.
420
415
  """
421
416
  super()._check_dataset_type(dataset)
422
- inference_method="transform"
417
+ inference_method = "transform"
423
418
 
424
419
  # This dictionary contains optional kwargs for batch inference. These kwargs
425
420
  # are specific to the type of dataset used.
@@ -456,17 +451,14 @@ class MinCovDet(BaseTransformer):
456
451
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
457
452
 
458
453
  transform_kwargs = dict(
459
- session = dataset._session,
460
- dependencies = self._deps,
461
- drop_input_cols = self._drop_input_cols,
462
- expected_output_cols_type = expected_dtype,
454
+ session=dataset._session,
455
+ dependencies=self._deps,
456
+ drop_input_cols=self._drop_input_cols,
457
+ expected_output_cols_type=expected_dtype,
463
458
  )
464
459
 
465
460
  elif isinstance(dataset, pd.DataFrame):
466
- transform_kwargs = dict(
467
- snowpark_input_cols = self._snowpark_cols,
468
- drop_input_cols = self._drop_input_cols
469
- )
461
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
470
462
 
471
463
  transform_handlers = ModelTransformerBuilder.build(
472
464
  dataset=dataset,
@@ -485,7 +477,11 @@ class MinCovDet(BaseTransformer):
485
477
  return output_df
486
478
 
487
479
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
488
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
480
+ def fit_predict(
481
+ self,
482
+ dataset: Union[DataFrame, pd.DataFrame],
483
+ output_cols_prefix: str = "fit_predict_",
484
+ ) -> Union[DataFrame, pd.DataFrame]:
489
485
  """ Method not supported for this class.
490
486
 
491
487
 
@@ -510,7 +506,9 @@ class MinCovDet(BaseTransformer):
510
506
  )
511
507
  output_result, fitted_estimator = model_trainer.train_fit_predict(
512
508
  drop_input_cols=self._drop_input_cols,
513
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
509
+ expected_output_cols_list=(
510
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
511
+ ),
514
512
  )
515
513
  self._sklearn_object = fitted_estimator
516
514
  self._is_fitted = True
@@ -527,6 +525,62 @@ class MinCovDet(BaseTransformer):
527
525
  assert self._sklearn_object is not None
528
526
  return self._sklearn_object.embedding_
529
527
 
528
+
529
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
530
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
531
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
532
+ """
533
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
534
+ # The following condition is introduced for kneighbors methods, and not used in other methods
535
+ if output_cols:
536
+ output_cols = [
537
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
538
+ for c in output_cols
539
+ ]
540
+ elif getattr(self._sklearn_object, "classes_", None) is None:
541
+ output_cols = [output_cols_prefix]
542
+ elif self._sklearn_object is not None:
543
+ classes = self._sklearn_object.classes_
544
+ if isinstance(classes, numpy.ndarray):
545
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
546
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
547
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
548
+ output_cols = []
549
+ for i, cl in enumerate(classes):
550
+ # For binary classification, there is only one output column for each class
551
+ # ndarray as the two classes are complementary.
552
+ if len(cl) == 2:
553
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
554
+ else:
555
+ output_cols.extend([
556
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
557
+ ])
558
+ else:
559
+ output_cols = []
560
+
561
+ # Make sure column names are valid snowflake identifiers.
562
+ assert output_cols is not None # Make MyPy happy
563
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
564
+
565
+ return rv
566
+
567
+ def _align_expected_output_names(
568
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
569
+ ) -> List[str]:
570
+ # in case the inferred output column names dimension is different
571
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
572
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
573
+ output_df_columns = list(output_df_pd.columns)
574
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
575
+ if self.sample_weight_col:
576
+ output_df_columns_set -= set(self.sample_weight_col)
577
+ # if the dimension of inferred output column names is correct; use it
578
+ if len(expected_output_cols_list) == len(output_df_columns_set):
579
+ return expected_output_cols_list
580
+ # otherwise, use the sklearn estimator's output
581
+ else:
582
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
583
+
530
584
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
531
585
  @telemetry.send_api_usage_telemetry(
532
586
  project=_PROJECT,
@@ -557,24 +611,28 @@ class MinCovDet(BaseTransformer):
557
611
  # are specific to the type of dataset used.
558
612
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
559
613
 
