snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -16,6 +16,7 @@ from numpy import typing as npt
16
16
 
17
17
 
18
18
  import numpy
19
+ import sklearn
19
20
  import lightgbm
20
21
  from sklearn.utils.metaestimators import available_if
21
22
 
@@ -32,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
33
  BatchInferenceKwargsTypedDict,
33
34
  ScoreKwargsTypedDict
34
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
35
45
 
36
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
47
 
@@ -42,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
52
  validate_sklearn_args,
43
53
  )
44
54
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
55
  _PROJECT = "ModelDevelopment"
56
56
  # Derive subproject from module name by removing "sklearn"
57
57
  # and converting module name from underscore to CamelCase
@@ -160,7 +160,7 @@ class LGBMClassifier(BaseTransformer):
160
160
  self.set_sample_weight_col(sample_weight_col)
161
161
  self._use_external_memory_version = False
162
162
  self._batch_size = -1
163
- deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
163
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}', f'scikit-learn=={sklearn.__version__}'])
164
164
 
165
165
  self._deps = list(deps)
166
166
 
@@ -232,12 +232,7 @@ class LGBMClassifier(BaseTransformer):
232
232
  )
233
233
  return selected_cols
234
234
 
235
- @telemetry.send_api_usage_telemetry(
236
- project=_PROJECT,
237
- subproject=_SUBPROJECT,
238
- custom_tags=dict([("autogen", True)]),
239
- )
240
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
235
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
241
236
  """Build a gradient boosting model from the training set (X, y)
242
237
  For more details on this function, see [lightgbm.LGBMClassifier.fit]
243
238
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier.fit)
@@ -264,12 +259,14 @@ class LGBMClassifier(BaseTransformer):
264
259
 
265
260
  self._snowpark_cols = dataset.select(self.input_cols).columns
266
261
 
267
- # If we are already in a stored procedure, no need to kick off another one.
262
+ # If we are already in a stored procedure, no need to kick off another one.
268
263
  if SNOWML_SPROC_ENV in os.environ:
269
264
  statement_params = telemetry.get_function_usage_statement_params(
270
265
  project=_PROJECT,
271
266
  subproject=_SUBPROJECT,
272
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMClassifier.__class__.__name__),
267
+ function_name=telemetry.get_statement_params_full_func_name(
268
+ inspect.currentframe(), LGBMClassifier.__class__.__name__
269
+ ),
273
270
  api_calls=[Session.call],
274
271
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
275
272
  )
@@ -290,7 +287,7 @@ class LGBMClassifier(BaseTransformer):
290
287
  )
291
288
  self._sklearn_object = model_trainer.train()
292
289
  self._is_fitted = True
293
- self._get_model_signatures(dataset)
290
+ self._generate_model_signatures(dataset)
294
291
  return self
295
292
 
296
293
  def _batch_inference_validate_snowpark(
@@ -366,7 +363,9 @@ class LGBMClassifier(BaseTransformer):
366
363
  # when it is classifier, infer the datatype from label columns
367
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
368
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
369
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
370
369
  if len(label_cols_signatures) == 0:
371
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
372
371
  raise exceptions.SnowflakeMLException(
@@ -374,25 +373,22 @@ class LGBMClassifier(BaseTransformer):
374
373
  original_exception=ValueError(error_str),
375
374
  )
376
375
 
377
- expected_type_inferred = convert_sp_to_sf_type(
378
- label_cols_signatures[0].as_snowpark_type()
379
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
380
377
 
381
378
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
382
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
+ assert isinstance(
380
+ dataset._session, Session
381
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
382
 
384
383
  transform_kwargs = dict(
385
- session = dataset._session,
386
- dependencies = self._deps,
387
- drop_input_cols = self._drop_input_cols,
388
- expected_output_cols_type = expected_type_inferred,
384
+ session=dataset._session,
385
+ dependencies=self._deps,
386
+ drop_input_cols=self._drop_input_cols,
387
+ expected_output_cols_type=expected_type_inferred,
389
388
  )
390
389
 
