snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -290,12 +289,7 @@ class LassoCV(BaseTransformer):
|
|
290
289
|
)
|
291
290
|
return selected_cols
|
292
291
|
|
293
|
-
|
294
|
-
project=_PROJECT,
|
295
|
-
subproject=_SUBPROJECT,
|
296
|
-
custom_tags=dict([("autogen", True)]),
|
297
|
-
)
|
298
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoCV":
|
292
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoCV":
|
299
293
|
"""Fit linear model with coordinate descent
|
300
294
|
For more details on this function, see [sklearn.linear_model.LassoCV.fit]
|
301
295
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV.fit)
|
@@ -322,12 +316,14 @@ class LassoCV(BaseTransformer):
|
|
322
316
|
|
323
317
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
324
318
|
|
325
|
-
|
319
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
326
320
|
if SNOWML_SPROC_ENV in os.environ:
|
327
321
|
statement_params = telemetry.get_function_usage_statement_params(
|
328
322
|
project=_PROJECT,
|
329
323
|
subproject=_SUBPROJECT,
|
330
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
324
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
325
|
+
inspect.currentframe(), LassoCV.__class__.__name__
|
326
|
+
),
|
331
327
|
api_calls=[Session.call],
|
332
328
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
333
329
|
)
|
@@ -348,7 +344,7 @@ class LassoCV(BaseTransformer):
|
|
348
344
|
)
|
349
345
|
self._sklearn_object = model_trainer.train()
|
350
346
|
self._is_fitted = True
|
351
|
-
self.
|
347
|
+
self._generate_model_signatures(dataset)
|
352
348
|
return self
|
353
349
|
|
354
350
|
def _batch_inference_validate_snowpark(
|
@@ -424,7 +420,9 @@ class LassoCV(BaseTransformer):
|
|
424
420
|
# when it is classifier, infer the datatype from label columns
|
425
421
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
426
422
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
427
|
-
label_cols_signatures = [
|
423
|
+
label_cols_signatures = [
|
424
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
425
|
+
]
|
428
426
|
if len(label_cols_signatures) == 0:
|
429
427
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
430
428
|
raise exceptions.SnowflakeMLException(
|
@@ -432,25 +430,22 @@ class LassoCV(BaseTransformer):
|
|
432
430
|
original_exception=ValueError(error_str),
|
433
431
|
)
|
434
432
|
|
435
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
436
|
-
label_cols_signatures[0].as_snowpark_type()
|
437
|
-
)
|
433
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
438
434
|
|
439
435
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
440
|
-
assert isinstance(
|
436
|
+
assert isinstance(
|
437
|
+
dataset._session, Session
|
438
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
441
439
|
|
442
440
|
transform_kwargs = dict(
|
443
|
-
session
|
444
|
-
dependencies
|
445
|
-
drop_input_cols
|
446
|
-
expected_output_cols_type
|
441
|
+
session=dataset._session,
|
442
|
+
dependencies=self._deps,
|
443
|
+
drop_input_cols=self._drop_input_cols,
|
444
|
+
expected_output_cols_type=expected_type_inferred,
|
447
445
|
)
|
448
446
|
|
449
447
|
elif isinstance(dataset, pd.DataFrame):
|
450
|
-
transform_kwargs = dict(
|
451
|
-
snowpark_input_cols = self._snowpark_cols,
|
452
|
-
drop_input_cols = self._drop_input_cols
|
453
|
-
)
|
448
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
454
449
|
|
455
450
|
transform_handlers = ModelTransformerBuilder.build(
|
456
451
|
dataset=dataset,
|
@@ -490,7 +485,7 @@ class LassoCV(BaseTransformer):
|
|
490
485
|
Transformed dataset.
