snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
32
  BatchInferenceKwargsTypedDict,
33
33
  ScoreKwargsTypedDict
34
34
  )
35
+ from snowflake.ml.model._signatures import utils as model_signature_utils
36
+ from snowflake.ml.model.model_signature import (
37
+ BaseFeatureSpec,
38
+ DataType,
39
+ FeatureSpec,
40
+ ModelSignature,
41
+ _infer_signature,
42
+ _rename_signature_with_snowflake_identifiers,
43
+ )
35
44
 
36
45
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
46
 
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
51
  validate_sklearn_args,
43
52
  )
44
53
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
54
  _PROJECT = "ModelDevelopment"
56
55
  # Derive subproject from module name by removing "sklearn"
57
56
  # and converting module name from underscore to CamelCase
@@ -426,12 +425,7 @@ class XGBRFRegressor(BaseTransformer):
426
425
  )
427
426
  return selected_cols
428
427
 
429
- @telemetry.send_api_usage_telemetry(
430
- project=_PROJECT,
431
- subproject=_SUBPROJECT,
432
- custom_tags=dict([("autogen", True)]),
433
- )
434
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFRegressor":
428
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFRegressor":
435
429
  """Fit gradient boosting model
436
430
  For more details on this function, see [xgboost.XGBRFRegressor.fit]
437
431
  (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFRegressor.fit)
@@ -458,12 +452,14 @@ class XGBRFRegressor(BaseTransformer):
458
452
 
459
453
  self._snowpark_cols = dataset.select(self.input_cols).columns
460
454
 
461
- # If we are already in a stored procedure, no need to kick off another one.
455
+ # If we are already in a stored procedure, no need to kick off another one.
462
456
  if SNOWML_SPROC_ENV in os.environ:
463
457
  statement_params = telemetry.get_function_usage_statement_params(
464
458
  project=_PROJECT,
465
459
  subproject=_SUBPROJECT,
466
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFRegressor.__class__.__name__),
460
+ function_name=telemetry.get_statement_params_full_func_name(
461
+ inspect.currentframe(), XGBRFRegressor.__class__.__name__
462
+ ),
467
463
  api_calls=[Session.call],
468
464
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
469
465
  )
@@ -484,7 +480,7 @@ class XGBRFRegressor(BaseTransformer):
484
480
  )
485
481
  self._sklearn_object = model_trainer.train()
486
482
  self._is_fitted = True
487
- self._get_model_signatures(dataset)
483
+ self._generate_model_signatures(dataset)
488
484
  return self
489
485
 
490
486
  def _batch_inference_validate_snowpark(
@@ -560,7 +556,9 @@ class XGBRFRegressor(BaseTransformer):
560
556
  # when it is classifier, infer the datatype from label columns
561
557
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
562
558
  # Batch inference takes a single expected output column type. Use the first columns type for now.
563
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
559
+ label_cols_signatures = [
560
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
561
+ ]
564
562
  if len(label_cols_signatures) == 0:
565
563
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
566
564
  raise exceptions.SnowflakeMLException(
@@ -568,25 +566,22 @@ class XGBRFRegressor(BaseTransformer):
568
566
  original_exception=ValueError(error_str),
569
567
  )
570
568
 
571
- expected_type_inferred = convert_sp_to_sf_type(
572
- label_cols_signatures[0].as_snowpark_type()
573
- )
569
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
574
570
 
575
571
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
576
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
572
+ assert isinstance(
573
+ dataset._session, Session
574
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
575
 
578
576
  transform_kwargs = dict(
579
- session = dataset._session,
580
- dependencies = self._deps,
581
- drop_input_cols = self._drop_input_cols,
582
- expected_output_cols_type = expected_type_inferred,
577
+ session=dataset._session,
578
+ dependencies=self._deps,
579
+ drop_input_cols=self._drop_input_cols,
580
+ expected_output_cols_type=expected_type_inferred,
583
581
  )
584
582
 
585
583
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
584
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
585
 
591
586
  transform_handlers = ModelTransformerBuilder.build(
592
587
  dataset=dataset,
@@ -626,7 +621,7 @@ class XGBRFRegressor(BaseTransformer):
626
621
  Transformed dataset.
627
622
  """
628
623
  super()._check_dataset_type(dataset)
629
- inference_method="transform"
624
+ inference_method = "transform"
630
625
 