614
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
615
+
560
616
  if isinstance(dataset, DataFrame):
561
617
  self._deps = self._batch_inference_validate_snowpark(
562
618
  dataset=dataset,
563
619
  inference_method=inference_method,
564
620
  )
565
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
621
+ assert isinstance(
622
+ dataset._session, Session
623
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
566
624
  transform_kwargs = dict(
567
625
  session=dataset._session,
568
626
  dependencies=self._deps,
569
- drop_input_cols = self._drop_input_cols,
627
+ drop_input_cols=self._drop_input_cols,
570
628
  expected_output_cols_type="float",
571
629
  )
630
+ expected_output_cols = self._align_expected_output_names(
631
+ inference_method, dataset, expected_output_cols, output_cols_prefix
632
+ )
572
633
 
573
634
  elif isinstance(dataset, pd.DataFrame):
574
- transform_kwargs = dict(
575
- snowpark_input_cols = self._snowpark_cols,
576
- drop_input_cols = self._drop_input_cols
577
- )
635
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
578
636
 
579
637
  transform_handlers = ModelTransformerBuilder.build(
580
638
  dataset=dataset,
@@ -586,7 +644,7 @@ class MinCovDet(BaseTransformer):
586
644
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
587
645
  inference_method=inference_method,
588
646
  input_cols=self.input_cols,
589
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
647
+ expected_output_cols=expected_output_cols,
590
648
  **transform_kwargs
591
649
  )
592
650
  return output_df
@@ -616,7 +674,8 @@ class MinCovDet(BaseTransformer):
616
674
  Output dataset with log probability of the sample for each class in the model.
617
675
  """
618
676
  super()._check_dataset_type(dataset)
619
- inference_method="predict_log_proba"
677
+ inference_method = "predict_log_proba"
678
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
620
679
 
621
680
  # This dictionary contains optional kwargs for batch inference. These kwargs
622
681
  # are specific to the type of dataset used.
@@ -627,18 +686,20 @@ class MinCovDet(BaseTransformer):
627
686
  dataset=dataset,
628
687
  inference_method=inference_method,
629
688
  )
630
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
+ assert isinstance(
690
+ dataset._session, Session
691
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
631
692
  transform_kwargs = dict(
632
693
  session=dataset._session,
633
694
  dependencies=self._deps,
634
- drop_input_cols = self._drop_input_cols,
695
+ drop_input_cols=self._drop_input_cols,
635
696
  expected_output_cols_type="float",
636
697
  )
698
+ expected_output_cols = self._align_expected_output_names(
699
+ inference_method, dataset, expected_output_cols, output_cols_prefix
700
+ )
637
701
  elif isinstance(dataset, pd.DataFrame):
638
- transform_kwargs = dict(
639
- snowpark_input_cols = self._snowpark_cols,
640
- drop_input_cols = self._drop_input_cols
641
- )
702
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
642
703
 
643
704
  transform_handlers = ModelTransformerBuilder.build(
644
705
  dataset=dataset,
@@ -651,7 +712,7 @@ class MinCovDet(BaseTransformer):
651
712
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
652
713
  inference_method=inference_method,
653
714
  input_cols=self.input_cols,
654
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
715
+ expected_output_cols=expected_output_cols,
655
716
  **transform_kwargs
656
717
  )
657
718
  return output_df
@@ -677,30 +738,34 @@ class MinCovDet(BaseTransformer):
677
738
  Output dataset with results of the decision function for the samples in input dataset.
678
739
  """
679
740
  super()._check_dataset_type(dataset)
680
- inference_method="decision_function"
741
+ inference_method = "decision_function"
681
742
 
682
743
  # This dictionary contains optional kwargs for batch inference. These kwargs
683
744
  # are specific to the type of dataset used.
684
745
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
685
746
 
