snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -237,12 +236,7 @@ class VotingClassifier(BaseTransformer):
|
|
237
236
|
)
|
238
237
|
return selected_cols
|
239
238
|
|
240
|
-
|
241
|
-
project=_PROJECT,
|
242
|
-
subproject=_SUBPROJECT,
|
243
|
-
custom_tags=dict([("autogen", True)]),
|
244
|
-
)
|
245
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
|
239
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
|
246
240
|
"""Fit the estimators
|
247
241
|
For more details on this function, see [sklearn.ensemble.VotingClassifier.fit]
|
248
242
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.VotingClassifier.fit)
|
@@ -269,12 +263,14 @@ class VotingClassifier(BaseTransformer):
|
|
269
263
|
|
270
264
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
265
|
|
272
|
-
|
266
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
273
267
|
if SNOWML_SPROC_ENV in os.environ:
|
274
268
|
statement_params = telemetry.get_function_usage_statement_params(
|
275
269
|
project=_PROJECT,
|
276
270
|
subproject=_SUBPROJECT,
|
277
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
271
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
272
|
+
inspect.currentframe(), VotingClassifier.__class__.__name__
|
273
|
+
),
|
278
274
|
api_calls=[Session.call],
|
279
275
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
280
276
|
)
|
@@ -295,7 +291,7 @@ class VotingClassifier(BaseTransformer):
|
|
295
291
|
)
|
296
292
|
self._sklearn_object = model_trainer.train()
|
297
293
|
self._is_fitted = True
|
298
|
-
self.
|
294
|
+
self._generate_model_signatures(dataset)
|
299
295
|
return self
|
300
296
|
|
301
297
|
def _batch_inference_validate_snowpark(
|
@@ -371,7 +367,9 @@ class VotingClassifier(BaseTransformer):
|
|
371
367
|
# when it is classifier, infer the datatype from label columns
|
372
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
373
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
374
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
375
373
|
if len(label_cols_signatures) == 0:
|
376
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
377
375
|
raise exceptions.SnowflakeMLException(
|
@@ -379,25 +377,22 @@ class VotingClassifier(BaseTransformer):
|
|
379
377
|
original_exception=ValueError(error_str),
|
380
378
|
)
|
381
379
|
|
382
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
383
|
-
label_cols_signatures[0].as_snowpark_type()
|
384
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
385
381
|
|
386
382
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
387
|
-
assert isinstance(
|
383
|
+
assert isinstance(
|
384
|
+
dataset._session, Session
|
385
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
388
386
|
|
389
387
|
transform_kwargs = dict(
|
390
|
-
session
|
391
|
-
dependencies
|
392
|
-
drop_input_cols
|
393
|
-
expected_output_cols_type
|
388
|
+
session=dataset._session,
|
389
|
+
dependencies=self._deps,
|
390
|
+
drop_input_cols=self._drop_input_cols,
|
391
|
+
expected_output_cols_type=expected_type_inferred,
|
394
392
|
)
|
395
393
|
|
396
394
|
elif isinstance(dataset, pd.DataFrame):
|
397
|
-
transform_kwargs = dict(
|
398
|
-
snowpark_input_cols = self._snowpark_cols,
|
399
|
-
drop_input_cols = self._drop_input_cols
|
400
|
-
)
|
395
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
401
396
|
|
402
397
|
transform_handlers = ModelTransformerBuilder.build(
|
403
398
|
dataset=dataset,
|
@@ -439,7 +434,7 @@ class VotingClassifier(BaseTransformer):
|
|
439
434
|
Transformed dataset.