|
491
486
|
"""
|
492
487
|
super()._check_dataset_type(dataset)
|
493
|
-
inference_method="transform"
|
488
|
+
inference_method = "transform"
|
494
489
|
|
495
490
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
496
491
|
# are specific to the type of dataset used.
|
@@ -527,17 +522,14 @@ class LassoCV(BaseTransformer):
|
|
527
522
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
528
523
|
|
529
524
|
transform_kwargs = dict(
|
530
|
-
session
|
531
|
-
dependencies
|
532
|
-
drop_input_cols
|
533
|
-
expected_output_cols_type
|
525
|
+
session=dataset._session,
|
526
|
+
dependencies=self._deps,
|
527
|
+
drop_input_cols=self._drop_input_cols,
|
528
|
+
expected_output_cols_type=expected_dtype,
|
534
529
|
)
|
535
530
|
|
536
531
|
elif isinstance(dataset, pd.DataFrame):
|
537
|
-
transform_kwargs = dict(
|
538
|
-
snowpark_input_cols = self._snowpark_cols,
|
539
|
-
drop_input_cols = self._drop_input_cols
|
540
|
-
)
|
532
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
541
533
|
|
542
534
|
transform_handlers = ModelTransformerBuilder.build(
|
543
535
|
dataset=dataset,
|
@@ -556,7 +548,11 @@ class LassoCV(BaseTransformer):
|
|
556
548
|
return output_df
|
557
549
|
|
558
550
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
559
|
-
def fit_predict(
|
551
|
+
def fit_predict(
|
552
|
+
self,
|
553
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
554
|
+
output_cols_prefix: str = "fit_predict_",
|
555
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
560
556
|
""" Method not supported for this class.
|
561
557
|
|
562
558
|
|
@@ -581,7 +577,9 @@ class LassoCV(BaseTransformer):
|
|
581
577
|
)
|
582
578
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
583
579
|
drop_input_cols=self._drop_input_cols,
|
584
|
-
expected_output_cols_list=
|
580
|
+
expected_output_cols_list=(
|
581
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
582
|
+
),
|
585
583
|
)
|
586
584
|
self._sklearn_object = fitted_estimator
|
587
585
|
self._is_fitted = True
|
@@ -598,6 +596,62 @@ class LassoCV(BaseTransformer):
|
|
598
596
|
assert self._sklearn_object is not None
|
599
597
|
return self._sklearn_object.embedding_
|
600
598
|
|
599
|
+
|
600
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
601
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
602
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
603
|
+
"""
|
604
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
605
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
606
|
+
if output_cols:
|
607
|
+
output_cols = [
|
608
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
609
|
+
for c in output_cols
|
610
|
+
]
|
611
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
612
|
+
output_cols = [output_cols_prefix]
|
613
|
+
elif self._sklearn_object is not None:
|
614
|
+
classes = self._sklearn_object.classes_
|
615
|
+
if isinstance(classes, numpy.ndarray):
|
616
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
617
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
618
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
619
|
+
output_cols = []
|
620
|
+
for i, cl in enumerate(classes):
|
621
|
+
# For binary classification, there is only one output column for each class
|
622
|
+
# ndarray as the two classes are complementary.
|
623
|
+
if len(cl) == 2:
|
624
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
625
|
+
else:
|
626
|
+
output_cols.extend([
|
627
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
628
|
+
])
|
629
|
+
else:
|
630
|
+
output_cols = []
|
631
|
+
|
632
|
+
# Make sure column names are valid snowflake identifiers.
|
633
|
+
assert output_cols is not None # Make MyPy happy
|
634
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
635
|
+
|
636
|
+
return rv
|
637
|
+
|
638
|
+
def _align_expected_output_names(
|
639
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
640
|
+
) -> List[str]:
|
641
|
+
# in case the inferred output column names dimension is different
|
642
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
643
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
644
|
+
output_df_columns = list(output_df_pd.columns)
|
645
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
646
|
+
if self.sample_weight_col:
|
647
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
648
|
+
# if the dimension of inferred output column names is correct; use it
|
649
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
650
|
+
return expected_output_cols_list
|
651
|
+
# otherwise, use the sklearn estimator's output
|
652
|
+
else:
|
653
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
654
|
+
|
601
655
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
602
656
|
@telemetry.send_api_usage_telemetry(
|
603
657
|
project=_PROJECT,
|
@@ -628,24 +682,28 @@ class LassoCV(BaseTransformer):