747
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
748
+
686
749
  if isinstance(dataset, DataFrame):
687
750
  self._deps = self._batch_inference_validate_snowpark(
688
751
  dataset=dataset,
689
752
  inference_method=inference_method,
690
753
  )
691
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
754
+ assert isinstance(
755
+ dataset._session, Session
756
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
757
  transform_kwargs = dict(
693
758
  session=dataset._session,
694
759
  dependencies=self._deps,
695
- drop_input_cols = self._drop_input_cols,
760
+ drop_input_cols=self._drop_input_cols,
696
761
  expected_output_cols_type="float",
697
762
  )
763
+ expected_output_cols = self._align_expected_output_names(
764
+ inference_method, dataset, expected_output_cols, output_cols_prefix
765
+ )
698
766
 
699
767
  elif isinstance(dataset, pd.DataFrame):
700
- transform_kwargs = dict(
701
- snowpark_input_cols = self._snowpark_cols,
702
- drop_input_cols = self._drop_input_cols
703
- )
768
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
704
769
 
705
770
  transform_handlers = ModelTransformerBuilder.build(
706
771
  dataset=dataset,
@@ -713,7 +778,7 @@ class MinCovDet(BaseTransformer):
713
778
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
714
779
  inference_method=inference_method,
715
780
  input_cols=self.input_cols,
716
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
781
+ expected_output_cols=expected_output_cols,
717
782
  **transform_kwargs
718
783
  )
719
784
  return output_df
@@ -742,12 +807,14 @@ class MinCovDet(BaseTransformer):
742
807
  Output dataset with probability of the sample for each class in the model.
743
808
  """
744
809
  super()._check_dataset_type(dataset)
745
- inference_method="score_samples"
810
+ inference_method = "score_samples"
746
811
 
747
812
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
813
  # are specific to the type of dataset used.
749
814
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
815
 
816
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
817
+
751
818
  if isinstance(dataset, DataFrame):
752
819
  self._deps = self._batch_inference_validate_snowpark(
753
820
  dataset=dataset,
@@ -760,6 +827,9 @@ class MinCovDet(BaseTransformer):
760
827
  drop_input_cols = self._drop_input_cols,
761
828
  expected_output_cols_type="float",
762
829
  )
830
+ expected_output_cols = self._align_expected_output_names(
831
+ inference_method, dataset, expected_output_cols, output_cols_prefix
832
+ )
763
833
 
764
834
  elif isinstance(dataset, pd.DataFrame):
765
835
  transform_kwargs = dict(
@@ -778,7 +848,7 @@ class MinCovDet(BaseTransformer):
778
848
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
849
  inference_method=inference_method,
780
850
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
851
+ expected_output_cols=expected_output_cols,
782
852
  **transform_kwargs
783
853
  )
784
854
  return output_df
@@ -925,50 +995,84 @@ class MinCovDet(BaseTransformer):
925
995
  )
926
996
  return output_df
927
997
 
998
+
999
+
1000
+ def to_sklearn(self) -> Any:
1001
+ """Get sklearn.covariance.MinCovDet object.
1002
+ """
1003
+ if self._sklearn_object is None:
1004
+ self._sklearn_object = self._create_sklearn_object()
1005
+ return self._sklearn_object
1006
+
1007
+ def to_xgboost(self) -> Any:
1008
+ raise exceptions.SnowflakeMLException(
1009
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1010
+ original_exception=AttributeError(
1011
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1012
+ "to_xgboost()",
1013
+ "to_sklearn()"
1014
+ )
1015
+ ),
1016
+ )
1017
+
1018
+ def to_lightgbm(self) -> Any:
1019
+ raise exceptions.SnowflakeMLException(
1020
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1021
+ original_exception=AttributeError(
1022
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1023
+ "to_lightgbm()",
1024
+ "to_sklearn()"
1025
+ )
1026
+ ),
1027
+ )
928
1028
 
