snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -224,12 +223,7 @@ class MissingIndicator(BaseTransformer):
224
223
  )
225
224
  return selected_cols
226
225
 
227
- @telemetry.send_api_usage_telemetry(
228
- project=_PROJECT,
229
- subproject=_SUBPROJECT,
230
- custom_tags=dict([("autogen", True)]),
231
- )
232
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MissingIndicator":
226
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MissingIndicator":
233
227
  """Fit the transformer on `X`
234
228
  For more details on this function, see [sklearn.impute.MissingIndicator.fit]
235
229
  (https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator.fit)
@@ -256,12 +250,14 @@ class MissingIndicator(BaseTransformer):
256
250
 
257
251
  self._snowpark_cols = dataset.select(self.input_cols).columns
258
252
 
259
- # If we are already in a stored procedure, no need to kick off another one.
253
+ # If we are already in a stored procedure, no need to kick off another one.
260
254
  if SNOWML_SPROC_ENV in os.environ:
261
255
  statement_params = telemetry.get_function_usage_statement_params(
262
256
  project=_PROJECT,
263
257
  subproject=_SUBPROJECT,
264
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MissingIndicator.__class__.__name__),
258
+ function_name=telemetry.get_statement_params_full_func_name(
259
+ inspect.currentframe(), MissingIndicator.__class__.__name__
260
+ ),
265
261
  api_calls=[Session.call],
266
262
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
267
263
  )
@@ -282,7 +278,7 @@ class MissingIndicator(BaseTransformer):
282
278
  )
283
279
  self._sklearn_object = model_trainer.train()
284
280
  self._is_fitted = True
285
- self._get_model_signatures(dataset)
281
+ self._generate_model_signatures(dataset)
286
282
  return self
287
283
 
288
284
  def _batch_inference_validate_snowpark(
@@ -356,7 +352,9 @@ class MissingIndicator(BaseTransformer):
356
352
  # when it is classifier, infer the datatype from label columns
357
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
358
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
359
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
360
358
  if len(label_cols_signatures) == 0:
361
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
362
360
  raise exceptions.SnowflakeMLException(
@@ -364,25 +362,22 @@ class MissingIndicator(BaseTransformer):
364
362
  original_exception=ValueError(error_str),
365
363
  )
366
364
 
367
- expected_type_inferred = convert_sp_to_sf_type(
368
- label_cols_signatures[0].as_snowpark_type()
369
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
370
366
 
371
367
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
368
+ assert isinstance(
369
+ dataset._session, Session
370
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
371
 
374
372
  transform_kwargs = dict(
375
- session = dataset._session,
376
- dependencies = self._deps,
377
- drop_input_cols = self._drop_input_cols,
378
- expected_output_cols_type = expected_type_inferred,
373
+ session=dataset._session,
374
+ dependencies=self._deps,
375
+ drop_input_cols=self._drop_input_cols,
376
+ expected_output_cols_type=expected_type_inferred,
379
377
  )
380
378
 
381
379
  elif isinstance(dataset, pd.DataFrame):
382
- transform_kwargs = dict(
383
- snowpark_input_cols = self._snowpark_cols,
384
- drop_input_cols = self._drop_input_cols
385
- )
380
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
386
381
 
387
382
  transform_handlers = ModelTransformerBuilder.build(
388
383
  dataset=dataset,
@@ -424,7 +419,7 @@ class MissingIndicator(BaseTransformer):
424
419
  Transformed dataset.
425
420
  """
426
421
  super()._check_dataset_type(dataset)
427
- inference_method="transform"
422
+ inference_method = "transform"
428
423
 
429
424
  # This dictionary contains optional kwargs for batch inference. These kwargs
430
425
  # are specific to the type of dataset used.
@@ -461,17 +456,14 @@ class MissingIndicator(BaseTransformer):
461
456
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
462
457
 
463
458
  transform_kwargs = dict(
464
- session = dataset._session,
465
- dependencies = self._deps,
466
- drop_input_cols = self._drop_input_cols,
467
- expected_output_cols_type = expected_dtype,
459
+ session=dataset._session,
460
+ dependencies=self._deps,
461
+ drop_input_cols=self._drop_input_cols,
462
+ expected_output_cols_type=expected_dtype,
468
463
  )
469
464
 
