snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -323,12 +322,7 @@ class OPTICS(BaseTransformer):
|
|
323
322
|
)
|
324
323
|
return selected_cols
|
325
324
|
|
326
|
-
|
327
|
-
project=_PROJECT,
|
328
|
-
subproject=_SUBPROJECT,
|
329
|
-
custom_tags=dict([("autogen", True)]),
|
330
|
-
)
|
331
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
|
325
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
|
332
326
|
"""Perform OPTICS clustering
|
333
327
|
For more details on this function, see [sklearn.cluster.OPTICS.fit]
|
334
328
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit)
|
@@ -355,12 +349,14 @@ class OPTICS(BaseTransformer):
|
|
355
349
|
|
356
350
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
357
351
|
|
358
|
-
|
352
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
359
353
|
if SNOWML_SPROC_ENV in os.environ:
|
360
354
|
statement_params = telemetry.get_function_usage_statement_params(
|
361
355
|
project=_PROJECT,
|
362
356
|
subproject=_SUBPROJECT,
|
363
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
357
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
358
|
+
inspect.currentframe(), OPTICS.__class__.__name__
|
359
|
+
),
|
364
360
|
api_calls=[Session.call],
|
365
361
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
366
362
|
)
|
@@ -381,7 +377,7 @@ class OPTICS(BaseTransformer):
|
|
381
377
|
)
|
382
378
|
self._sklearn_object = model_trainer.train()
|
383
379
|
self._is_fitted = True
|
384
|
-
self.
|
380
|
+
self._generate_model_signatures(dataset)
|
385
381
|
return self
|
386
382
|
|
387
383
|
def _batch_inference_validate_snowpark(
|
@@ -455,7 +451,9 @@ class OPTICS(BaseTransformer):
|
|
455
451
|
# when it is classifier, infer the datatype from label columns
|
456
452
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
457
453
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
458
|
-
label_cols_signatures = [
|
454
|
+
label_cols_signatures = [
|
455
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
456
|
+
]
|
459
457
|
if len(label_cols_signatures) == 0:
|
460
458
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
461
459
|
raise exceptions.SnowflakeMLException(
|
@@ -463,25 +461,22 @@ class OPTICS(BaseTransformer):
|
|
463
461
|
original_exception=ValueError(error_str),
|
464
462
|
)
|
465
463
|
|
466
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
467
|
-
label_cols_signatures[0].as_snowpark_type()
|
468
|
-
)
|
464
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
469
465
|
|
470
466
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
471
|
-
assert isinstance(
|
467
|
+
assert isinstance(
|
468
|
+
dataset._session, Session
|
469
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
472
470
|
|
473
471
|
transform_kwargs = dict(
|
474
|
-
session
|
475
|
-
dependencies
|
476
|
-
drop_input_cols
|
477
|
-
expected_output_cols_type
|
472
|
+
session=dataset._session,
|
473
|
+
dependencies=self._deps,
|
474
|
+
drop_input_cols=self._drop_input_cols,
|
475
|
+
expected_output_cols_type=expected_type_inferred,
|
478
476
|
)
|
479
477
|
|
480
478
|
elif isinstance(dataset, pd.DataFrame):
|
481
|
-
transform_kwargs = dict(
|
482
|
-
snowpark_input_cols = self._snowpark_cols,
|
483
|
-
drop_input_cols = self._drop_input_cols
|
484
|
-
)
|
479
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
485
480
|
|
486
481
|
transform_handlers = ModelTransformerBuilder.build(
|
487
482
|
dataset=dataset,
|
@@ -521,7 +516,7 @@ class OPTICS(BaseTransformer):
|
|
521
516
|
Transformed dataset.