|
|
628
682
|
# are specific to the type of dataset used.
|
629
683
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
630
684
|
|
685
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
686
|
+
|
631
687
|
if isinstance(dataset, DataFrame):
|
632
688
|
self._deps = self._batch_inference_validate_snowpark(
|
633
689
|
dataset=dataset,
|
634
690
|
inference_method=inference_method,
|
635
691
|
)
|
636
|
-
assert isinstance(
|
692
|
+
assert isinstance(
|
693
|
+
dataset._session, Session
|
694
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
637
695
|
transform_kwargs = dict(
|
638
696
|
session=dataset._session,
|
639
697
|
dependencies=self._deps,
|
640
|
-
drop_input_cols
|
698
|
+
drop_input_cols=self._drop_input_cols,
|
641
699
|
expected_output_cols_type="float",
|
642
700
|
)
|
701
|
+
expected_output_cols = self._align_expected_output_names(
|
702
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
703
|
+
)
|
643
704
|
|
644
705
|
elif isinstance(dataset, pd.DataFrame):
|
645
|
-
transform_kwargs = dict(
|
646
|
-
snowpark_input_cols = self._snowpark_cols,
|
647
|
-
drop_input_cols = self._drop_input_cols
|
648
|
-
)
|
706
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
649
707
|
|
650
708
|
transform_handlers = ModelTransformerBuilder.build(
|
651
709
|
dataset=dataset,
|
@@ -657,7 +715,7 @@ class LassoCV(BaseTransformer):
|
|
657
715
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
658
716
|
inference_method=inference_method,
|
659
717
|
input_cols=self.input_cols,
|
660
|
-
expected_output_cols=
|
718
|
+
expected_output_cols=expected_output_cols,
|
661
719
|
**transform_kwargs
|
662
720
|
)
|
663
721
|
return output_df
|
@@ -687,7 +745,8 @@ class LassoCV(BaseTransformer):
|
|
687
745
|
Output dataset with log probability of the sample for each class in the model.
|
688
746
|
"""
|
689
747
|
super()._check_dataset_type(dataset)
|
690
|
-
inference_method="predict_log_proba"
|
748
|
+
inference_method = "predict_log_proba"
|
749
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
691
750
|
|
692
751
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
693
752
|
# are specific to the type of dataset used.
|
@@ -698,18 +757,20 @@ class LassoCV(BaseTransformer):
|
|
698
757
|
dataset=dataset,
|
699
758
|
inference_method=inference_method,
|
700
759
|
)
|
701
|
-
assert isinstance(
|
760
|
+
assert isinstance(
|
761
|
+
dataset._session, Session
|
762
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
702
763
|
transform_kwargs = dict(
|
703
764
|
session=dataset._session,
|
704
765
|
dependencies=self._deps,
|
705
|
-
drop_input_cols
|
766
|
+
drop_input_cols=self._drop_input_cols,
|
706
767
|
expected_output_cols_type="float",
|
707
768
|
)
|
769
|
+
expected_output_cols = self._align_expected_output_names(
|
770
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
771
|
+
)
|
708
772
|
elif isinstance(dataset, pd.DataFrame):
|
709
|
-
transform_kwargs = dict(
|
710
|
-
snowpark_input_cols = self._snowpark_cols,
|
711
|
-
drop_input_cols = self._drop_input_cols
|
712
|
-
)
|
773
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
713
774
|
|
714
775
|
transform_handlers = ModelTransformerBuilder.build(
|
715
776
|
dataset=dataset,
|
@@ -722,7 +783,7 @@ class LassoCV(BaseTransformer):
|
|
722
783
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
723
784
|
inference_method=inference_method,
|
724
785
|
input_cols=self.input_cols,
|
725
|
-
expected_output_cols=
|
786
|
+
expected_output_cols=expected_output_cols,
|
726
787
|
**transform_kwargs
|
727
788
|
)
|
728
789
|
return output_df
|
@@ -748,30 +809,34 @@ class LassoCV(BaseTransformer):
|
|
748
809
|
Output dataset with results of the decision function for the samples in input dataset.