470
465
  elif isinstance(dataset, pd.DataFrame):
471
- transform_kwargs = dict(
472
- snowpark_input_cols = self._snowpark_cols,
473
- drop_input_cols = self._drop_input_cols
474
- )
466
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
475
467
 
476
468
  transform_handlers = ModelTransformerBuilder.build(
477
469
  dataset=dataset,
@@ -490,7 +482,11 @@ class MissingIndicator(BaseTransformer):
490
482
  return output_df
491
483
 
492
484
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
493
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
485
+ def fit_predict(
486
+ self,
487
+ dataset: Union[DataFrame, pd.DataFrame],
488
+ output_cols_prefix: str = "fit_predict_",
489
+ ) -> Union[DataFrame, pd.DataFrame]:
494
490
  """ Method not supported for this class.
495
491
 
496
492
 
@@ -515,7 +511,9 @@ class MissingIndicator(BaseTransformer):
515
511
  )
516
512
  output_result, fitted_estimator = model_trainer.train_fit_predict(
517
513
  drop_input_cols=self._drop_input_cols,
518
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
514
+ expected_output_cols_list=(
515
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
516
+ ),
519
517
  )
520
518
  self._sklearn_object = fitted_estimator
521
519
  self._is_fitted = True
@@ -532,6 +530,62 @@ class MissingIndicator(BaseTransformer):
532
530
  assert self._sklearn_object is not None
533
531
  return self._sklearn_object.embedding_
534
532
 
533
+
534
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
535
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
536
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
537
+ """
538
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
539
+ # The following condition is introduced for kneighbors methods, and not used in other methods
540
+ if output_cols:
541
+ output_cols = [
542
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
543
+ for c in output_cols
544
+ ]
545
+ elif getattr(self._sklearn_object, "classes_", None) is None:
546
+ output_cols = [output_cols_prefix]
547
+ elif self._sklearn_object is not None:
548
+ classes = self._sklearn_object.classes_
549
+ if isinstance(classes, numpy.ndarray):
550
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
551
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
552
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
553
+ output_cols = []
554
+ for i, cl in enumerate(classes):
555
+ # For binary classification, there is only one output column for each class
556
+ # ndarray as the two classes are complementary.
557
+ if len(cl) == 2:
558
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
559
+ else:
560
+ output_cols.extend([
561
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
562
+ ])
563
+ else:
564
+ output_cols = []
565
+
566
+ # Make sure column names are valid snowflake identifiers.
567
+ assert output_cols is not None # Make MyPy happy
568
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
569
+
570
+ return rv
571
+
572
+ def _align_expected_output_names(
573
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
574
+ ) -> List[str]:
575
+ # in case the inferred output column names dimension is different
576
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
577
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
578
+ output_df_columns = list(output_df_pd.columns)
579
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
580
+ if self.sample_weight_col:
581
+ output_df_columns_set -= set(self.sample_weight_col)
582
+ # if the dimension of inferred output column names is correct; use it
583
+ if len(expected_output_cols_list) == len(output_df_columns_set):
584
+ return expected_output_cols_list
585
+ # otherwise, use the sklearn estimator's output
586
+ else:
587
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
588
+
535
589
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
536
590
  @telemetry.send_api_usage_telemetry(
537
591
  project=_PROJECT,
@@ -562,24 +616,28 @@ class MissingIndicator(BaseTransformer):
562
616
  # are specific to the type of dataset used.
563
617
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
564
618
 
619
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
620
+
565
621
  if isinstance(dataset, DataFrame):
566
622
  self._deps = self._batch_inference_validate_snowpark(
567
623
  dataset=dataset,
568
624
  inference_method=inference_method,
569
625
  )
570
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
+ assert isinstance(
627
+ dataset._session, Session
628
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
571
629
  transform_kwargs = dict(
572
630
  session=dataset._session,
573
631
  dependencies=self._deps,
574
- drop_input_cols = self._drop_input_cols,
632
+ drop_input_cols=self._drop_input_cols,
575
633
  expected_output_cols_type="float",
576
634
  )
635
+ expected_output_cols = self._align_expected_output_names(
636
+ inference_method, dataset, expected_output_cols, output_cols_prefix
637
+ )
577
638
 