|
522
517
|
"""
|
523
518
|
super()._check_dataset_type(dataset)
|
524
|
-
inference_method="transform"
|
519
|
+
inference_method = "transform"
|
525
520
|
|
526
521
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
527
522
|
# are specific to the type of dataset used.
|
@@ -558,17 +553,14 @@ class OPTICS(BaseTransformer):
|
|
558
553
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
559
554
|
|
560
555
|
transform_kwargs = dict(
|
561
|
-
session
|
562
|
-
dependencies
|
563
|
-
drop_input_cols
|
564
|
-
expected_output_cols_type
|
556
|
+
session=dataset._session,
|
557
|
+
dependencies=self._deps,
|
558
|
+
drop_input_cols=self._drop_input_cols,
|
559
|
+
expected_output_cols_type=expected_dtype,
|
565
560
|
)
|
566
561
|
|
567
562
|
elif isinstance(dataset, pd.DataFrame):
|
568
|
-
transform_kwargs = dict(
|
569
|
-
snowpark_input_cols = self._snowpark_cols,
|
570
|
-
drop_input_cols = self._drop_input_cols
|
571
|
-
)
|
563
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
572
564
|
|
573
565
|
transform_handlers = ModelTransformerBuilder.build(
|
574
566
|
dataset=dataset,
|
@@ -587,7 +579,11 @@ class OPTICS(BaseTransformer):
|
|
587
579
|
return output_df
|
588
580
|
|
589
581
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
590
|
-
def fit_predict(
|
582
|
+
def fit_predict(
|
583
|
+
self,
|
584
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
585
|
+
output_cols_prefix: str = "fit_predict_",
|
586
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
591
587
|
""" Perform clustering on `X` and returns cluster labels
|
592
588
|
For more details on this function, see [sklearn.cluster.OPTICS.fit_predict]
|
593
589
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit_predict)
|
@@ -614,7 +610,9 @@ class OPTICS(BaseTransformer):
|
|
614
610
|
)
|
615
611
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
616
612
|
drop_input_cols=self._drop_input_cols,
|
617
|
-
expected_output_cols_list=
|
613
|
+
expected_output_cols_list=(
|
614
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
615
|
+
),
|
618
616
|
)
|
619
617
|
self._sklearn_object = fitted_estimator
|
620
618
|
self._is_fitted = True
|
@@ -631,6 +629,62 @@ class OPTICS(BaseTransformer):
|
|
631
629
|
assert self._sklearn_object is not None
|
632
630
|
return self._sklearn_object.embedding_
|
633
631
|
|
632
|
+
|
633
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
634
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
635
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
636
|
+
"""
|
637
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
638
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
639
|
+
if output_cols:
|
640
|
+
output_cols = [
|
641
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
642
|
+
for c in output_cols
|
643
|
+
]
|
644
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
645
|
+
output_cols = [output_cols_prefix]
|
646
|
+
elif self._sklearn_object is not None:
|
647
|
+
classes = self._sklearn_object.classes_
|
648
|
+
if isinstance(classes, numpy.ndarray):
|
649
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
650
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
651
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
652
|
+
output_cols = []
|
653
|
+
for i, cl in enumerate(classes):
|
654
|
+
# For binary classification, there is only one output column for each class
|
655
|
+
# ndarray as the two classes are complementary.
|
656
|
+
if len(cl) == 2:
|
657
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
658
|
+
else:
|
659
|
+
output_cols.extend([
|
660
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
661
|
+
])
|
662
|
+
else:
|
663
|
+
output_cols = []
|
664
|
+
|
665
|
+
# Make sure column names are valid snowflake identifiers.
|
666
|
+
assert output_cols is not None # Make MyPy happy
|
667
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
668
|
+
|
669
|
+
return rv
|
670
|
+
|
671
|
+
def _align_expected_output_names(
|
672
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
673
|
+
) -> List[str]:
|
674
|
+
# in case the inferred output column names dimension is different
|
675
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
676
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
677
|
+
output_df_columns = list(output_df_pd.columns)
|
678
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
679
|
+
if self.sample_weight_col:
|
680
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
681
|
+
# if the dimension of inferred output column names is correct; use it
|
682
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
683
|
+
return expected_output_cols_list
|
684
|
+
# otherwise, use the sklearn estimator's output
|
685
|
+
else:
|
686
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
687
|
+
|
634
688
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
635
689
|
@telemetry.send_api_usage_telemetry(
|
636
690
|
project=_PROJECT,
|
@@ -661,24 +715,28 @@ class OPTICS(BaseTransformer):