391
390
  elif isinstance(dataset, pd.DataFrame):
392
- transform_kwargs = dict(
393
- snowpark_input_cols = self._snowpark_cols,
394
- drop_input_cols = self._drop_input_cols
395
- )
391
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
396
392
 
397
393
  transform_handlers = ModelTransformerBuilder.build(
398
394
  dataset=dataset,
@@ -432,7 +428,7 @@ class LGBMClassifier(BaseTransformer):
432
428
  Transformed dataset.
433
429
  """
434
430
  super()._check_dataset_type(dataset)
435
- inference_method="transform"
431
+ inference_method = "transform"
436
432
 
437
433
  # This dictionary contains optional kwargs for batch inference. These kwargs
438
434
  # are specific to the type of dataset used.
@@ -469,17 +465,14 @@ class LGBMClassifier(BaseTransformer):
469
465
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
470
466
 
471
467
  transform_kwargs = dict(
472
- session = dataset._session,
473
- dependencies = self._deps,
474
- drop_input_cols = self._drop_input_cols,
475
- expected_output_cols_type = expected_dtype,
468
+ session=dataset._session,
469
+ dependencies=self._deps,
470
+ drop_input_cols=self._drop_input_cols,
471
+ expected_output_cols_type=expected_dtype,
476
472
  )
477
473
 
478
474
  elif isinstance(dataset, pd.DataFrame):
479
- transform_kwargs = dict(
480
- snowpark_input_cols = self._snowpark_cols,
481
- drop_input_cols = self._drop_input_cols
482
- )
475
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
483
476
 
484
477
  transform_handlers = ModelTransformerBuilder.build(
485
478
  dataset=dataset,
@@ -498,7 +491,11 @@ class LGBMClassifier(BaseTransformer):
498
491
  return output_df
499
492
 
500
493
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
501
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
494
+ def fit_predict(
495
+ self,
496
+ dataset: Union[DataFrame, pd.DataFrame],
497
+ output_cols_prefix: str = "fit_predict_",
498
+ ) -> Union[DataFrame, pd.DataFrame]:
502
499
  """ Method not supported for this class.
503
500
 
504
501
 
@@ -523,7 +520,9 @@ class LGBMClassifier(BaseTransformer):
523
520
  )
524
521
  output_result, fitted_estimator = model_trainer.train_fit_predict(
525
522
  drop_input_cols=self._drop_input_cols,
526
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
523
+ expected_output_cols_list=(
524
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
525
+ ),
527
526
  )
528
527
  self._sklearn_object = fitted_estimator
529
528
  self._is_fitted = True
@@ -540,6 +539,62 @@ class LGBMClassifier(BaseTransformer):
540
539
  assert self._sklearn_object is not None
541
540
  return self._sklearn_object.embedding_
542
541
 
542
+
543
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
544
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
545
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
546
+ """
547
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
548
+ # The following condition is introduced for kneighbors methods, and not used in other methods
549
+ if output_cols:
550
+ output_cols = [
551
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
552
+ for c in output_cols
553
+ ]
554
+ elif getattr(self._sklearn_object, "classes_", None) is None:
555
+ output_cols = [output_cols_prefix]
556
+ elif self._sklearn_object is not None:
557
+ classes = self._sklearn_object.classes_
558
+ if isinstance(classes, numpy.ndarray):
559
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
560
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
561
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
562
+ output_cols = []
563
+ for i, cl in enumerate(classes):
564
+ # For binary classification, there is only one output column for each class
565
+ # ndarray as the two classes are complementary.
566
+ if len(cl) == 2:
567
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
568
+ else:
569
+ output_cols.extend([
570
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
571
+ ])
572
+ else:
573
+ output_cols = []
574
+
575
+ # Make sure column names are valid snowflake identifiers.
576
+ assert output_cols is not None # Make MyPy happy
577
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
578
+
579
+ return rv
580
+
581
+ def _align_expected_output_names(
582
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
583
+ ) -> List[str]:
584
+ # in case the inferred output column names dimension is different
585
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
586
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
587
+ output_df_columns = list(output_df_pd.columns)
588
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
589
+ if self.sample_weight_col:
590
+ output_df_columns_set -= set(self.sample_weight_col)
591
+ # if the dimension of inferred output column names is correct; use it
592
+ if len(expected_output_cols_list) == len(output_df_columns_set):
593
+ return expected_output_cols_list
594
+ # otherwise, use the sklearn estimator's output
595
+ else:
596
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
597
+
543
598
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
544
599
  @telemetry.send_api_usage_telemetry(
545
600
  project=_PROJECT,
@@ -572,24 +627,28 @@ class LGBMClassifier(BaseTransformer):
572
627
  # are specific to the type of dataset used.
573
628
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
574
629
 