631
626
  # This dictionary contains optional kwargs for batch inference. These kwargs
632
627
  # are specific to the type of dataset used.
@@ -663,17 +658,14 @@ class XGBRFRegressor(BaseTransformer):
663
658
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
659
 
665
660
  transform_kwargs = dict(
666
- session = dataset._session,
667
- dependencies = self._deps,
668
- drop_input_cols = self._drop_input_cols,
669
- expected_output_cols_type = expected_dtype,
661
+ session=dataset._session,
662
+ dependencies=self._deps,
663
+ drop_input_cols=self._drop_input_cols,
664
+ expected_output_cols_type=expected_dtype,
670
665
  )
671
666
 
672
667
  elif isinstance(dataset, pd.DataFrame):
673
- transform_kwargs = dict(
674
- snowpark_input_cols = self._snowpark_cols,
675
- drop_input_cols = self._drop_input_cols
676
- )
668
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
677
669
 
678
670
  transform_handlers = ModelTransformerBuilder.build(
679
671
  dataset=dataset,
@@ -692,7 +684,11 @@ class XGBRFRegressor(BaseTransformer):
692
684
  return output_df
693
685
 
694
686
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
695
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
687
+ def fit_predict(
688
+ self,
689
+ dataset: Union[DataFrame, pd.DataFrame],
690
+ output_cols_prefix: str = "fit_predict_",
691
+ ) -> Union[DataFrame, pd.DataFrame]:
696
692
  """ Method not supported for this class.
697
693
 
698
694
 
@@ -717,7 +713,9 @@ class XGBRFRegressor(BaseTransformer):
717
713
  )
718
714
  output_result, fitted_estimator = model_trainer.train_fit_predict(
719
715
  drop_input_cols=self._drop_input_cols,
720
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols_list=(
717
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
718
+ ),
721
719
  )
722
720
  self._sklearn_object = fitted_estimator
723
721
  self._is_fitted = True
@@ -734,6 +732,62 @@ class XGBRFRegressor(BaseTransformer):
734
732
  assert self._sklearn_object is not None
735
733
  return self._sklearn_object.embedding_
736
734
 
735
+
736
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
737
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
738
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
739
+ """
740
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
741
+ # The following condition is introduced for kneighbors methods, and not used in other methods
742
+ if output_cols:
743
+ output_cols = [
744
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
745
+ for c in output_cols
746
+ ]
747
+ elif getattr(self._sklearn_object, "classes_", None) is None:
748
+ output_cols = [output_cols_prefix]
749
+ elif self._sklearn_object is not None:
750
+ classes = self._sklearn_object.classes_
751
+ if isinstance(classes, numpy.ndarray):
752
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
753
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
754
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
755
+ output_cols = []
756
+ for i, cl in enumerate(classes):
757
+ # For binary classification, there is only one output column for each class
758
+ # ndarray as the two classes are complementary.
759
+ if len(cl) == 2:
760
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
761
+ else:
762
+ output_cols.extend([
763
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
764
+ ])
765
+ else:
766
+ output_cols = []
767
+
768
+ # Make sure column names are valid snowflake identifiers.
769
+ assert output_cols is not None # Make MyPy happy
770
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
771
+
772
+ return rv
773
+
774
+ def _align_expected_output_names(
775
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
776
+ ) -> List[str]:
777
+ # in case the inferred output column names dimension is different
778
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
779
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
780
+ output_df_columns = list(output_df_pd.columns)
781
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
782
+ if self.sample_weight_col:
783
+ output_df_columns_set -= set(self.sample_weight_col)
784
+ # if the dimension of inferred output column names is correct; use it
785
+ if len(expected_output_cols_list) == len(output_df_columns_set):
786
+ return expected_output_cols_list
787
+ # otherwise, use the sklearn estimator's output
788
+ else:
789
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
790
+
737
791
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
738
792
  @telemetry.send_api_usage_telemetry(
739
793
  project=_PROJECT,
@@ -764,24 +818,28 @@ class XGBRFRegressor(BaseTransformer):
764
818
  # are specific to the type of dataset used.
765
819
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
766
820
 
821
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
822
+
767
823
  if isinstance(dataset, DataFrame):
768
824
  self._deps = self._batch_inference_validate_snowpark(
769
825
  dataset=dataset,
770
826
  inference_method=inference_method,
771
827
  )
772
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
828
+ assert isinstance(
829
+ dataset._session, Session
830
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
831
  transform_kwargs = dict(
774
832
  session=dataset._session,
775
833
  dependencies=self._deps,
776
- drop_input_cols = self._drop_input_cols,
834
+ drop_input_cols=self._drop_input_cols,
777
835
  expected_output_cols_type="float",
778
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
779
840
 