|
|
661
715
|
# are specific to the type of dataset used.
|
662
716
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
663
717
|
|
718
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
719
|
+
|
664
720
|
if isinstance(dataset, DataFrame):
|
665
721
|
self._deps = self._batch_inference_validate_snowpark(
|
666
722
|
dataset=dataset,
|
667
723
|
inference_method=inference_method,
|
668
724
|
)
|
669
|
-
assert isinstance(
|
725
|
+
assert isinstance(
|
726
|
+
dataset._session, Session
|
727
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
670
728
|
transform_kwargs = dict(
|
671
729
|
session=dataset._session,
|
672
730
|
dependencies=self._deps,
|
673
|
-
drop_input_cols
|
731
|
+
drop_input_cols=self._drop_input_cols,
|
674
732
|
expected_output_cols_type="float",
|
675
733
|
)
|
734
|
+
expected_output_cols = self._align_expected_output_names(
|
735
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
736
|
+
)
|
676
737
|
|
677
738
|
elif isinstance(dataset, pd.DataFrame):
|
678
|
-
transform_kwargs = dict(
|
679
|
-
snowpark_input_cols = self._snowpark_cols,
|
680
|
-
drop_input_cols = self._drop_input_cols
|
681
|
-
)
|
739
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
682
740
|
|
683
741
|
transform_handlers = ModelTransformerBuilder.build(
|
684
742
|
dataset=dataset,
|
@@ -690,7 +748,7 @@ class OPTICS(BaseTransformer):
|
|
690
748
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
691
749
|
inference_method=inference_method,
|
692
750
|
input_cols=self.input_cols,
|
693
|
-
expected_output_cols=
|
751
|
+
expected_output_cols=expected_output_cols,
|
694
752
|
**transform_kwargs
|
695
753
|
)
|
696
754
|
return output_df
|
@@ -720,7 +778,8 @@ class OPTICS(BaseTransformer):
|
|
720
778
|
Output dataset with log probability of the sample for each class in the model.
|
721
779
|
"""
|
722
780
|
super()._check_dataset_type(dataset)
|
723
|
-
inference_method="predict_log_proba"
|
781
|
+
inference_method = "predict_log_proba"
|
782
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
724
783
|
|
725
784
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
726
785
|
# are specific to the type of dataset used.
|
@@ -731,18 +790,20 @@ class OPTICS(BaseTransformer):
|
|
731
790
|
dataset=dataset,
|
732
791
|
inference_method=inference_method,
|
733
792
|
)
|
734
|
-
assert isinstance(
|
793
|
+
assert isinstance(
|
794
|
+
dataset._session, Session
|
795
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
735
796
|
transform_kwargs = dict(
|
736
797
|
session=dataset._session,
|
737
798
|
dependencies=self._deps,
|
738
|
-
drop_input_cols
|
799
|
+
drop_input_cols=self._drop_input_cols,
|
739
800
|
expected_output_cols_type="float",
|
740
801
|
)
|
802
|
+
expected_output_cols = self._align_expected_output_names(
|
803
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
804
|
+
)
|
741
805
|
elif isinstance(dataset, pd.DataFrame):
|
742
|
-
transform_kwargs = dict(
|
743
|
-
snowpark_input_cols = self._snowpark_cols,
|
744
|
-
drop_input_cols = self._drop_input_cols
|
745
|
-
)
|
806
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
746
807
|
|
747
808
|
transform_handlers = ModelTransformerBuilder.build(
|
748
809
|
dataset=dataset,
|
@@ -755,7 +816,7 @@ class OPTICS(BaseTransformer):
|
|
755
816
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
756
817
|
inference_method=inference_method,
|
757
818
|
input_cols=self.input_cols,
|
758
|
-
expected_output_cols=
|
819
|
+
expected_output_cols=expected_output_cols,
|
759
820
|
**transform_kwargs
|
760
821
|
)
|
761
822
|
return output_df
|
@@ -781,30 +842,34 @@ class OPTICS(BaseTransformer):
|
|
781
842
|
Output dataset with results of the decision function for the samples in input dataset.
