snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -290,12 +289,7 @@ class LassoCV(BaseTransformer):
290
289
  )
291
290
  return selected_cols
292
291
 
293
- @telemetry.send_api_usage_telemetry(
294
- project=_PROJECT,
295
- subproject=_SUBPROJECT,
296
- custom_tags=dict([("autogen", True)]),
297
- )
298
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoCV":
292
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoCV":
299
293
  """Fit linear model with coordinate descent
300
294
  For more details on this function, see [sklearn.linear_model.LassoCV.fit]
301
295
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV.fit)
@@ -322,12 +316,14 @@ class LassoCV(BaseTransformer):
322
316
 
323
317
  self._snowpark_cols = dataset.select(self.input_cols).columns
324
318
 
325
- # If we are already in a stored procedure, no need to kick off another one.
319
+ # If we are already in a stored procedure, no need to kick off another one.
326
320
  if SNOWML_SPROC_ENV in os.environ:
327
321
  statement_params = telemetry.get_function_usage_statement_params(
328
322
  project=_PROJECT,
329
323
  subproject=_SUBPROJECT,
330
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoCV.__class__.__name__),
324
+ function_name=telemetry.get_statement_params_full_func_name(
325
+ inspect.currentframe(), LassoCV.__class__.__name__
326
+ ),
331
327
  api_calls=[Session.call],
332
328
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
333
329
  )
@@ -348,7 +344,7 @@ class LassoCV(BaseTransformer):
348
344
  )
349
345
  self._sklearn_object = model_trainer.train()
350
346
  self._is_fitted = True
351
- self._get_model_signatures(dataset)
347
+ self._generate_model_signatures(dataset)
352
348
  return self
353
349
 
354
350
  def _batch_inference_validate_snowpark(
@@ -424,7 +420,9 @@ class LassoCV(BaseTransformer):
424
420
  # when it is classifier, infer the datatype from label columns
425
421
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
426
422
  # Batch inference takes a single expected output column type. Use the first columns type for now.
427
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
423
+ label_cols_signatures = [
424
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
425
+ ]
428
426
  if len(label_cols_signatures) == 0:
429
427
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
430
428
  raise exceptions.SnowflakeMLException(
@@ -432,25 +430,22 @@ class LassoCV(BaseTransformer):
432
430
  original_exception=ValueError(error_str),
433
431
  )
434
432
 
435
- expected_type_inferred = convert_sp_to_sf_type(
436
- label_cols_signatures[0].as_snowpark_type()
437
- )
433
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
438
434
 
439
435
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
440
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
436
+ assert isinstance(
437
+ dataset._session, Session
438
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
441
439
 
442
440
  transform_kwargs = dict(
443
- session = dataset._session,
444
- dependencies = self._deps,
445
- drop_input_cols = self._drop_input_cols,
446
- expected_output_cols_type = expected_type_inferred,
441
+ session=dataset._session,
442
+ dependencies=self._deps,
443
+ drop_input_cols=self._drop_input_cols,
444
+ expected_output_cols_type=expected_type_inferred,
447
445
  )
448
446
 
449
447
  elif isinstance(dataset, pd.DataFrame):
450
- transform_kwargs = dict(
451
- snowpark_input_cols = self._snowpark_cols,
452
- drop_input_cols = self._drop_input_cols
453
- )
448
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
454
449
 
455
450
  transform_handlers = ModelTransformerBuilder.build(
456
451
  dataset=dataset,
@@ -490,7 +485,7 @@ class LassoCV(BaseTransformer):
490
485
  Transformed dataset.
491
486
  """
492
487
  super()._check_dataset_type(dataset)
493
- inference_method="transform"
488
+ inference_method = "transform"
494
489
 
495
490
  # This dictionary contains optional kwargs for batch inference. These kwargs
496
491
  # are specific to the type of dataset used.
@@ -527,17 +522,14 @@ class LassoCV(BaseTransformer):
527
522
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
528
523
 
529
524
  transform_kwargs = dict(
530
- session = dataset._session,
531
- dependencies = self._deps,
532
- drop_input_cols = self._drop_input_cols,
533
- expected_output_cols_type = expected_dtype,
525
+ session=dataset._session,
526
+ dependencies=self._deps,
527
+ drop_input_cols=self._drop_input_cols,
528
+ expected_output_cols_type=expected_dtype,
534
529
  )
535
530
 
536
531
  elif isinstance(dataset, pd.DataFrame):
537
- transform_kwargs = dict(
538
- snowpark_input_cols = self._snowpark_cols,
539
- drop_input_cols = self._drop_input_cols
540
- )
532
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
541
533
 