|
440
435
|
"""
|
441
436
|
super()._check_dataset_type(dataset)
|
442
|
-
inference_method="transform"
|
437
|
+
inference_method = "transform"
|
443
438
|
|
444
439
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
445
440
|
# are specific to the type of dataset used.
|
@@ -476,17 +471,14 @@ class VotingClassifier(BaseTransformer):
|
|
476
471
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
477
472
|
|
478
473
|
transform_kwargs = dict(
|
479
|
-
session
|
480
|
-
dependencies
|
481
|
-
drop_input_cols
|
482
|
-
expected_output_cols_type
|
474
|
+
session=dataset._session,
|
475
|
+
dependencies=self._deps,
|
476
|
+
drop_input_cols=self._drop_input_cols,
|
477
|
+
expected_output_cols_type=expected_dtype,
|
483
478
|
)
|
484
479
|
|
485
480
|
elif isinstance(dataset, pd.DataFrame):
|
486
|
-
transform_kwargs = dict(
|
487
|
-
snowpark_input_cols = self._snowpark_cols,
|
488
|
-
drop_input_cols = self._drop_input_cols
|
489
|
-
)
|
481
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
490
482
|
|
491
483
|
transform_handlers = ModelTransformerBuilder.build(
|
492
484
|
dataset=dataset,
|
@@ -505,7 +497,11 @@ class VotingClassifier(BaseTransformer):
|
|
505
497
|
return output_df
|
506
498
|
|
507
499
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
508
|
-
def fit_predict(
|
500
|
+
def fit_predict(
|
501
|
+
self,
|
502
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
503
|
+
output_cols_prefix: str = "fit_predict_",
|
504
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
509
505
|
""" Method not supported for this class.
|
510
506
|
|
511
507
|
|
@@ -530,7 +526,9 @@ class VotingClassifier(BaseTransformer):
|
|
530
526
|
)
|
531
527
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
532
528
|
drop_input_cols=self._drop_input_cols,
|
533
|
-
expected_output_cols_list=
|
529
|
+
expected_output_cols_list=(
|
530
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
531
|
+
),
|
534
532
|
)
|
535
533
|
self._sklearn_object = fitted_estimator
|
536
534
|
self._is_fitted = True
|
@@ -547,6 +545,62 @@ class VotingClassifier(BaseTransformer):
|
|
547
545
|
assert self._sklearn_object is not None
|
548
546
|
return self._sklearn_object.embedding_
|
549
547
|
|
548
|
+
|
549
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
550
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
551
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
552
|
+
"""
|
553
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
554
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
555
|
+
if output_cols:
|
556
|
+
output_cols = [
|
557
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
558
|
+
for c in output_cols
|
559
|
+
]
|
560
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
561
|
+
output_cols = [output_cols_prefix]
|
562
|
+
elif self._sklearn_object is not None:
|
563
|
+
classes = self._sklearn_object.classes_
|
564
|
+
if isinstance(classes, numpy.ndarray):
|
565
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
566
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
567
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
568
|
+
output_cols = []
|
569
|
+
for i, cl in enumerate(classes):
|
570
|
+
# For binary classification, there is only one output column for each class
|
571
|
+
# ndarray as the two classes are complementary.
|
572
|
+
if len(cl) == 2:
|
573
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
574
|
+
else:
|
575
|
+
output_cols.extend([
|
576
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
577
|
+
])
|
578
|
+
else:
|
579
|
+
output_cols = []
|
580
|
+
|
581
|
+
# Make sure column names are valid snowflake identifiers.
|
582
|
+
assert output_cols is not None # Make MyPy happy
|
583
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
584
|
+
|
585
|
+
return rv
|
586
|
+
|
587
|
+
def _align_expected_output_names(
|
588
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
589
|
+
) -> List[str]:
|
590
|
+
# in case the inferred output column names dimension is different
|
591
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
592
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
593
|
+
output_df_columns = list(output_df_pd.columns)
|
594
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
595
|
+
if self.sample_weight_col:
|
596
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
597
|
+
# if the dimension of inferred output column names is correct; use it
|
598
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
599
|
+
return expected_output_cols_list
|
600
|
+
# otherwise, use the sklearn estimator's output
|
601
|
+
else:
|
602
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
603
|
+
|
550
604
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
551
605
|
@telemetry.send_api_usage_telemetry(
|
552
606
|
project=_PROJECT,
|
@@ -579,24 +633,28 @@ class VotingClassifier(BaseTransformer):