|
782
843
|
"""
|
783
844
|
super()._check_dataset_type(dataset)
|
784
|
-
inference_method="decision_function"
|
845
|
+
inference_method = "decision_function"
|
785
846
|
|
786
847
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
787
848
|
# are specific to the type of dataset used.
|
788
849
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
789
850
|
|
851
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
852
|
+
|
790
853
|
if isinstance(dataset, DataFrame):
|
791
854
|
self._deps = self._batch_inference_validate_snowpark(
|
792
855
|
dataset=dataset,
|
793
856
|
inference_method=inference_method,
|
794
857
|
)
|
795
|
-
assert isinstance(
|
858
|
+
assert isinstance(
|
859
|
+
dataset._session, Session
|
860
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
796
861
|
transform_kwargs = dict(
|
797
862
|
session=dataset._session,
|
798
863
|
dependencies=self._deps,
|
799
|
-
drop_input_cols
|
864
|
+
drop_input_cols=self._drop_input_cols,
|
800
865
|
expected_output_cols_type="float",
|
801
866
|
)
|
867
|
+
expected_output_cols = self._align_expected_output_names(
|
868
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
869
|
+
)
|
802
870
|
|
803
871
|
elif isinstance(dataset, pd.DataFrame):
|
804
|
-
transform_kwargs = dict(
|
805
|
-
snowpark_input_cols = self._snowpark_cols,
|
806
|
-
drop_input_cols = self._drop_input_cols
|
807
|
-
)
|
872
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
808
873
|
|
809
874
|
transform_handlers = ModelTransformerBuilder.build(
|
810
875
|
dataset=dataset,
|
@@ -817,7 +882,7 @@ class OPTICS(BaseTransformer):
|
|
817
882
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
818
883
|
inference_method=inference_method,
|
819
884
|
input_cols=self.input_cols,
|
820
|
-
expected_output_cols=
|
885
|
+
expected_output_cols=expected_output_cols,
|
821
886
|
**transform_kwargs
|
822
887
|
)
|
823
888
|
return output_df
|
@@ -846,12 +911,14 @@ class OPTICS(BaseTransformer):
|
|
846
911
|
Output dataset with probability of the sample for each class in the model.
|
847
912
|
"""
|
848
913
|
super()._check_dataset_type(dataset)
|
849
|
-
inference_method="score_samples"
|
914
|
+
inference_method = "score_samples"
|
850
915
|
|
851
916
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
852
917
|
# are specific to the type of dataset used.
|
853
918
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
854
919
|
|
920
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
921
|
+
|
855
922
|
if isinstance(dataset, DataFrame):
|
856
923
|
self._deps = self._batch_inference_validate_snowpark(
|
857
924
|
dataset=dataset,
|
@@ -864,6 +931,9 @@ class OPTICS(BaseTransformer):
|
|
864
931
|
drop_input_cols = self._drop_input_cols,
|
865
932
|
expected_output_cols_type="float",
|
866
933
|
)
|
934
|
+
expected_output_cols = self._align_expected_output_names(
|
935
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
936
|
+
)
|
867
937
|
|
868
938
|
elif isinstance(dataset, pd.DataFrame):
|
869
939
|
transform_kwargs = dict(
|
@@ -882,7 +952,7 @@ class OPTICS(BaseTransformer):
|
|
882
952
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
883
953
|
inference_method=inference_method,
|
884
954
|
input_cols=self.input_cols,
|
885
|
-
expected_output_cols=
|
955
|
+
expected_output_cols=expected_output_cols,
|
886
956
|
**transform_kwargs
|
887
957
|
)
|
888
958
|
return output_df
|
@@ -1027,50 +1097,84 @@ class OPTICS(BaseTransformer):
|
|
1027
1097
|
)
|
1028
1098
|
return output_df
|
1029
1099
|
|
1100
|
+
|
1101
|
+
|
1102
|
+
def to_sklearn(self) -> Any:
|
1103
|
+
"""Get sklearn.cluster.OPTICS object.