542
534
  transform_handlers = ModelTransformerBuilder.build(
543
535
  dataset=dataset,
@@ -556,7 +548,11 @@ class LassoCV(BaseTransformer):
556
548
  return output_df
557
549
 
558
550
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
559
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
551
+ def fit_predict(
552
+ self,
553
+ dataset: Union[DataFrame, pd.DataFrame],
554
+ output_cols_prefix: str = "fit_predict_",
555
+ ) -> Union[DataFrame, pd.DataFrame]:
560
556
  """ Method not supported for this class.
561
557
 
562
558
 
@@ -581,7 +577,9 @@ class LassoCV(BaseTransformer):
581
577
  )
582
578
  output_result, fitted_estimator = model_trainer.train_fit_predict(
583
579
  drop_input_cols=self._drop_input_cols,
584
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
580
+ expected_output_cols_list=(
581
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
582
+ ),
585
583
  )
586
584
  self._sklearn_object = fitted_estimator
587
585
  self._is_fitted = True
@@ -598,6 +596,62 @@ class LassoCV(BaseTransformer):
598
596
  assert self._sklearn_object is not None
599
597
  return self._sklearn_object.embedding_
600
598
 
599
+
600
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
601
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
602
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
603
+ """
604
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
605
+ # The following condition is introduced for kneighbors methods, and not used in other methods
606
+ if output_cols:
607
+ output_cols = [
608
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
609
+ for c in output_cols
610
+ ]
611
+ elif getattr(self._sklearn_object, "classes_", None) is None:
612
+ output_cols = [output_cols_prefix]
613
+ elif self._sklearn_object is not None:
614
+ classes = self._sklearn_object.classes_
615
+ if isinstance(classes, numpy.ndarray):
616
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
617
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
618
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
619
+ output_cols = []
620
+ for i, cl in enumerate(classes):
621
+ # For binary classification, there is only one output column for each class
622
+ # ndarray as the two classes are complementary.
623
+ if len(cl) == 2:
624
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
625
+ else:
626
+ output_cols.extend([
627
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
628
+ ])
629
+ else:
630
+ output_cols = []
631
+
632
+ # Make sure column names are valid snowflake identifiers.
633
+ assert output_cols is not None # Make MyPy happy
634
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
635
+
636
+ return rv
637
+
638
+ def _align_expected_output_names(
639
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
640
+ ) -> List[str]:
641
+ # in case the inferred output column names dimension is different
642
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
643
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
644
+ output_df_columns = list(output_df_pd.columns)
645
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
646
+ if self.sample_weight_col:
647
+ output_df_columns_set -= set(self.sample_weight_col)
648
+ # if the dimension of inferred output column names is correct; use it
649
+ if len(expected_output_cols_list) == len(output_df_columns_set):
650
+ return expected_output_cols_list
651
+ # otherwise, use the sklearn estimator's output
652
+ else:
653
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
654
+
601
655
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
602
656
  @telemetry.send_api_usage_telemetry(
603
657
  project=_PROJECT,
@@ -628,24 +682,28 @@ class LassoCV(BaseTransformer):
628
682
  # are specific to the type of dataset used.
629
683
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
630
684
 
685
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
686
+
631
687
  if isinstance(dataset, DataFrame):
632
688
  self._deps = self._batch_inference_validate_snowpark(
633
689
  dataset=dataset,
634
690
  inference_method=inference_method,
635
691
  )
636
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
+ assert isinstance(
693
+ dataset._session, Session
694
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
637
695
  transform_kwargs = dict(
638
696
  session=dataset._session,
639
697
  dependencies=self._deps,
640
- drop_input_cols = self._drop_input_cols,
698
+ drop_input_cols=self._drop_input_cols,
641
699
  expected_output_cols_type="float",
642
700
  )
701
+ expected_output_cols = self._align_expected_output_names(
702
+ inference_method, dataset, expected_output_cols, output_cols_prefix
703
+ )
643
704
 
644
705
  elif isinstance(dataset, pd.DataFrame):
645
- transform_kwargs = dict(
646
- snowpark_input_cols = self._snowpark_cols,
647
- drop_input_cols = self._drop_input_cols
648
- )
706
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
649
707
 
650
708
  transform_handlers = ModelTransformerBuilder.build(
651
709
  dataset=dataset,
@@ -657,7 +715,7 @@ class LassoCV(BaseTransformer):
657
715
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
658
716
  inference_method=inference_method,
659
717
  input_cols=self.input_cols,
660
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
718
+ expected_output_cols=expected_output_cols,
661
719
  **transform_kwargs
662
720
  )
663
721
  return output_df
@@ -687,7 +745,8 @@ class LassoCV(BaseTransformer):
687
745
  Output dataset with log probability of the sample for each class in the model.
688
746
  """
689
747
  super()._check_dataset_type(dataset)
690
- inference_method="predict_log_proba"
748
+ inference_method = "predict_log_proba"
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
691
750
 