|
|
579
633
|
# are specific to the type of dataset used.
|
580
634
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
581
635
|
|
636
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
637
|
+
|
582
638
|
if isinstance(dataset, DataFrame):
|
583
639
|
self._deps = self._batch_inference_validate_snowpark(
|
584
640
|
dataset=dataset,
|
585
641
|
inference_method=inference_method,
|
586
642
|
)
|
587
|
-
assert isinstance(
|
643
|
+
assert isinstance(
|
644
|
+
dataset._session, Session
|
645
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
588
646
|
transform_kwargs = dict(
|
589
647
|
session=dataset._session,
|
590
648
|
dependencies=self._deps,
|
591
|
-
drop_input_cols
|
649
|
+
drop_input_cols=self._drop_input_cols,
|
592
650
|
expected_output_cols_type="float",
|
593
651
|
)
|
652
|
+
expected_output_cols = self._align_expected_output_names(
|
653
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
654
|
+
)
|
594
655
|
|
595
656
|
elif isinstance(dataset, pd.DataFrame):
|
596
|
-
transform_kwargs = dict(
|
597
|
-
snowpark_input_cols = self._snowpark_cols,
|
598
|
-
drop_input_cols = self._drop_input_cols
|
599
|
-
)
|
657
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
600
658
|
|
601
659
|
transform_handlers = ModelTransformerBuilder.build(
|
602
660
|
dataset=dataset,
|
@@ -608,7 +666,7 @@ class VotingClassifier(BaseTransformer):
|
|
608
666
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
609
667
|
inference_method=inference_method,
|
610
668
|
input_cols=self.input_cols,
|
611
|
-
expected_output_cols=
|
669
|
+
expected_output_cols=expected_output_cols,
|
612
670
|
**transform_kwargs
|
613
671
|
)
|
614
672
|
return output_df
|
@@ -640,7 +698,8 @@ class VotingClassifier(BaseTransformer):
|
|
640
698
|
Output dataset with log probability of the sample for each class in the model.
|
641
699
|
"""
|
642
700
|
super()._check_dataset_type(dataset)
|
643
|
-
inference_method="predict_log_proba"
|
701
|
+
inference_method = "predict_log_proba"
|
702
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
644
703
|
|
645
704
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
646
705
|
# are specific to the type of dataset used.
|
@@ -651,18 +710,20 @@ class VotingClassifier(BaseTransformer):
|
|
651
710
|
dataset=dataset,
|
652
711
|
inference_method=inference_method,
|
653
712
|
)
|
654
|
-
assert isinstance(
|
713
|
+
assert isinstance(
|
714
|
+
dataset._session, Session
|
715
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
655
716
|
transform_kwargs = dict(
|
656
717
|
session=dataset._session,
|
657
718
|
dependencies=self._deps,
|
658
|
-
drop_input_cols
|
719
|
+
drop_input_cols=self._drop_input_cols,
|
659
720
|
expected_output_cols_type="float",
|
660
721
|
)
|
722
|
+
expected_output_cols = self._align_expected_output_names(
|
723
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
724
|
+
)
|
661
725
|
elif isinstance(dataset, pd.DataFrame):
|
662
|
-
transform_kwargs = dict(
|
663
|
-
snowpark_input_cols = self._snowpark_cols,
|
664
|
-
drop_input_cols = self._drop_input_cols
|
665
|
-
)
|
726
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
666
727
|
|
667
728
|
transform_handlers = ModelTransformerBuilder.build(
|
668
729
|
dataset=dataset,
|
@@ -675,7 +736,7 @@ class VotingClassifier(BaseTransformer):
|
|
675
736
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
676
737
|
inference_method=inference_method,
|
677
738
|
input_cols=self.input_cols,
|
678
|
-
expected_output_cols=
|
739
|
+
expected_output_cols=expected_output_cols,
|
679
740
|
**transform_kwargs
|
680
741
|
)
|
681
742
|
return output_df
|
@@ -701,30 +762,34 @@ class VotingClassifier(BaseTransformer):
|
|
701
762
|
Output dataset with results of the decision function for the samples in input dataset.