929
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1029
+ def _get_dependencies(self) -> List[str]:
1030
+ return self._deps
1031
+
1032
+
1033
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
930
1034
  self._model_signature_dict = dict()
931
1035
 
932
1036
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
933
1037
 
934
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1038
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
935
1039
  outputs: List[BaseFeatureSpec] = []
936
1040
  if hasattr(self, "predict"):
937
1041
  # keep mypy happy
938
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1042
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
939
1043
  # For classifier, the type of predict is the same as the type of label
940
- if self._sklearn_object._estimator_type == 'classifier':
941
- # label columns is the desired type for output
1044
+ if self._sklearn_object._estimator_type == "classifier":
1045
+ # label columns is the desired type for output
942
1046
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
943
1047
  # rename the output columns
944
1048
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
945
- self._model_signature_dict["predict"] = ModelSignature(inputs,
946
- ([] if self._drop_input_cols else inputs)
947
- + outputs)
1049
+ self._model_signature_dict["predict"] = ModelSignature(
1050
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1051
+ )
948
1052
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
949
1053
  # For outlier models, returns -1 for outliers and 1 for inliers.
950
- # Clusterer returns int64 cluster labels.
1054
+ # Clusterer returns int64 cluster labels.
951
1055
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
952
1056
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
956
-
1057
+ self._model_signature_dict["predict"] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
1060
+
957
1061
  # For regressor, the type of predict is float64
958
- elif self._sklearn_object._estimator_type == 'regressor':
1062
+ elif self._sklearn_object._estimator_type == "regressor":
959
1063
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
960
- self._model_signature_dict["predict"] = ModelSignature(inputs,
961
- ([] if self._drop_input_cols else inputs)
962
- + outputs)
963
-
1064
+ self._model_signature_dict["predict"] = ModelSignature(
1065
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1066
+ )
1067
+
964
1068
  for prob_func in PROB_FUNCTIONS:
965
1069
  if hasattr(self, prob_func):
966
1070
  output_cols_prefix: str = f"{prob_func}_"
967
1071
  output_column_names = self._get_output_column_names(output_cols_prefix)
968
1072
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
969
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
1073
+ self._model_signature_dict[prob_func] = ModelSignature(
1074
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1075
+ )
972
1076
 
973
1077
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
974
1078
  items = list(self._model_signature_dict.items())
@@ -981,10 +1085,10 @@ class MinCovDet(BaseTransformer):
981
1085
  """Returns model signature of current class.
982
1086
 
983
1087
  Raises:
984
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1088
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
985
1089
 
986
1090
  Returns:
987
- Dict[str, ModelSignature]: each method and its input output signature
1091
+ Dict with each method and its input output signature
988
1092
  """
989
1093
  if self._model_signature_dict is None:
990
1094
  raise exceptions.SnowflakeMLException(
@@ -992,35 +1096,3 @@ class MinCovDet(BaseTransformer):
992
1096
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
993
1097
  )
994
1098
  return self._model_signature_dict
995
-
996
- def to_sklearn(self) -> Any:
997
- """Get sklearn.covariance.MinCovDet object.
998
- """
999
- if self._sklearn_object is None:
1000
- self._sklearn_object = self._create_sklearn_object()
1001
- return self._sklearn_object
1002
-
1003
- def to_xgboost(self) -> Any:
1004
- raise exceptions.SnowflakeMLException(
1005
- error_code=error_codes.METHOD_NOT_ALLOWED,
1006
- original_exception=AttributeError(
1007
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
- "to_xgboost()",
1009
- "to_sklearn()"
1010
- )
1011
- ),
1012
- )
1013
-
1014
- def to_lightgbm(self) -> Any:
1015
- raise exceptions.SnowflakeMLException(
1016
- error_code=error_codes.METHOD_NOT_ALLOWED,
1017
- original_exception=AttributeError(
1018
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1019
- "to_lightgbm()",
1020
- "to_sklearn()"
1021
- )
1022
- ),
1023
- )
1024
-
1025
- def _get_dependencies(self) -> List[str]:
1026
- return self._deps