630
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
631
+
575
632
  if isinstance(dataset, DataFrame):
576
633
  self._deps = self._batch_inference_validate_snowpark(
577
634
  dataset=dataset,
578
635
  inference_method=inference_method,
579
636
  )
580
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
637
+ assert isinstance(
638
+ dataset._session, Session
639
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
581
640
  transform_kwargs = dict(
582
641
  session=dataset._session,
583
642
  dependencies=self._deps,
584
- drop_input_cols = self._drop_input_cols,
643
+ drop_input_cols=self._drop_input_cols,
585
644
  expected_output_cols_type="float",
586
645
  )
646
+ expected_output_cols = self._align_expected_output_names(
647
+ inference_method, dataset, expected_output_cols, output_cols_prefix
648
+ )
587
649
 
588
650
  elif isinstance(dataset, pd.DataFrame):
589
- transform_kwargs = dict(
590
- snowpark_input_cols = self._snowpark_cols,
591
- drop_input_cols = self._drop_input_cols
592
- )
651
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
593
652
 
594
653
  transform_handlers = ModelTransformerBuilder.build(
595
654
  dataset=dataset,
@@ -601,7 +660,7 @@ class LGBMClassifier(BaseTransformer):
601
660
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
602
661
  inference_method=inference_method,
603
662
  input_cols=self.input_cols,
604
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
663
+ expected_output_cols=expected_output_cols,
605
664
  **transform_kwargs
606
665
  )
607
666
  return output_df
@@ -633,7 +692,8 @@ class LGBMClassifier(BaseTransformer):
633
692
  Output dataset with log probability of the sample for each class in the model.
634
693
  """
635
694
  super()._check_dataset_type(dataset)
636
- inference_method="predict_log_proba"
695
+ inference_method = "predict_log_proba"
696
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
637
697
 
638
698
  # This dictionary contains optional kwargs for batch inference. These kwargs
639
699
  # are specific to the type of dataset used.
@@ -644,18 +704,20 @@ class LGBMClassifier(BaseTransformer):
644
704
  dataset=dataset,
645
705
  inference_method=inference_method,
646
706
  )
647
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ assert isinstance(
708
+ dataset._session, Session
709
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
710
  transform_kwargs = dict(
649
711
  session=dataset._session,
650
712
  dependencies=self._deps,
651
- drop_input_cols = self._drop_input_cols,
713
+ drop_input_cols=self._drop_input_cols,
652
714
  expected_output_cols_type="float",
653
715
  )
716
+ expected_output_cols = self._align_expected_output_names(
717
+ inference_method, dataset, expected_output_cols, output_cols_prefix
718
+ )
654
719
  elif isinstance(dataset, pd.DataFrame):
655
- transform_kwargs = dict(
656
- snowpark_input_cols = self._snowpark_cols,
657
- drop_input_cols = self._drop_input_cols
658
- )
720
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
659
721
 
660
722
  transform_handlers = ModelTransformerBuilder.build(
661
723
  dataset=dataset,
@@ -668,7 +730,7 @@ class LGBMClassifier(BaseTransformer):
668
730
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
669
731
  inference_method=inference_method,
670
732
  input_cols=self.input_cols,
671
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
733
+ expected_output_cols=expected_output_cols,
672
734
  **transform_kwargs
673
735
  )
674
736
  return output_df
@@ -694,30 +756,34 @@ class LGBMClassifier(BaseTransformer):
694
756
  Output dataset with results of the decision function for the samples in input dataset.
695
757
  """
696
758
  super()._check_dataset_type(dataset)
697
- inference_method="decision_function"
759
+ inference_method = "decision_function"
698
760
 