692
751
  # This dictionary contains optional kwargs for batch inference. These kwargs
693
752
  # are specific to the type of dataset used.
@@ -698,18 +757,20 @@ class LassoCV(BaseTransformer):
698
757
  dataset=dataset,
699
758
  inference_method=inference_method,
700
759
  )
701
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
702
763
  transform_kwargs = dict(
703
764
  session=dataset._session,
704
765
  dependencies=self._deps,
705
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
706
767
  expected_output_cols_type="float",
707
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
708
772
  elif isinstance(dataset, pd.DataFrame):
709
- transform_kwargs = dict(
710
- snowpark_input_cols = self._snowpark_cols,
711
- drop_input_cols = self._drop_input_cols
712
- )
773
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
713
774
 
714
775
  transform_handlers = ModelTransformerBuilder.build(
715
776
  dataset=dataset,
@@ -722,7 +783,7 @@ class LassoCV(BaseTransformer):
722
783
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
723
784
  inference_method=inference_method,
724
785
  input_cols=self.input_cols,
725
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
786
+ expected_output_cols=expected_output_cols,
726
787
  **transform_kwargs
727
788
  )
728
789
  return output_df
@@ -748,30 +809,34 @@ class LassoCV(BaseTransformer):
748
809
  Output dataset with results of the decision function for the samples in input dataset.
749
810
  """
750
811
  super()._check_dataset_type(dataset)
751
- inference_method="decision_function"
812
+ inference_method = "decision_function"
752
813
 
753
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
754
815
  # are specific to the type of dataset used.
755
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
756
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
757
820
  if isinstance(dataset, DataFrame):
758
821
  self._deps = self._batch_inference_validate_snowpark(
759
822
  dataset=dataset,
760
823
  inference_method=inference_method,
761
824
  )
762
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
825
+ assert isinstance(
826
+ dataset._session, Session
827
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
828
  transform_kwargs = dict(
764
829
  session=dataset._session,
765
830
  dependencies=self._deps,
766
- drop_input_cols = self._drop_input_cols,
831
+ drop_input_cols=self._drop_input_cols,
767
832
  expected_output_cols_type="float",
768
833
  )
834
+ expected_output_cols = self._align_expected_output_names(
835
+ inference_method, dataset, expected_output_cols, output_cols_prefix
836
+ )
769
837
 
770
838
  elif isinstance(dataset, pd.DataFrame):
771
- transform_kwargs = dict(
772
- snowpark_input_cols = self._snowpark_cols,
773
- drop_input_cols = self._drop_input_cols
774
- )
839
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
775
840
 
776
841
  transform_handlers = ModelTransformerBuilder.build(
777
842
  dataset=dataset,
@@ -784,7 +849,7 @@ class LassoCV(BaseTransformer):
784
849
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
785
850
  inference_method=inference_method,
786
851
  input_cols=self.input_cols,
787
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
852
+ expected_output_cols=expected_output_cols,
788
853
  **transform_kwargs
789
854
  )
790
855
  return output_df
@@ -813,12 +878,14 @@ class LassoCV(BaseTransformer):
813
878
  Output dataset with probability of the sample for each class in the model.
814
879
  """
815
880
  super()._check_dataset_type(dataset)
816
- inference_method="score_samples"
881
+ inference_method = "score_samples"
817
882
 
818
883
  # This dictionary contains optional kwargs for batch inference. These kwargs
819
884
  # are specific to the type of dataset used.
820
885
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
821
886
 
887
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
888
+
822
889
  if isinstance(dataset, DataFrame):
823
890
  self._deps = self._batch_inference_validate_snowpark(
824
891
  dataset=dataset,
@@ -831,6 +898,9 @@ class LassoCV(BaseTransformer):
831
898
  drop_input_cols = self._drop_input_cols,
832
899
  expected_output_cols_type="float",
833
900
  )
901
+ expected_output_cols = self._align_expected_output_names(
902
+ inference_method, dataset, expected_output_cols, output_cols_prefix
903
+ )
834
904
 
835
905
  elif isinstance(dataset, pd.DataFrame):
836
906
  transform_kwargs = dict(
@@ -849,7 +919,7 @@ class LassoCV(BaseTransformer):
849
919
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
850
920
  inference_method=inference_method,
851
921
  input_cols=self.input_cols,
852
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
922
+ expected_output_cols=expected_output_cols,
853
923
  **transform_kwargs
854
924
  )
855
925
  return output_df
@@ -996,50 +1066,84 @@ class LassoCV(BaseTransformer):
996
1066
  )
997
1067
  return output_df
998
1068
 