|
749
810
|
"""
|
750
811
|
super()._check_dataset_type(dataset)
|
751
|
-
inference_method="decision_function"
|
812
|
+
inference_method = "decision_function"
|
752
813
|
|
753
814
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
754
815
|
# are specific to the type of dataset used.
|
755
816
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
756
817
|
|
818
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
819
|
+
|
757
820
|
if isinstance(dataset, DataFrame):
|
758
821
|
self._deps = self._batch_inference_validate_snowpark(
|
759
822
|
dataset=dataset,
|
760
823
|
inference_method=inference_method,
|
761
824
|
)
|
762
|
-
assert isinstance(
|
825
|
+
assert isinstance(
|
826
|
+
dataset._session, Session
|
827
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
763
828
|
transform_kwargs = dict(
|
764
829
|
session=dataset._session,
|
765
830
|
dependencies=self._deps,
|
766
|
-
drop_input_cols
|
831
|
+
drop_input_cols=self._drop_input_cols,
|
767
832
|
expected_output_cols_type="float",
|
768
833
|
)
|
834
|
+
expected_output_cols = self._align_expected_output_names(
|
835
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
836
|
+
)
|
769
837
|
|
770
838
|
elif isinstance(dataset, pd.DataFrame):
|
771
|
-
transform_kwargs = dict(
|
772
|
-
snowpark_input_cols = self._snowpark_cols,
|
773
|
-
drop_input_cols = self._drop_input_cols
|
774
|
-
)
|
839
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
775
840
|
|
776
841
|
transform_handlers = ModelTransformerBuilder.build(
|
777
842
|
dataset=dataset,
|
@@ -784,7 +849,7 @@ class LassoCV(BaseTransformer):
|
|
784
849
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
785
850
|
inference_method=inference_method,
|
786
851
|
input_cols=self.input_cols,
|
787
|
-
expected_output_cols=
|
852
|
+
expected_output_cols=expected_output_cols,
|
788
853
|
**transform_kwargs
|
789
854
|
)
|
790
855
|
return output_df
|
@@ -813,12 +878,14 @@ class LassoCV(BaseTransformer):
|
|
813
878
|
Output dataset with probability of the sample for each class in the model.
|
814
879
|
"""
|
815
880
|
super()._check_dataset_type(dataset)
|
816
|
-
inference_method="score_samples"
|
881
|
+
inference_method = "score_samples"
|
817
882
|
|
818
883
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
819
884
|
# are specific to the type of dataset used.
|
820
885
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
821
886
|
|
887
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
888
|
+
|
822
889
|
if isinstance(dataset, DataFrame):
|
823
890
|
self._deps = self._batch_inference_validate_snowpark(
|
824
891
|
dataset=dataset,
|
@@ -831,6 +898,9 @@ class LassoCV(BaseTransformer):
|
|
831
898
|
drop_input_cols = self._drop_input_cols,
|
832
899
|
expected_output_cols_type="float",
|
833
900
|
)
|
901
|
+
expected_output_cols = self._align_expected_output_names(
|
902
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
903
|
+
)
|
834
904
|
|
835
905
|
elif isinstance(dataset, pd.DataFrame):
|
836
906
|
transform_kwargs = dict(
|
@@ -849,7 +919,7 @@ class LassoCV(BaseTransformer):
|
|
849
919
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
850
920
|
inference_method=inference_method,
|
851
921
|
input_cols=self.input_cols,
|
852
|
-
expected_output_cols=
|
922
|
+
expected_output_cols=expected_output_cols,
|
853
923
|
**transform_kwargs
|
854
924
|
)
|
855
925
|
return output_df
|
@@ -996,50 +1066,84 @@ class LassoCV(BaseTransformer):
|
|
996
1066
|
)
|
997
1067
|
return output_df
|
998
1068
|
|
1069
|
+
|
1070
|
+
|
1071
|
+
def to_sklearn(self) -> Any:
|
1072
|
+
"""Get sklearn.linear_model.LassoCV object.