780
841
  elif isinstance(dataset, pd.DataFrame):
781
- transform_kwargs = dict(
782
- snowpark_input_cols = self._snowpark_cols,
783
- drop_input_cols = self._drop_input_cols
784
- )
842
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
785
843
 
786
844
  transform_handlers = ModelTransformerBuilder.build(
787
845
  dataset=dataset,
@@ -793,7 +851,7 @@ class XGBRFRegressor(BaseTransformer):
793
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
794
852
  inference_method=inference_method,
795
853
  input_cols=self.input_cols,
796
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
797
855
  **transform_kwargs
798
856
  )
799
857
  return output_df
@@ -823,7 +881,8 @@ class XGBRFRegressor(BaseTransformer):
823
881
  Output dataset with log probability of the sample for each class in the model.
824
882
  """
825
883
  super()._check_dataset_type(dataset)
826
- inference_method="predict_log_proba"
884
+ inference_method = "predict_log_proba"
885
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
827
886
 
828
887
  # This dictionary contains optional kwargs for batch inference. These kwargs
829
888
  # are specific to the type of dataset used.
@@ -834,18 +893,20 @@ class XGBRFRegressor(BaseTransformer):
834
893
  dataset=dataset,
835
894
  inference_method=inference_method,
836
895
  )
837
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
896
+ assert isinstance(
897
+ dataset._session, Session
898
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
838
899
  transform_kwargs = dict(
839
900
  session=dataset._session,
840
901
  dependencies=self._deps,
841
- drop_input_cols = self._drop_input_cols,
902
+ drop_input_cols=self._drop_input_cols,
842
903
  expected_output_cols_type="float",
843
904
  )
905
+ expected_output_cols = self._align_expected_output_names(
906
+ inference_method, dataset, expected_output_cols, output_cols_prefix
907
+ )
844
908
  elif isinstance(dataset, pd.DataFrame):
845
- transform_kwargs = dict(
846
- snowpark_input_cols = self._snowpark_cols,
847
- drop_input_cols = self._drop_input_cols
848
- )
909
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
849
910
 
850
911
  transform_handlers = ModelTransformerBuilder.build(
851
912
  dataset=dataset,
@@ -858,7 +919,7 @@ class XGBRFRegressor(BaseTransformer):
858
919
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
859
920
  inference_method=inference_method,
860
921
  input_cols=self.input_cols,
861
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
922
+ expected_output_cols=expected_output_cols,
862
923
  **transform_kwargs
863
924
  )
864
925
  return output_df
@@ -884,30 +945,34 @@ class XGBRFRegressor(BaseTransformer):
884
945
  Output dataset with results of the decision function for the samples in input dataset.
885
946
  """
886
947
  super()._check_dataset_type(dataset)
887
- inference_method="decision_function"
948
+ inference_method = "decision_function"
888
949
 
889
950
  # This dictionary contains optional kwargs for batch inference. These kwargs
890
951
  # are specific to the type of dataset used.
891
952
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
892
953
 
954
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
955
+
893
956
  if isinstance(dataset, DataFrame):
894
957
  self._deps = self._batch_inference_validate_snowpark(
895
958
  dataset=dataset,
896
959
  inference_method=inference_method,
897
960
  )
898
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
961
+ assert isinstance(
962
+ dataset._session, Session
963
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
899
964
  transform_kwargs = dict(
900
965
  session=dataset._session,
901
966
  dependencies=self._deps,
902
- drop_input_cols = self._drop_input_cols,
967
+ drop_input_cols=self._drop_input_cols,
903
968
  expected_output_cols_type="float",
904
969
  )
970
+ expected_output_cols = self._align_expected_output_names(
971
+ inference_method, dataset, expected_output_cols, output_cols_prefix
972
+ )
905
973
 
906
974
  elif isinstance(dataset, pd.DataFrame):
907
- transform_kwargs = dict(
908
- snowpark_input_cols = self._snowpark_cols,
909
- drop_input_cols = self._drop_input_cols
910
- )
975
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
911
976
 