699
761
  # This dictionary contains optional kwargs for batch inference. These kwargs
700
762
  # are specific to the type of dataset used.
701
763
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
702
764
 
765
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
766
+
703
767
  if isinstance(dataset, DataFrame):
704
768
  self._deps = self._batch_inference_validate_snowpark(
705
769
  dataset=dataset,
706
770
  inference_method=inference_method,
707
771
  )
708
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
+ assert isinstance(
773
+ dataset._session, Session
774
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
775
  transform_kwargs = dict(
710
776
  session=dataset._session,
711
777
  dependencies=self._deps,
712
- drop_input_cols = self._drop_input_cols,
778
+ drop_input_cols=self._drop_input_cols,
713
779
  expected_output_cols_type="float",
714
780
  )
781
+ expected_output_cols = self._align_expected_output_names(
782
+ inference_method, dataset, expected_output_cols, output_cols_prefix
783
+ )
715
784
 
716
785
  elif isinstance(dataset, pd.DataFrame):
717
- transform_kwargs = dict(
718
- snowpark_input_cols = self._snowpark_cols,
719
- drop_input_cols = self._drop_input_cols
720
- )
786
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
721
787
 
722
788
  transform_handlers = ModelTransformerBuilder.build(
723
789
  dataset=dataset,
@@ -730,7 +796,7 @@ class LGBMClassifier(BaseTransformer):
730
796
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
731
797
  inference_method=inference_method,
732
798
  input_cols=self.input_cols,
733
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
799
+ expected_output_cols=expected_output_cols,
734
800
  **transform_kwargs
735
801
  )
736
802
  return output_df
@@ -759,12 +825,14 @@ class LGBMClassifier(BaseTransformer):
759
825
  Output dataset with probability of the sample for each class in the model.
760
826
  """
761
827
  super()._check_dataset_type(dataset)
762
- inference_method="score_samples"
828
+ inference_method = "score_samples"
763
829
 
764
830
  # This dictionary contains optional kwargs for batch inference. These kwargs
765
831
  # are specific to the type of dataset used.
766
832
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
767
833
 
834
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
835
+
768
836
  if isinstance(dataset, DataFrame):
769
837
  self._deps = self._batch_inference_validate_snowpark(
770
838
  dataset=dataset,
@@ -777,6 +845,9 @@ class LGBMClassifier(BaseTransformer):
777
845
  drop_input_cols = self._drop_input_cols,
778
846
  expected_output_cols_type="float",
779
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
780
851
 
781
852
  elif isinstance(dataset, pd.DataFrame):
782
853
  transform_kwargs = dict(
@@ -795,7 +866,7 @@ class LGBMClassifier(BaseTransformer):
795
866
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
796
867
  inference_method=inference_method,
797
868
  input_cols=self.input_cols,
798
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
869
+ expected_output_cols=expected_output_cols,
799
870
  **transform_kwargs
800
871
  )
801
872
  return output_df
@@ -841,7 +912,7 @@ class LGBMClassifier(BaseTransformer):
841
912
  transform_kwargs = dict(
842
913
  session=dataset._session,
843
914
  dependencies=["snowflake-snowpark-python"] + self._deps,
844
- score_sproc_imports=['lightgbm'],
915
+ score_sproc_imports=['lightgbm', 'sklearn'],
845
916
  )
846
917
  elif isinstance(dataset, pd.DataFrame):
847
918
  # pandas_handler.score() does not require any extra kwargs.
@@ -942,50 +1013,84 @@ class LGBMClassifier(BaseTransformer):
942
1013
  )
943
1014
  return output_df
944
1015
 
1016
+
1017
+
1018
+ def to_lightgbm(self) -> Any:
1019
+ """Get lightgbm.LGBMClassifier object.
1020
+ """
1021
+ if self._sklearn_object is None:
1022
+ self._sklearn_object = self._create_sklearn_object()
1023
+ return self._sklearn_object
1024
+
1025
+ def to_sklearn(self) -> Any:
1026
+ raise exceptions.SnowflakeMLException(
1027
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1028
+ original_exception=AttributeError(
1029
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1030
+ "to_sklearn()",
1031
+ "to_lightgbm()"
1032
+ )
1033
+ ),
1034
+ )
1035
+
1036
+ def to_xgboost(self) -> Any:
1037
+ raise exceptions.SnowflakeMLException(
1038
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1039
+ original_exception=AttributeError(
1040
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
+ "to_xgboost()",
1042
+ "to_lightgbm()"
1043
+ )
1044
+ ),
1045
+ )
945
1046
 