|
1104
|
+
"""
|
1105
|
+
if self._sklearn_object is None:
|
1106
|
+
self._sklearn_object = self._create_sklearn_object()
|
1107
|
+
return self._sklearn_object
|
1108
|
+
|
1109
|
+
def to_xgboost(self) -> Any:
|
1110
|
+
raise exceptions.SnowflakeMLException(
|
1111
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1112
|
+
original_exception=AttributeError(
|
1113
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1114
|
+
"to_xgboost()",
|
1115
|
+
"to_sklearn()"
|
1116
|
+
)
|
1117
|
+
),
|
1118
|
+
)
|
1119
|
+
|
1120
|
+
def to_lightgbm(self) -> Any:
|
1121
|
+
raise exceptions.SnowflakeMLException(
|
1122
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1123
|
+
original_exception=AttributeError(
|
1124
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1125
|
+
"to_lightgbm()",
|
1126
|
+
"to_sklearn()"
|
1127
|
+
)
|
1128
|
+
),
|
1129
|
+
)
|
1030
1130
|
|
1031
|
-
def
|
1131
|
+
def _get_dependencies(self) -> List[str]:
|
1132
|
+
return self._deps
|
1133
|
+
|
1134
|
+
|
1135
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1032
1136
|
self._model_signature_dict = dict()
|
1033
1137
|
|
1034
1138
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1035
1139
|
|
1036
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1140
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1037
1141
|
outputs: List[BaseFeatureSpec] = []
|
1038
1142
|
if hasattr(self, "predict"):
|
1039
1143
|
# keep mypy happy
|
1040
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1144
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1041
1145
|
# For classifier, the type of predict is the same as the type of label
|
1042
|
-
if self._sklearn_object._estimator_type ==
|
1043
|
-
|
1146
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1147
|
+
# label columns is the desired type for output
|
1044
1148
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1045
1149
|
# rename the output columns
|
1046
1150
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1047
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1048
|
-
|
1049
|
-
|
1151
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1152
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1153
|
+
)
|
1050
1154
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1051
1155
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1052
|
-
# Clusterer returns int64 cluster labels.
|
1156
|
+
# Clusterer returns int64 cluster labels.
|
1053
1157
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1054
1158
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1055
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1159
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1160
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1161
|
+
)
|
1162
|
+
|
1059
1163
|
# For regressor, the type of predict is float64
|
1060
|
-
elif self._sklearn_object._estimator_type ==
|
1164
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1061
1165
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1062
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1166
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1167
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1168
|
+
)
|
1169
|
+
|
1066
1170
|
for prob_func in PROB_FUNCTIONS:
|
1067
1171
|
if hasattr(self, prob_func):
|
1068
1172
|
output_cols_prefix: str = f"{prob_func}_"
|
1069
1173
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1070
1174
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1071
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1072
|
-
|
1073
|
-
|
1175
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1176
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1177
|
+
)
|
1074
1178
|
|
1075
1179
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1076
1180
|
items = list(self._model_signature_dict.items())
|
@@ -1083,10 +1187,10 @@ class OPTICS(BaseTransformer):
|
|
1083
1187
|
"""Returns model signature of current class.
|
1084
1188
|
|
1085
1189
|
Raises:
|
1086
|
-
|
1190
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1087
1191
|
|
1088
1192
|
Returns:
|
1089
|
-
Dict
|
1193
|
+
Dict with each method and its input output signature
|
1090
1194
|
"""
|
1091
1195
|
if self._model_signature_dict is None:
|
1092
1196
|
raise exceptions.SnowflakeMLException(
|
@@ -1094,35 +1198,3 @@ class OPTICS(BaseTransformer):
|
|
1094
1198
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1095
1199
|
)
|
1096
1200
|
return self._model_signature_dict
|
1097
|
-
|
1098
|
-
def to_sklearn(self) -> Any:
|
1099
|
-
"""Get sklearn.cluster.OPTICS object.
|
1100
|
-
"""
|
1101
|
-
if self._sklearn_object is None:
|
1102
|
-
self._sklearn_object = self._create_sklearn_object()
|
1103
|
-
return self._sklearn_object
|
1104
|
-
|
1105
|
-
def to_xgboost(self) -> Any:
|
1106
|
-
raise exceptions.SnowflakeMLException(
|
1107
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1108
|
-
original_exception=AttributeError(
|
1109
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1110
|
-
"to_xgboost()",
|
1111
|
-
"to_sklearn()"
|
1112
|
-
)
|
1113
|
-
),
|
1114
|
-
)
|
1115
|
-
|
1116
|
-
def to_lightgbm(self) -> Any:
|
1117
|
-
raise exceptions.SnowflakeMLException(
|
1118
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1119
|
-
original_exception=AttributeError(
|
1120
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1121
|
-
"to_lightgbm()",
|
1122
|
-
"to_sklearn()"
|
1123
|
-
)
|
1124
|
-
),
|
1125
|
-
)
|
1126
|
-
|
1127
|
-
def _get_dependencies(self) -> List[str]:
|
1128
|
-
return self._deps
|