|
1073
|
+
"""
|
1074
|
+
if self._sklearn_object is None:
|
1075
|
+
self._sklearn_object = self._create_sklearn_object()
|
1076
|
+
return self._sklearn_object
|
1077
|
+
|
1078
|
+
def to_xgboost(self) -> Any:
|
1079
|
+
raise exceptions.SnowflakeMLException(
|
1080
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1081
|
+
original_exception=AttributeError(
|
1082
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1083
|
+
"to_xgboost()",
|
1084
|
+
"to_sklearn()"
|
1085
|
+
)
|
1086
|
+
),
|
1087
|
+
)
|
1088
|
+
|
1089
|
+
def to_lightgbm(self) -> Any:
|
1090
|
+
raise exceptions.SnowflakeMLException(
|
1091
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1092
|
+
original_exception=AttributeError(
|
1093
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1094
|
+
"to_lightgbm()",
|
1095
|
+
"to_sklearn()"
|
1096
|
+
)
|
1097
|
+
),
|
1098
|
+
)
|
999
1099
|
|
1000
|
-
def
|
1100
|
+
def _get_dependencies(self) -> List[str]:
|
1101
|
+
return self._deps
|
1102
|
+
|
1103
|
+
|
1104
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1001
1105
|
self._model_signature_dict = dict()
|
1002
1106
|
|
1003
1107
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1004
1108
|
|
1005
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1109
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1006
1110
|
outputs: List[BaseFeatureSpec] = []
|
1007
1111
|
if hasattr(self, "predict"):
|
1008
1112
|
# keep mypy happy
|
1009
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1113
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1010
1114
|
# For classifier, the type of predict is the same as the type of label
|
1011
|
-
if self._sklearn_object._estimator_type ==
|
1012
|
-
|
1115
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1116
|
+
# label columns is the desired type for output
|
1013
1117
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1014
1118
|
# rename the output columns
|
1015
1119
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1016
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1017
|
-
|
1018
|
-
|
1120
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1019
1123
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1020
1124
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1021
|
-
# Clusterer returns int64 cluster labels.
|
1125
|
+
# Clusterer returns int64 cluster labels.
|
1022
1126
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1023
1127
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1024
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1025
|
-
|
1026
|
-
|
1027
|
-
|
1128
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1129
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1130
|
+
)
|
1131
|
+
|
1028
1132
|
# For regressor, the type of predict is float64
|
1029
|
-
elif self._sklearn_object._estimator_type ==
|
1133
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1030
1134
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1031
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1135
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1136
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1137
|
+
)
|
1138
|
+
|
1035
1139
|
for prob_func in PROB_FUNCTIONS:
|
1036
1140
|
if hasattr(self, prob_func):
|
1037
1141
|
output_cols_prefix: str = f"{prob_func}_"
|
1038
1142
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1039
1143
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1040
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1041
|
-
|
1042
|
-
|
1144
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1145
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1146
|
+
)
|
1043
1147
|
|
1044
1148
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1045
1149
|
items = list(self._model_signature_dict.items())
|
@@ -1052,10 +1156,10 @@ class LassoCV(BaseTransformer):
|
|
1052
1156
|
"""Returns model signature of current class.
|
1053
1157
|
|
1054
1158
|
Raises:
|
1055
|
-
|
1159
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1056
1160
|
|
1057
1161
|
Returns:
|
1058
|
-
Dict
|
1162
|
+
Dict with each method and its input output signature
|
1059
1163
|
"""
|
1060
1164
|
if self._model_signature_dict is None:
|
1061
1165
|
raise exceptions.SnowflakeMLException(
|
@@ -1063,35 +1167,3 @@ class LassoCV(BaseTransformer):
|
|
1063
1167
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1064
1168
|
)
|
1065
1169
|
return self._model_signature_dict
|
1066
|
-
|
1067
|
-
def to_sklearn(self) -> Any:
|
1068
|
-
"""Get sklearn.linear_model.LassoCV object.
|
1069
|
-
"""
|
1070
|
-
if self._sklearn_object is None:
|
1071
|
-
self._sklearn_object = self._create_sklearn_object()
|
1072
|
-
return self._sklearn_object
|
1073
|
-
|
1074
|
-
def to_xgboost(self) -> Any:
|
1075
|
-
raise exceptions.SnowflakeMLException(
|
1076
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1077
|
-
original_exception=AttributeError(
|
1078
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1079
|
-
"to_xgboost()",
|
1080
|
-
"to_sklearn()"
|
1081
|
-
)
|
1082
|
-
),
|
1083
|
-
)
|
1084
|
-
|
1085
|
-
def to_lightgbm(self) -> Any:
|
1086
|
-
raise exceptions.SnowflakeMLException(
|
1087
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1088
|
-
original_exception=AttributeError(
|
1089
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1090
|
-
"to_lightgbm()",
|
1091
|
-
"to_sklearn()"
|
1092
|
-
)
|
1093
|
-
),
|
1094
|
-
)
|
1095
|
-
|
1096
|
-
def _get_dependencies(self) -> List[str]:
|
1097
|
-
return self._deps
|