snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -237,12 +236,7 @@ class VotingClassifier(BaseTransformer):
237
236
  )
238
237
  return selected_cols
239
238
 
240
- @telemetry.send_api_usage_telemetry(
241
- project=_PROJECT,
242
- subproject=_SUBPROJECT,
243
- custom_tags=dict([("autogen", True)]),
244
- )
245
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
239
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
246
240
  """Fit the estimators
247
241
  For more details on this function, see [sklearn.ensemble.VotingClassifier.fit]
248
242
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.VotingClassifier.fit)
@@ -269,12 +263,14 @@ class VotingClassifier(BaseTransformer):
269
263
 
270
264
  self._snowpark_cols = dataset.select(self.input_cols).columns
271
265
 
272
- # If we are already in a stored procedure, no need to kick off another one.
266
+ # If we are already in a stored procedure, no need to kick off another one.
273
267
  if SNOWML_SPROC_ENV in os.environ:
274
268
  statement_params = telemetry.get_function_usage_statement_params(
275
269
  project=_PROJECT,
276
270
  subproject=_SUBPROJECT,
277
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingClassifier.__class__.__name__),
271
+ function_name=telemetry.get_statement_params_full_func_name(
272
+ inspect.currentframe(), VotingClassifier.__class__.__name__
273
+ ),
278
274
  api_calls=[Session.call],
279
275
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
276
  )
@@ -295,7 +291,7 @@ class VotingClassifier(BaseTransformer):
295
291
  )
296
292
  self._sklearn_object = model_trainer.train()
297
293
  self._is_fitted = True
298
- self._get_model_signatures(dataset)
294
+ self._generate_model_signatures(dataset)
299
295
  return self
300
296
 
301
297
  def _batch_inference_validate_snowpark(
@@ -371,7 +367,9 @@ class VotingClassifier(BaseTransformer):
371
367
  # when it is classifier, infer the datatype from label columns
372
368
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
373
369
  # Batch inference takes a single expected output column type. Use the first columns type for now.
374
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
370
+ label_cols_signatures = [
371
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
372
+ ]
375
373
  if len(label_cols_signatures) == 0:
376
374
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
377
375
  raise exceptions.SnowflakeMLException(
@@ -379,25 +377,22 @@ class VotingClassifier(BaseTransformer):
379
377
  original_exception=ValueError(error_str),
380
378
  )
381
379
 
382
- expected_type_inferred = convert_sp_to_sf_type(
383
- label_cols_signatures[0].as_snowpark_type()
384
- )
380
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
385
381
 
386
382
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
387
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
+ assert isinstance(
384
+ dataset._session, Session
385
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
388
386
 
389
387
  transform_kwargs = dict(
390
- session = dataset._session,
391
- dependencies = self._deps,
392
- drop_input_cols = self._drop_input_cols,
393
- expected_output_cols_type = expected_type_inferred,
388
+ session=dataset._session,
389
+ dependencies=self._deps,
390
+ drop_input_cols=self._drop_input_cols,
391
+ expected_output_cols_type=expected_type_inferred,
394
392
  )
395
393
 
396
394
  elif isinstance(dataset, pd.DataFrame):
397
- transform_kwargs = dict(
398
- snowpark_input_cols = self._snowpark_cols,
399
- drop_input_cols = self._drop_input_cols
400
- )
395
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
401
396
 
402
397
  transform_handlers = ModelTransformerBuilder.build(
403
398
  dataset=dataset,
@@ -439,7 +434,7 @@ class VotingClassifier(BaseTransformer):
439
434
  Transformed dataset.
440
435
  """
441
436
  super()._check_dataset_type(dataset)
442
- inference_method="transform"
437
+ inference_method = "transform"
443
438
 
444
439
  # This dictionary contains optional kwargs for batch inference. These kwargs
445
440
  # are specific to the type of dataset used.
@@ -476,17 +471,14 @@ class VotingClassifier(BaseTransformer):
476
471
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
477
472
 
478
473
  transform_kwargs = dict(
479
- session = dataset._session,
480
- dependencies = self._deps,
481
- drop_input_cols = self._drop_input_cols,
482
- expected_output_cols_type = expected_dtype,
474
+ session=dataset._session,
475
+ dependencies=self._deps,
476
+ drop_input_cols=self._drop_input_cols,
477
+ expected_output_cols_type=expected_dtype,
483
478
  )
484
479
 
485
480
  elif isinstance(dataset, pd.DataFrame):
486
- transform_kwargs = dict(
487
- snowpark_input_cols = self._snowpark_cols,
488
- drop_input_cols = self._drop_input_cols
489
- )
481
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
490
482
 