578
639
  elif isinstance(dataset, pd.DataFrame):
579
- transform_kwargs = dict(
580
- snowpark_input_cols = self._snowpark_cols,
581
- drop_input_cols = self._drop_input_cols
582
- )
640
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
583
641
 
584
642
  transform_handlers = ModelTransformerBuilder.build(
585
643
  dataset=dataset,
@@ -591,7 +649,7 @@ class MissingIndicator(BaseTransformer):
591
649
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
592
650
  inference_method=inference_method,
593
651
  input_cols=self.input_cols,
594
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
652
+ expected_output_cols=expected_output_cols,
595
653
  **transform_kwargs
596
654
  )
597
655
  return output_df
@@ -621,7 +679,8 @@ class MissingIndicator(BaseTransformer):
621
679
  Output dataset with log probability of the sample for each class in the model.
622
680
  """
623
681
  super()._check_dataset_type(dataset)
624
- inference_method="predict_log_proba"
682
+ inference_method = "predict_log_proba"
683
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
625
684
 
626
685
  # This dictionary contains optional kwargs for batch inference. These kwargs
627
686
  # are specific to the type of dataset used.
@@ -632,18 +691,20 @@ class MissingIndicator(BaseTransformer):
632
691
  dataset=dataset,
633
692
  inference_method=inference_method,
634
693
  )
635
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
+ assert isinstance(
695
+ dataset._session, Session
696
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
636
697
  transform_kwargs = dict(
637
698
  session=dataset._session,
638
699
  dependencies=self._deps,
639
- drop_input_cols = self._drop_input_cols,
700
+ drop_input_cols=self._drop_input_cols,
640
701
  expected_output_cols_type="float",
641
702
  )
703
+ expected_output_cols = self._align_expected_output_names(
704
+ inference_method, dataset, expected_output_cols, output_cols_prefix
705
+ )
642
706
  elif isinstance(dataset, pd.DataFrame):
643
- transform_kwargs = dict(
644
- snowpark_input_cols = self._snowpark_cols,
645
- drop_input_cols = self._drop_input_cols
646
- )
707
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
647
708
 
648
709
  transform_handlers = ModelTransformerBuilder.build(
649
710
  dataset=dataset,
@@ -656,7 +717,7 @@ class MissingIndicator(BaseTransformer):
656
717
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
657
718
  inference_method=inference_method,
658
719
  input_cols=self.input_cols,
659
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
720
+ expected_output_cols=expected_output_cols,
660
721
  **transform_kwargs
661
722
  )
662
723
  return output_df
@@ -682,30 +743,34 @@ class MissingIndicator(BaseTransformer):
682
743
  Output dataset with results of the decision function for the samples in input dataset.
683
744
  """
684
745
  super()._check_dataset_type(dataset)
685
- inference_method="decision_function"
746
+ inference_method = "decision_function"
686
747
 
687
748
  # This dictionary contains optional kwargs for batch inference. These kwargs
688
749
  # are specific to the type of dataset used.
689
750
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
690
751
 
752
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
753
+
691
754
  if isinstance(dataset, DataFrame):
692
755
  self._deps = self._batch_inference_validate_snowpark(
693
756
  dataset=dataset,
694
757
  inference_method=inference_method,
695
758
  )
696
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
+ assert isinstance(
760
+ dataset._session, Session
761
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
697
762
  transform_kwargs = dict(
698
763
  session=dataset._session,
699
764
  dependencies=self._deps,
700
- drop_input_cols = self._drop_input_cols,
765
+ drop_input_cols=self._drop_input_cols,
701
766
  expected_output_cols_type="float",
702
767
  )
768
+ expected_output_cols = self._align_expected_output_names(
769
+ inference_method, dataset, expected_output_cols, output_cols_prefix
770
+ )
703
771
 
704
772
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
773
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
774
 