946
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1047
+ def _get_dependencies(self) -> List[str]:
1048
+ return self._deps
1049
+
1050
+
1051
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
947
1052
  self._model_signature_dict = dict()
948
1053
 
949
1054
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
950
1055
 
951
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1056
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
952
1057
  outputs: List[BaseFeatureSpec] = []
953
1058
  if hasattr(self, "predict"):
954
1059
  # keep mypy happy
955
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1060
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
956
1061
  # For classifier, the type of predict is the same as the type of label
957
- if self._sklearn_object._estimator_type == 'classifier':
958
- # label columns is the desired type for output
1062
+ if self._sklearn_object._estimator_type == "classifier":
1063
+ # label columns is the desired type for output
959
1064
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
960
1065
  # rename the output columns
961
1066
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
1067
+ self._model_signature_dict["predict"] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
965
1070
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
966
1071
  # For outlier models, returns -1 for outliers and 1 for inliers.
967
- # Clusterer returns int64 cluster labels.
1072
+ # Clusterer returns int64 cluster labels.
968
1073
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
969
1074
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
970
- self._model_signature_dict["predict"] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
973
-
1075
+ self._model_signature_dict["predict"] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
1078
+
974
1079
  # For regressor, the type of predict is float64
975
- elif self._sklearn_object._estimator_type == 'regressor':
1080
+ elif self._sklearn_object._estimator_type == "regressor":
976
1081
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
977
- self._model_signature_dict["predict"] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
980
-
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
1085
+
981
1086
  for prob_func in PROB_FUNCTIONS:
982
1087
  if hasattr(self, prob_func):
983
1088
  output_cols_prefix: str = f"{prob_func}_"
984
1089
  output_column_names = self._get_output_column_names(output_cols_prefix)
985
1090
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
986
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
1091
+ self._model_signature_dict[prob_func] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
989
1094
 
990
1095
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
991
1096
  items = list(self._model_signature_dict.items())
@@ -998,10 +1103,10 @@ class LGBMClassifier(BaseTransformer):
998
1103
  """Returns model signature of current class.
999
1104
 
1000
1105
  Raises:
1001
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1106
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1002
1107
 
1003
1108
  Returns:
1004
- Dict[str, ModelSignature]: each method and its input output signature
1109
+ Dict with each method and its input output signature
1005
1110
  """
1006
1111
  if self._model_signature_dict is None:
1007
1112
  raise exceptions.SnowflakeMLException(
@@ -1009,35 +1114,3 @@ class LGBMClassifier(BaseTransformer):
1009
1114
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1010
1115
  )
1011
1116
  return self._model_signature_dict
1012
-
1013
- def to_lightgbm(self) -> Any:
1014
- """Get lightgbm.LGBMClassifier object.
1015
- """
1016
- if self._sklearn_object is None:
1017
- self._sklearn_object = self._create_sklearn_object()
1018
- return self._sklearn_object
1019
-
1020
- def to_sklearn(self) -> Any:
1021
- raise exceptions.SnowflakeMLException(
1022
- error_code=error_codes.METHOD_NOT_ALLOWED,
1023
- original_exception=AttributeError(
1024
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
- "to_sklearn()",
1026
- "to_lightgbm()"
1027
- )
1028
- ),
1029
- )
1030
-
1031
- def to_xgboost(self) -> Any:
1032
- raise exceptions.SnowflakeMLException(
1033
- error_code=error_codes.METHOD_NOT_ALLOWED,
1034
- original_exception=AttributeError(
1035
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
- "to_xgboost()",
1037
- "to_lightgbm()"
1038
- )
1039
- ),
1040
- )
1041
-
1042
- def _get_dependencies(self) -> List[str]:
1043
- return self._deps