491
483
  transform_handlers = ModelTransformerBuilder.build(
492
484
  dataset=dataset,
@@ -505,7 +497,11 @@ class VotingClassifier(BaseTransformer):
505
497
  return output_df
506
498
 
507
499
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
508
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
500
+ def fit_predict(
501
+ self,
502
+ dataset: Union[DataFrame, pd.DataFrame],
503
+ output_cols_prefix: str = "fit_predict_",
504
+ ) -> Union[DataFrame, pd.DataFrame]:
509
505
  """ Method not supported for this class.
510
506
 
511
507
 
@@ -530,7 +526,9 @@ class VotingClassifier(BaseTransformer):
530
526
  )
531
527
  output_result, fitted_estimator = model_trainer.train_fit_predict(
532
528
  drop_input_cols=self._drop_input_cols,
533
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
529
+ expected_output_cols_list=(
530
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
531
+ ),
534
532
  )
535
533
  self._sklearn_object = fitted_estimator
536
534
  self._is_fitted = True
@@ -547,6 +545,62 @@ class VotingClassifier(BaseTransformer):
547
545
  assert self._sklearn_object is not None
548
546
  return self._sklearn_object.embedding_
549
547
 
548
+
549
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
550
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
551
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
552
+ """
553
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
554
+ # The following condition is introduced for kneighbors methods, and not used in other methods
555
+ if output_cols:
556
+ output_cols = [
557
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
558
+ for c in output_cols
559
+ ]
560
+ elif getattr(self._sklearn_object, "classes_", None) is None:
561
+ output_cols = [output_cols_prefix]
562
+ elif self._sklearn_object is not None:
563
+ classes = self._sklearn_object.classes_
564
+ if isinstance(classes, numpy.ndarray):
565
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
566
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
567
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
568
+ output_cols = []
569
+ for i, cl in enumerate(classes):
570
+ # For binary classification, there is only one output column for each class
571
+ # ndarray as the two classes are complementary.
572
+ if len(cl) == 2:
573
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
574
+ else:
575
+ output_cols.extend([
576
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
577
+ ])
578
+ else:
579
+ output_cols = []
580
+
581
+ # Make sure column names are valid snowflake identifiers.
582
+ assert output_cols is not None # Make MyPy happy
583
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
584
+
585
+ return rv
586
+
587
+ def _align_expected_output_names(
588
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
589
+ ) -> List[str]:
590
+ # in case the inferred output column names dimension is different
591
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
592
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
593
+ output_df_columns = list(output_df_pd.columns)
594
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
595
+ if self.sample_weight_col:
596
+ output_df_columns_set -= set(self.sample_weight_col)
597
+ # if the dimension of inferred output column names is correct; use it
598
+ if len(expected_output_cols_list) == len(output_df_columns_set):
599
+ return expected_output_cols_list
600
+ # otherwise, use the sklearn estimator's output
601
+ else:
602
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
603
+
550
604
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
551
605
  @telemetry.send_api_usage_telemetry(
552
606
  project=_PROJECT,
@@ -579,24 +633,28 @@ class VotingClassifier(BaseTransformer):
579
633
  # are specific to the type of dataset used.
580
634
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
581
635
 
636
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
637
+
582
638
  if isinstance(dataset, DataFrame):
583
639
  self._deps = self._batch_inference_validate_snowpark(
584
640
  dataset=dataset,
585
641
  inference_method=inference_method,
586
642
  )
587
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
643
+ assert isinstance(
644
+ dataset._session, Session
645
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
588
646
  transform_kwargs = dict(
589
647
  session=dataset._session,
590
648
  dependencies=self._deps,
591
- drop_input_cols = self._drop_input_cols,
649
+ drop_input_cols=self._drop_input_cols,
592
650
  expected_output_cols_type="float",
593
651
  )
652
+ expected_output_cols = self._align_expected_output_names(
653
+ inference_method, dataset, expected_output_cols, output_cols_prefix
654
+ )
594
655
 
595
656
  elif isinstance(dataset, pd.DataFrame):
596
- transform_kwargs = dict(
597
- snowpark_input_cols = self._snowpark_cols,
598
- drop_input_cols = self._drop_input_cols
599
- )
657
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
600
658
 
601
659
  transform_handlers = ModelTransformerBuilder.build(
602
660
  dataset=dataset,
@@ -608,7 +666,7 @@ class VotingClassifier(BaseTransformer):
608
666
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
609
667
  inference_method=inference_method,
610
668
  input_cols=self.input_cols,
611
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
669
+ expected_output_cols=expected_output_cols,
612
670
  **transform_kwargs
613
671
  )
614
672
  return output_df
@@ -640,7 +698,8 @@ class VotingClassifier(BaseTransformer):
640
698
  Output dataset with log probability of the sample for each class in the model.
641
699
  """
642
700
  super()._check_dataset_type(dataset)
643
- inference_method="predict_log_proba"
701
+ inference_method = "predict_log_proba"
702
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
644
703
 