1069
+
1070
+
1071
+ def to_sklearn(self) -> Any:
1072
+ """Get sklearn.linear_model.LassoCV object.
1073
+ """
1074
+ if self._sklearn_object is None:
1075
+ self._sklearn_object = self._create_sklearn_object()
1076
+ return self._sklearn_object
1077
+
1078
+ def to_xgboost(self) -> Any:
1079
+ raise exceptions.SnowflakeMLException(
1080
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1081
+ original_exception=AttributeError(
1082
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1083
+ "to_xgboost()",
1084
+ "to_sklearn()"
1085
+ )
1086
+ ),
1087
+ )
1088
+
1089
+ def to_lightgbm(self) -> Any:
1090
+ raise exceptions.SnowflakeMLException(
1091
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1092
+ original_exception=AttributeError(
1093
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
+ "to_lightgbm()",
1095
+ "to_sklearn()"
1096
+ )
1097
+ ),
1098
+ )
999
1099
 
1000
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1100
+ def _get_dependencies(self) -> List[str]:
1101
+ return self._deps
1102
+
1103
+
1104
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1001
1105
  self._model_signature_dict = dict()
1002
1106
 
1003
1107
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1004
1108
 
1005
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1109
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1006
1110
  outputs: List[BaseFeatureSpec] = []
1007
1111
  if hasattr(self, "predict"):
1008
1112
  # keep mypy happy
1009
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1113
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1010
1114
  # For classifier, the type of predict is the same as the type of label
1011
- if self._sklearn_object._estimator_type == 'classifier':
1012
- # label columns is the desired type for output
1115
+ if self._sklearn_object._estimator_type == "classifier":
1116
+ # label columns is the desired type for output
1013
1117
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1014
1118
  # rename the output columns
1015
1119
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1019
1123
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1020
1124
  # For outlier models, returns -1 for outliers and 1 for inliers.
1021
- # Clusterer returns int64 cluster labels.
1125
+ # Clusterer returns int64 cluster labels.
1022
1126
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1023
1127
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1024
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1025
- ([] if self._drop_input_cols else inputs)
1026
- + outputs)
1027
-
1128
+ self._model_signature_dict["predict"] = ModelSignature(
1129
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1130
+ )
1131
+
1028
1132
  # For regressor, the type of predict is float64
1029
- elif self._sklearn_object._estimator_type == 'regressor':
1133
+ elif self._sklearn_object._estimator_type == "regressor":
1030
1134
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1034
-
1135
+ self._model_signature_dict["predict"] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1138
+
1035
1139
  for prob_func in PROB_FUNCTIONS:
1036
1140
  if hasattr(self, prob_func):
1037
1141
  output_cols_prefix: str = f"{prob_func}_"
1038
1142
  output_column_names = self._get_output_column_names(output_cols_prefix)
1039
1143
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1040
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1144
+ self._model_signature_dict[prob_func] = ModelSignature(
1145
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1146
+ )
1043
1147
 
1044
1148
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1045
1149
  items = list(self._model_signature_dict.items())
@@ -1052,10 +1156,10 @@ class LassoCV(BaseTransformer):
1052
1156
  """Returns model signature of current class.
1053
1157
 
1054
1158
  Raises:
1055
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1159
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1056
1160
 
1057
1161
  Returns:
1058
- Dict[str, ModelSignature]: each method and its input output signature
1162
+ Dict with each method and its input output signature
1059
1163
  """
1060
1164
  if self._model_signature_dict is None:
1061
1165
  raise exceptions.SnowflakeMLException(
@@ -1063,35 +1167,3 @@ class LassoCV(BaseTransformer):
1063
1167
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1064
1168
  )
1065
1169
  return self._model_signature_dict
1066
-
1067
- def to_sklearn(self) -> Any:
1068
- """Get sklearn.linear_model.LassoCV object.
1069
- """
1070
- if self._sklearn_object is None:
1071
- self._sklearn_object = self._create_sklearn_object()
1072
- return self._sklearn_object
1073
-
1074
- def to_xgboost(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_xgboost()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def to_lightgbm(self) -> Any:
1086
- raise exceptions.SnowflakeMLException(
1087
- error_code=error_codes.METHOD_NOT_ALLOWED,
1088
- original_exception=AttributeError(
1089
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
- "to_lightgbm()",
1091
- "to_sklearn()"
1092
- )
1093
- ),
1094
- )
1095
-
1096
- def _get_dependencies(self) -> List[str]:
1097
- return self._deps