912
977
  transform_handlers = ModelTransformerBuilder.build(
913
978
  dataset=dataset,
@@ -920,7 +985,7 @@ class XGBRFRegressor(BaseTransformer):
920
985
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
921
986
  inference_method=inference_method,
922
987
  input_cols=self.input_cols,
923
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
988
+ expected_output_cols=expected_output_cols,
924
989
  **transform_kwargs
925
990
  )
926
991
  return output_df
@@ -949,12 +1014,14 @@ class XGBRFRegressor(BaseTransformer):
949
1014
  Output dataset with probability of the sample for each class in the model.
950
1015
  """
951
1016
  super()._check_dataset_type(dataset)
952
- inference_method="score_samples"
1017
+ inference_method = "score_samples"
953
1018
 
954
1019
  # This dictionary contains optional kwargs for batch inference. These kwargs
955
1020
  # are specific to the type of dataset used.
956
1021
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
957
1022
 
1023
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
1024
+
958
1025
  if isinstance(dataset, DataFrame):
959
1026
  self._deps = self._batch_inference_validate_snowpark(
960
1027
  dataset=dataset,
@@ -967,6 +1034,9 @@ class XGBRFRegressor(BaseTransformer):
967
1034
  drop_input_cols = self._drop_input_cols,
968
1035
  expected_output_cols_type="float",
969
1036
  )
1037
+ expected_output_cols = self._align_expected_output_names(
1038
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1039
+ )
970
1040
 
971
1041
  elif isinstance(dataset, pd.DataFrame):
972
1042
  transform_kwargs = dict(
@@ -985,7 +1055,7 @@ class XGBRFRegressor(BaseTransformer):
985
1055
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
986
1056
  inference_method=inference_method,
987
1057
  input_cols=self.input_cols,
988
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1058
+ expected_output_cols=expected_output_cols,
989
1059
  **transform_kwargs
990
1060
  )
991
1061
  return output_df
@@ -1132,50 +1202,84 @@ class XGBRFRegressor(BaseTransformer):
1132
1202
  )
1133
1203
  return output_df
1134
1204
 
1205
+
1206
+
1207
+ def to_xgboost(self) -> Any:
1208
+ """Get xgboost.XGBRFRegressor object.
1209
+ """
1210
+ if self._sklearn_object is None:
1211
+ self._sklearn_object = self._create_sklearn_object()
1212
+ return self._sklearn_object
1213
+
1214
+ def to_sklearn(self) -> Any:
1215
+ raise exceptions.SnowflakeMLException(
1216
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1217
+ original_exception=AttributeError(
1218
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1219
+ "to_sklearn()",
1220
+ "to_xgboost()"
1221
+ )
1222
+ ),
1223
+ )
1224
+
1225
+ def to_lightgbm(self) -> Any:
1226
+ raise exceptions.SnowflakeMLException(
1227
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1228
+ original_exception=AttributeError(
1229
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1230
+ "to_lightgbm()",
1231
+ "to_xgboost()"
1232
+ )
1233
+ ),
1234
+ )
1135
1235
 
1136
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1236
+ def _get_dependencies(self) -> List[str]:
1237
+ return self._deps
1238
+
1239
+
1240
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1137
1241
  self._model_signature_dict = dict()
1138
1242
 
1139
1243
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1140
1244
 
1141
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1245
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1142
1246
  outputs: List[BaseFeatureSpec] = []
1143
1247
  if hasattr(self, "predict"):
1144
1248
  # keep mypy happy
1145
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1249
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1146
1250
  # For classifier, the type of predict is the same as the type of label
1147
- if self._sklearn_object._estimator_type == 'classifier':
1148
- # label columns is the desired type for output
1251
+ if self._sklearn_object._estimator_type == "classifier":
1252
+ # label columns is the desired type for output
1149
1253
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1150
1254
  # rename the output columns
1151
1255
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1152
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1153
- ([] if self._drop_input_cols else inputs)
1154
- + outputs)
1256
+ self._model_signature_dict["predict"] = ModelSignature(
1257
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1258
+ )
1155
1259
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1156
1260
  # For outlier models, returns -1 for outliers and 1 for inliers.
1157
- # Clusterer returns int64 cluster labels.
1261
+ # Clusterer returns int64 cluster labels.
1158
1262
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1159
1263
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1160
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1161
- ([] if self._drop_input_cols else inputs)
1162
- + outputs)
1163
-
1264
+ self._model_signature_dict["predict"] = ModelSignature(
1265
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1266
+ )
1267
+
1164
1268
  # For regressor, the type of predict is float64
1165
- elif self._sklearn_object._estimator_type == 'regressor':
1269
+ elif self._sklearn_object._estimator_type == "regressor":
1166
1270
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1167
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1168
- ([] if self._drop_input_cols else inputs)
1169
- + outputs)
1170
-
1271
+ self._model_signature_dict["predict"] = ModelSignature(
1272
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1273
+ )
1274
+
1171
1275
  for prob_func in PROB_FUNCTIONS:
1172
1276
  if hasattr(self, prob_func):
1173
1277
  output_cols_prefix: str = f"{prob_func}_"
1174
1278
  output_column_names = self._get_output_column_names(output_cols_prefix)
1175
1279
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1176
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1177
- ([] if self._drop_input_cols else inputs)
1178
- + outputs)
1280
+ self._model_signature_dict[prob_func] = ModelSignature(
1281
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1282
+ )
1179
1283
 