645
704
  # This dictionary contains optional kwargs for batch inference. These kwargs
646
705
  # are specific to the type of dataset used.
@@ -651,18 +710,20 @@ class VotingClassifier(BaseTransformer):
651
710
  dataset=dataset,
652
711
  inference_method=inference_method,
653
712
  )
654
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
713
+ assert isinstance(
714
+ dataset._session, Session
715
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
655
716
  transform_kwargs = dict(
656
717
  session=dataset._session,
657
718
  dependencies=self._deps,
658
- drop_input_cols = self._drop_input_cols,
719
+ drop_input_cols=self._drop_input_cols,
659
720
  expected_output_cols_type="float",
660
721
  )
722
+ expected_output_cols = self._align_expected_output_names(
723
+ inference_method, dataset, expected_output_cols, output_cols_prefix
724
+ )
661
725
  elif isinstance(dataset, pd.DataFrame):
662
- transform_kwargs = dict(
663
- snowpark_input_cols = self._snowpark_cols,
664
- drop_input_cols = self._drop_input_cols
665
- )
726
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
666
727
 
667
728
  transform_handlers = ModelTransformerBuilder.build(
668
729
  dataset=dataset,
@@ -675,7 +736,7 @@ class VotingClassifier(BaseTransformer):
675
736
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
676
737
  inference_method=inference_method,
677
738
  input_cols=self.input_cols,
678
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
739
+ expected_output_cols=expected_output_cols,
679
740
  **transform_kwargs
680
741
  )
681
742
  return output_df
@@ -701,30 +762,34 @@ class VotingClassifier(BaseTransformer):
701
762
  Output dataset with results of the decision function for the samples in input dataset.
702
763
  """
703
764
  super()._check_dataset_type(dataset)
704
- inference_method="decision_function"
765
+ inference_method = "decision_function"
705
766
 
706
767
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
768
  # are specific to the type of dataset used.
708
769
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
709
770
 
771
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
772
+
710
773
  if isinstance(dataset, DataFrame):
711
774
  self._deps = self._batch_inference_validate_snowpark(
712
775
  dataset=dataset,
713
776
  inference_method=inference_method,
714
777
  )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
+ assert isinstance(
779
+ dataset._session, Session
780
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
781
  transform_kwargs = dict(
717
782
  session=dataset._session,
718
783
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
784
+ drop_input_cols=self._drop_input_cols,
720
785
  expected_output_cols_type="float",
721
786
  )
787
+ expected_output_cols = self._align_expected_output_names(
788
+ inference_method, dataset, expected_output_cols, output_cols_prefix
789
+ )
722
790
 
723
791
  elif isinstance(dataset, pd.DataFrame):
724
- transform_kwargs = dict(
725
- snowpark_input_cols = self._snowpark_cols,
726
- drop_input_cols = self._drop_input_cols
727
- )
792
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
728
793
 
729
794
  transform_handlers = ModelTransformerBuilder.build(
730
795
  dataset=dataset,
@@ -737,7 +802,7 @@ class VotingClassifier(BaseTransformer):
737
802
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
738
803
  inference_method=inference_method,
739
804
  input_cols=self.input_cols,
740
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
805
+ expected_output_cols=expected_output_cols,
741
806
  **transform_kwargs
742
807
  )
743
808
  return output_df
@@ -766,12 +831,14 @@ class VotingClassifier(BaseTransformer):
766
831
  Output dataset with probability of the sample for each class in the model.
767
832
  """
768
833
  super()._check_dataset_type(dataset)
769
- inference_method="score_samples"
834
+ inference_method = "score_samples"
770
835
 
771
836
  # This dictionary contains optional kwargs for batch inference. These kwargs
772
837
  # are specific to the type of dataset used.
773
838
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
774
839
 
840
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
841
+
775
842
  if isinstance(dataset, DataFrame):
776
843
  self._deps = self._batch_inference_validate_snowpark(
777
844
  dataset=dataset,
@@ -784,6 +851,9 @@ class VotingClassifier(BaseTransformer):
784
851
  drop_input_cols = self._drop_input_cols,
785
852
  expected_output_cols_type="float",
786
853
  )
854
+ expected_output_cols = self._align_expected_output_names(
855
+ inference_method, dataset, expected_output_cols, output_cols_prefix
856
+ )
787
857
 