|
702
763
|
"""
|
703
764
|
super()._check_dataset_type(dataset)
|
704
|
-
inference_method="decision_function"
|
765
|
+
inference_method = "decision_function"
|
705
766
|
|
706
767
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
707
768
|
# are specific to the type of dataset used.
|
708
769
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
709
770
|
|
771
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
772
|
+
|
710
773
|
if isinstance(dataset, DataFrame):
|
711
774
|
self._deps = self._batch_inference_validate_snowpark(
|
712
775
|
dataset=dataset,
|
713
776
|
inference_method=inference_method,
|
714
777
|
)
|
715
|
-
assert isinstance(
|
778
|
+
assert isinstance(
|
779
|
+
dataset._session, Session
|
780
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
716
781
|
transform_kwargs = dict(
|
717
782
|
session=dataset._session,
|
718
783
|
dependencies=self._deps,
|
719
|
-
drop_input_cols
|
784
|
+
drop_input_cols=self._drop_input_cols,
|
720
785
|
expected_output_cols_type="float",
|
721
786
|
)
|
787
|
+
expected_output_cols = self._align_expected_output_names(
|
788
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
789
|
+
)
|
722
790
|
|
723
791
|
elif isinstance(dataset, pd.DataFrame):
|
724
|
-
transform_kwargs = dict(
|
725
|
-
snowpark_input_cols = self._snowpark_cols,
|
726
|
-
drop_input_cols = self._drop_input_cols
|
727
|
-
)
|
792
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
728
793
|
|
729
794
|
transform_handlers = ModelTransformerBuilder.build(
|
730
795
|
dataset=dataset,
|
@@ -737,7 +802,7 @@ class VotingClassifier(BaseTransformer):
|
|
737
802
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
738
803
|
inference_method=inference_method,
|
739
804
|
input_cols=self.input_cols,
|
740
|
-
expected_output_cols=
|
805
|
+
expected_output_cols=expected_output_cols,
|
741
806
|
**transform_kwargs
|
742
807
|
)
|
743
808
|
return output_df
|
@@ -766,12 +831,14 @@ class VotingClassifier(BaseTransformer):
|
|
766
831
|
Output dataset with probability of the sample for each class in the model.
|
767
832
|
"""
|
768
833
|
super()._check_dataset_type(dataset)
|
769
|
-
inference_method="score_samples"
|
834
|
+
inference_method = "score_samples"
|
770
835
|
|
771
836
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
772
837
|
# are specific to the type of dataset used.
|
773
838
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
774
839
|
|
840
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
841
|
+
|
775
842
|
if isinstance(dataset, DataFrame):
|
776
843
|
self._deps = self._batch_inference_validate_snowpark(
|
777
844
|
dataset=dataset,
|
@@ -784,6 +851,9 @@ class VotingClassifier(BaseTransformer):
|
|
784
851
|
drop_input_cols = self._drop_input_cols,
|
785
852
|
expected_output_cols_type="float",
|
786
853
|
)
|
854
|
+
expected_output_cols = self._align_expected_output_names(
|
855
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
856
|
+
)
|
787
857
|
|
788
858
|
elif isinstance(dataset, pd.DataFrame):
|
789
859
|
transform_kwargs = dict(
|
@@ -802,7 +872,7 @@ class VotingClassifier(BaseTransformer):
|
|
802
872
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
803
873
|
inference_method=inference_method,
|
804
874
|
input_cols=self.input_cols,
|
805
|
-
expected_output_cols=
|
875
|
+
expected_output_cols=expected_output_cols,
|
806
876
|
**transform_kwargs
|
807
877
|
)
|
808
878
|
return output_df
|
@@ -949,50 +1019,84 @@ class VotingClassifier(BaseTransformer):
|
|
949
1019
|
)
|
950
1020
|
return output_df
|
951
1021
|
|
1022
|
+
|
1023
|
+
|
1024
|
+
def to_sklearn(self) -> Any:
|
1025
|
+
"""Get sklearn.ensemble.VotingClassifier object.