710
775
  transform_handlers = ModelTransformerBuilder.build(
711
776
  dataset=dataset,
@@ -718,7 +783,7 @@ class MissingIndicator(BaseTransformer):
718
783
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
784
  inference_method=inference_method,
720
785
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
786
+ expected_output_cols=expected_output_cols,
722
787
  **transform_kwargs
723
788
  )
724
789
  return output_df
@@ -747,12 +812,14 @@ class MissingIndicator(BaseTransformer):
747
812
  Output dataset with probability of the sample for each class in the model.
748
813
  """
749
814
  super()._check_dataset_type(dataset)
750
- inference_method="score_samples"
815
+ inference_method = "score_samples"
751
816
 
752
817
  # This dictionary contains optional kwargs for batch inference. These kwargs
753
818
  # are specific to the type of dataset used.
754
819
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
755
820
 
821
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
822
+
756
823
  if isinstance(dataset, DataFrame):
757
824
  self._deps = self._batch_inference_validate_snowpark(
758
825
  dataset=dataset,
@@ -765,6 +832,9 @@ class MissingIndicator(BaseTransformer):
765
832
  drop_input_cols = self._drop_input_cols,
766
833
  expected_output_cols_type="float",
767
834
  )
835
+ expected_output_cols = self._align_expected_output_names(
836
+ inference_method, dataset, expected_output_cols, output_cols_prefix
837
+ )
768
838
 
769
839
  elif isinstance(dataset, pd.DataFrame):
770
840
  transform_kwargs = dict(
@@ -783,7 +853,7 @@ class MissingIndicator(BaseTransformer):
783
853
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
784
854
  inference_method=inference_method,
785
855
  input_cols=self.input_cols,
786
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
856
+ expected_output_cols=expected_output_cols,
787
857
  **transform_kwargs
788
858
  )
789
859
  return output_df
@@ -928,50 +998,84 @@ class MissingIndicator(BaseTransformer):
928
998
  )
929
999
  return output_df
930
1000
 
1001
+
1002
+
1003
+ def to_sklearn(self) -> Any:
1004
+ """Get sklearn.impute.MissingIndicator object.
1005
+ """
1006
+ if self._sklearn_object is None:
1007
+ self._sklearn_object = self._create_sklearn_object()
1008
+ return self._sklearn_object
1009
+
1010
+ def to_xgboost(self) -> Any:
1011
+ raise exceptions.SnowflakeMLException(
1012
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1013
+ original_exception=AttributeError(
1014
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1015
+ "to_xgboost()",
1016
+ "to_sklearn()"
1017
+ )
1018
+ ),
1019
+ )
1020
+
1021
+ def to_lightgbm(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_lightgbm()",
1027
+ "to_sklearn()"
1028
+ )
1029
+ ),
1030
+ )
931
1031
 
932
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
+ def _get_dependencies(self) -> List[str]:
1033
+ return self._deps
1034
+
1035
+
1036
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
933
1037
  self._model_signature_dict = dict()
934
1038
 
935
1039
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
936
1040
 
937
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1041
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
938
1042
  outputs: List[BaseFeatureSpec] = []
939
1043
  if hasattr(self, "predict"):
940
1044
  # keep mypy happy
941
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1045
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
942
1046
  # For classifier, the type of predict is the same as the type of label
943
- if self._sklearn_object._estimator_type == 'classifier':
944
- # label columns is the desired type for output
1047
+ if self._sklearn_object._estimator_type == "classifier":
1048
+ # label columns is the desired type for output
945
1049
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
1050
  # rename the output columns
947
1051
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
951
1055
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
952
1056
  # For outlier models, returns -1 for outliers and 1 for inliers.
953
- # Clusterer returns int64 cluster labels.
1057
+ # Clusterer returns int64 cluster labels.
954
1058
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
955
1059
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
956
- self._model_signature_dict["predict"] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
959
-
1060
+ self._model_signature_dict["predict"] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
1063
+
960
1064
  # For regressor, the type of predict is float64
961
- elif self._sklearn_object._estimator_type == 'regressor':
1065
+ elif self._sklearn_object._estimator_type == "regressor":
962
1066
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
966
-
1067
+ self._model_signature_dict["predict"] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
1070
+
967
1071
  for prob_func in PROB_FUNCTIONS:
968
1072
  if hasattr(self, prob_func):
969
1073
  output_cols_prefix: str = f"{prob_func}_"
970
1074
  output_column_names = self._get_output_column_names(output_cols_prefix)
971
1075
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
972
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
1076
+ self._model_signature_dict[prob_func] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
975
1079
 