788
858
  elif isinstance(dataset, pd.DataFrame):
789
859
  transform_kwargs = dict(
@@ -802,7 +872,7 @@ class VotingClassifier(BaseTransformer):
802
872
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
803
873
  inference_method=inference_method,
804
874
  input_cols=self.input_cols,
805
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
875
+ expected_output_cols=expected_output_cols,
806
876
  **transform_kwargs
807
877
  )
808
878
  return output_df
@@ -949,50 +1019,84 @@ class VotingClassifier(BaseTransformer):
949
1019
  )
950
1020
  return output_df
951
1021
 
1022
+
1023
+
1024
+ def to_sklearn(self) -> Any:
1025
+ """Get sklearn.ensemble.VotingClassifier object.
1026
+ """
1027
+ if self._sklearn_object is None:
1028
+ self._sklearn_object = self._create_sklearn_object()
1029
+ return self._sklearn_object
1030
+
1031
+ def to_xgboost(self) -> Any:
1032
+ raise exceptions.SnowflakeMLException(
1033
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1034
+ original_exception=AttributeError(
1035
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
+ "to_xgboost()",
1037
+ "to_sklearn()"
1038
+ )
1039
+ ),
1040
+ )
1041
+
1042
+ def to_lightgbm(self) -> Any:
1043
+ raise exceptions.SnowflakeMLException(
1044
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1045
+ original_exception=AttributeError(
1046
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1047
+ "to_lightgbm()",
1048
+ "to_sklearn()"
1049
+ )
1050
+ ),
1051
+ )
952
1052
 
953
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1053
+ def _get_dependencies(self) -> List[str]:
1054
+ return self._deps
1055
+
1056
+
1057
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
954
1058
  self._model_signature_dict = dict()
955
1059
 
956
1060
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
957
1061
 
958
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1062
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
959
1063
  outputs: List[BaseFeatureSpec] = []
960
1064
  if hasattr(self, "predict"):
961
1065
  # keep mypy happy
962
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1066
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
963
1067
  # For classifier, the type of predict is the same as the type of label
964
- if self._sklearn_object._estimator_type == 'classifier':
965
- # label columns is the desired type for output
1068
+ if self._sklearn_object._estimator_type == "classifier":
1069
+ # label columns is the desired type for output
966
1070
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
967
1071
  # rename the output columns
968
1072
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
969
- self._model_signature_dict["predict"] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
1073
+ self._model_signature_dict["predict"] = ModelSignature(
1074
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1075
+ )
972
1076
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
973
1077
  # For outlier models, returns -1 for outliers and 1 for inliers.
974
- # Clusterer returns int64 cluster labels.
1078
+ # Clusterer returns int64 cluster labels.
975
1079
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
976
1080
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
977
- self._model_signature_dict["predict"] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
980
-
1081
+ self._model_signature_dict["predict"] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
1084
+
981
1085
  # For regressor, the type of predict is float64
982
- elif self._sklearn_object._estimator_type == 'regressor':
1086
+ elif self._sklearn_object._estimator_type == "regressor":
983
1087
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
1091
+
988
1092
  for prob_func in PROB_FUNCTIONS:
989
1093
  if hasattr(self, prob_func):
990
1094
  output_cols_prefix: str = f"{prob_func}_"
991
1095
  output_column_names = self._get_output_column_names(output_cols_prefix)
992
1096
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
993
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
1097
+ self._model_signature_dict[prob_func] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
996
1100
 
997
1101
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
998
1102
  items = list(self._model_signature_dict.items())
@@ -1005,10 +1109,10 @@ class VotingClassifier(BaseTransformer):
1005
1109
  """Returns model signature of current class.
1006
1110
 
1007
1111
  Raises:
1008
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1112
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1009
1113
 
1010
1114
  Returns:
1011
- Dict[str, ModelSignature]: each method and its input output signature
1115
+ Dict with each method and its input output signature
1012
1116
  """
1013
1117
  if self._model_signature_dict is None:
1014
1118
  raise exceptions.SnowflakeMLException(
@@ -1016,35 +1120,3 @@ class VotingClassifier(BaseTransformer):
1016
1120
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1017
1121
  )
1018
1122
  return self._model_signature_dict
1019
-
1020
- def to_sklearn(self) -> Any:
1021
- """Get sklearn.ensemble.VotingClassifier object.
1022
- """
1023
- if self._sklearn_object is None:
1024
- self._sklearn_object = self._create_sklearn_object()
1025
- return self._sklearn_object
1026
-
1027
- def to_xgboost(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_xgboost()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def to_lightgbm(self) -> Any:
1039
- raise exceptions.SnowflakeMLException(
1040
- error_code=error_codes.METHOD_NOT_ALLOWED,
1041
- original_exception=AttributeError(
1042
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1043
- "to_lightgbm()",
1044
- "to_sklearn()"
1045
- )
1046
- ),
1047
- )
1048
-
1049
- def _get_dependencies(self) -> List[str]:
1050
- return self._deps