|
1026
|
+
"""
|
1027
|
+
if self._sklearn_object is None:
|
1028
|
+
self._sklearn_object = self._create_sklearn_object()
|
1029
|
+
return self._sklearn_object
|
1030
|
+
|
1031
|
+
def to_xgboost(self) -> Any:
|
1032
|
+
raise exceptions.SnowflakeMLException(
|
1033
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1034
|
+
original_exception=AttributeError(
|
1035
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1036
|
+
"to_xgboost()",
|
1037
|
+
"to_sklearn()"
|
1038
|
+
)
|
1039
|
+
),
|
1040
|
+
)
|
1041
|
+
|
1042
|
+
def to_lightgbm(self) -> Any:
|
1043
|
+
raise exceptions.SnowflakeMLException(
|
1044
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1045
|
+
original_exception=AttributeError(
|
1046
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1047
|
+
"to_lightgbm()",
|
1048
|
+
"to_sklearn()"
|
1049
|
+
)
|
1050
|
+
),
|
1051
|
+
)
|
952
1052
|
|
953
|
-
def
|
1053
|
+
def _get_dependencies(self) -> List[str]:
|
1054
|
+
return self._deps
|
1055
|
+
|
1056
|
+
|
1057
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
954
1058
|
self._model_signature_dict = dict()
|
955
1059
|
|
956
1060
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
957
1061
|
|
958
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1062
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
959
1063
|
outputs: List[BaseFeatureSpec] = []
|
960
1064
|
if hasattr(self, "predict"):
|
961
1065
|
# keep mypy happy
|
962
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1066
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
963
1067
|
# For classifier, the type of predict is the same as the type of label
|
964
|
-
if self._sklearn_object._estimator_type ==
|
965
|
-
|
1068
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1069
|
+
# label columns is the desired type for output
|
966
1070
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
967
1071
|
# rename the output columns
|
968
1072
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
969
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
970
|
-
|
971
|
-
|
1073
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1074
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1075
|
+
)
|
972
1076
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
973
1077
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
974
|
-
# Clusterer returns int64 cluster labels.
|
1078
|
+
# Clusterer returns int64 cluster labels.
|
975
1079
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
976
1080
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
977
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
978
|
-
|
979
|
-
|
980
|
-
|
1081
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1082
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1083
|
+
)
|
1084
|
+
|
981
1085
|
# For regressor, the type of predict is float64
|
982
|
-
elif self._sklearn_object._estimator_type ==
|
1086
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
983
1087
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
987
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
1091
|
+
|
988
1092
|
for prob_func in PROB_FUNCTIONS:
|
989
1093
|
if hasattr(self, prob_func):
|
990
1094
|
output_cols_prefix: str = f"{prob_func}_"
|
991
1095
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
992
1096
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
993
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
994
|
-
|
995
|
-
|
1097
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
996
1100
|
|
997
1101
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
998
1102
|
items = list(self._model_signature_dict.items())
|
@@ -1005,10 +1109,10 @@ class VotingClassifier(BaseTransformer):
|
|
1005
1109
|
"""Returns model signature of current class.
|
1006
1110
|
|
1007
1111
|
Raises:
|
1008
|
-
|
1112
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1009
1113
|
|
1010
1114
|
Returns:
|
1011
|
-
Dict
|
1115
|
+
Dict with each method and its input output signature
|
1012
1116
|
"""
|
1013
1117
|
if self._model_signature_dict is None:
|
1014
1118
|
raise exceptions.SnowflakeMLException(
|
@@ -1016,35 +1120,3 @@ class VotingClassifier(BaseTransformer):
|
|
1016
1120
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1017
1121
|
)
|
1018
1122
|
return self._model_signature_dict
|
1019
|
-
|
1020
|
-
def to_sklearn(self) -> Any:
|
1021
|
-
"""Get sklearn.ensemble.VotingClassifier object.
|
1022
|
-
"""
|
1023
|
-
if self._sklearn_object is None:
|
1024
|
-
self._sklearn_object = self._create_sklearn_object()
|
1025
|
-
return self._sklearn_object
|
1026
|
-
|
1027
|
-
def to_xgboost(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_xgboost()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def to_lightgbm(self) -> Any:
|
1039
|
-
raise exceptions.SnowflakeMLException(
|
1040
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1041
|
-
original_exception=AttributeError(
|
1042
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1043
|
-
"to_lightgbm()",
|
1044
|
-
"to_sklearn()"
|
1045
|
-
)
|
1046
|
-
),
|
1047
|
-
)
|
1048
|
-
|
1049
|
-
def _get_dependencies(self) -> List[str]:
|
1050
|
-
return self._deps
|