976
1080
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
977
1081
  items = list(self._model_signature_dict.items())
@@ -984,10 +1088,10 @@ class MissingIndicator(BaseTransformer):
984
1088
  """Returns model signature of current class.
985
1089
 
986
1090
  Raises:
987
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1091
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
988
1092
 
989
1093
  Returns:
990
- Dict[str, ModelSignature]: each method and its input output signature
1094
+ Dict with each method and its input output signature
991
1095
  """
992
1096
  if self._model_signature_dict is None:
993
1097
  raise exceptions.SnowflakeMLException(
@@ -995,35 +1099,3 @@ class MissingIndicator(BaseTransformer):
995
1099
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
996
1100
  )
997
1101
  return self._model_signature_dict
998
-
999
- def to_sklearn(self) -> Any:
1000
- """Get sklearn.impute.MissingIndicator object.
1001
- """
1002
- if self._sklearn_object is None:
1003
- self._sklearn_object = self._create_sklearn_object()
1004
- return self._sklearn_object
1005
-
1006
- def to_xgboost(self) -> Any:
1007
- raise exceptions.SnowflakeMLException(
1008
- error_code=error_codes.METHOD_NOT_ALLOWED,
1009
- original_exception=AttributeError(
1010
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
- "to_xgboost()",
1012
- "to_sklearn()"
1013
- )
1014
- ),
1015
- )
1016
-
1017
- def to_lightgbm(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_lightgbm()",
1023
- "to_sklearn()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def _get_dependencies(self) -> List[str]:
1029
- return self._deps
@@ -74,8 +74,6 @@ _NUMERIC_TYPES = [
74
74
  ]
75
75
 
76
76
 
77
- # TODO(thoyt): Implement logic for `add_indicator` parameter and `indicator_` attribute.Requires
78
- # `snowflake.ml.impute.MissingIndicator` to be implemented.
79
77
  class SimpleImputer(base.BaseTransformer):
80
78
  """
81
79
  Univariate imputer for completing missing values with simple strategies.
@@ -96,7 +94,8 @@ class SimpleImputer(base.BaseTransformer):
96
94
  * If "most_frequent", replace missing using the most frequent value along each column.
97
95
  Can be used with strings or numeric data.
98
96
  If there is more than one such value, only the smallest is returned.
99
- * If "constant", replace the missing values with `fill_value`. Can be used with strings or numeric data.
97
+ * If "constant", replace the missing values with `fill_value`, including columns that are entirely
98
+ null. Can be used with strings or numeric data.
100
99
 
101
100
  fill_value: Optional[str]
102
101
  When `strategy == "constant"`, `fill_value` is used to replace all occurrences of `missing_values`.
@@ -262,18 +261,8 @@ class SimpleImputer(base.BaseTransformer):
262
261
  break
263
262
 
264
263
  for input_col in self.input_cols:
265
- # Check whether input column is empty if necessary.
266
- if (
267
- # TODO(hayu): [SNOW-752265] Support SimpleImputer keep_empty_features.
268
- # Add back when `keep_empty_features` is supported.
269
- # not self.keep_empty_features
270
- # and dataset.filter(F.col(input_col).is_not_null()).count(statement_params=statement_params) == 0
271
- dataset.filter(F.col(input_col).is_not_null()).count(statement_params=statement_params)
272
- == 0
273
- ):
274
- self.statistics_[input_col] = np.nan
275
- else:
276
- self.statistics_[input_col] = self.fill_value
264
+ self.statistics_[input_col] = self.fill_value
265
+
277
266
  else:
278
267
  state = STRATEGY_TO_STATE_DICT[self.strategy]
279
268
  assert state is not None