1180
1284
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1181
1285
  items = list(self._model_signature_dict.items())
@@ -1188,10 +1292,10 @@ class XGBRFRegressor(BaseTransformer):
1188
1292
  """Returns model signature of current class.
1189
1293
 
1190
1294
  Raises:
1191
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1295
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1192
1296
 
1193
1297
  Returns:
1194
- Dict[str, ModelSignature]: each method and its input output signature
1298
+ Dict with each method and its input output signature
1195
1299
  """
1196
1300
  if self._model_signature_dict is None:
1197
1301
  raise exceptions.SnowflakeMLException(
@@ -1199,35 +1303,3 @@ class XGBRFRegressor(BaseTransformer):
1199
1303
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1200
1304
  )
1201
1305
  return self._model_signature_dict
1202
-
1203
- def to_xgboost(self) -> Any:
1204
- """Get xgboost.XGBRFRegressor object.
1205
- """
1206
- if self._sklearn_object is None:
1207
- self._sklearn_object = self._create_sklearn_object()
1208
- return self._sklearn_object
1209
-
1210
- def to_sklearn(self) -> Any:
1211
- raise exceptions.SnowflakeMLException(
1212
- error_code=error_codes.METHOD_NOT_ALLOWED,
1213
- original_exception=AttributeError(
1214
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1215
- "to_sklearn()",
1216
- "to_xgboost()"
1217
- )
1218
- ),
1219
- )
1220
-
1221
- def to_lightgbm(self) -> Any:
1222
- raise exceptions.SnowflakeMLException(
1223
- error_code=error_codes.METHOD_NOT_ALLOWED,
1224
- original_exception=AttributeError(
1225
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1226
- "to_lightgbm()",
1227
- "to_xgboost()"
1228
- )
1229
- ),
1230
- )
1231
-
1232
- def _get_dependencies(self) -> List[str]:
1233
- return self._deps
@@ -4,6 +4,7 @@ from typing import Any, Dict, List, Optional
4
4
  import pandas as pd
5
5
  from absl.logging import logging
6
6
 
7
+ from snowflake.ml._internal.human_readable_id import hrid_generator
7
8
  from snowflake.ml._internal.utils import sql_identifier
8
9
  from snowflake.ml.model import model_signature, type_hints as model_types
9
10
  from snowflake.ml.model._client.model import model_impl, model_version_impl
@@ -27,13 +28,14 @@ class ModelManager:
27
28
  self._model_ops = model_ops.ModelOperator(
28
29
  session, database_name=self._database_name, schema_name=self._schema_name
29
30
  )
31
+ self._hrid_generator = hrid_generator.HRID16()
30
32
 
31
33
  def log_model(
32
34
  self,
33
35
  model: model_types.SupportedModelType,
34
36
  *,
35
37
  model_name: str,
36
- version_name: str,
38
+ version_name: Optional[str] = None,
37
39
  comment: Optional[str] = None,
38
40
  metrics: Optional[Dict[str, Any]] = None,
39
41
  conda_dependencies: Optional[List[str]] = None,
@@ -48,6 +50,8 @@ class ModelManager:
48
50
  ) -> model_version_impl.ModelVersion:
49
51
  model_name_id = sql_identifier.SqlIdentifier(model_name)
50
52
 
53
+ if not version_name:
54
+ version_name = self._hrid_generator.generate()[1]
51
55
  version_name_id = sql_identifier.SqlIdentifier(version_name)
52
56
 
53
57
  if self._model_ops.validate_existence(