snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -257,12 +256,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
257
256
  )
258
257
  return selected_cols
259
258
 
260
- @telemetry.send_api_usage_telemetry(
261
- project=_PROJECT,
262
- subproject=_SUBPROJECT,
263
- custom_tags=dict([("autogen", True)]),
264
- )
265
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
259
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
266
260
  """Fit the Linear Discriminant Analysis model
267
261
  For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit]
268
262
  (https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit)
@@ -289,12 +283,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
289
283
 
290
284
  self._snowpark_cols = dataset.select(self.input_cols).columns
291
285
 
292
- # If we are already in a stored procedure, no need to kick off another one.
286
+ # If we are already in a stored procedure, no need to kick off another one.
293
287
  if SNOWML_SPROC_ENV in os.environ:
294
288
  statement_params = telemetry.get_function_usage_statement_params(
295
289
  project=_PROJECT,
296
290
  subproject=_SUBPROJECT,
297
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__),
291
+ function_name=telemetry.get_statement_params_full_func_name(
292
+ inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
293
+ ),
298
294
  api_calls=[Session.call],
299
295
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
300
296
  )
@@ -315,7 +311,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
315
311
  )
316
312
  self._sklearn_object = model_trainer.train()
317
313
  self._is_fitted = True
318
- self._get_model_signatures(dataset)
314
+ self._generate_model_signatures(dataset)
319
315
  return self
320
316
 
321
317
  def _batch_inference_validate_snowpark(
@@ -391,7 +387,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
391
387
  # when it is classifier, infer the datatype from label columns
392
388
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
393
389
  # Batch inference takes a single expected output column type. Use the first columns type for now.
394
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
390
+ label_cols_signatures = [
391
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
392
+ ]
395
393
  if len(label_cols_signatures) == 0:
396
394
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
397
395
  raise exceptions.SnowflakeMLException(
@@ -399,25 +397,22 @@ class LinearDiscriminantAnalysis(BaseTransformer):
399
397
  original_exception=ValueError(error_str),
400
398
  )
401
399
 
402
- expected_type_inferred = convert_sp_to_sf_type(
403
- label_cols_signatures[0].as_snowpark_type()
404
- )
400
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
405
401
 
406
402
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
407
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
403
+ assert isinstance(
404
+ dataset._session, Session
405
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
408
406
 
409
407
  transform_kwargs = dict(
410
- session = dataset._session,
411
- dependencies = self._deps,
412
- drop_input_cols = self._drop_input_cols,
413
- expected_output_cols_type = expected_type_inferred,
408
+ session=dataset._session,
409
+ dependencies=self._deps,
410
+ drop_input_cols=self._drop_input_cols,
411
+ expected_output_cols_type=expected_type_inferred,
414
412
  )
415
413
 
416
414
  elif isinstance(dataset, pd.DataFrame):
417
- transform_kwargs = dict(
418
- snowpark_input_cols = self._snowpark_cols,
419
- drop_input_cols = self._drop_input_cols
420
- )
415
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
421
416
 
422
417
  transform_handlers = ModelTransformerBuilder.build(
423
418
  dataset=dataset,
@@ -459,7 +454,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
459
454
  Transformed dataset.
460
455
  """
461
456
  super()._check_dataset_type(dataset)
462
- inference_method="transform"
457
+ inference_method = "transform"
463
458
 
464
459
  # This dictionary contains optional kwargs for batch inference. These kwargs
465
460
  # are specific to the type of dataset used.
@@ -496,17 +491,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
496
491
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
492
 
498
493
  transform_kwargs = dict(
499
- session = dataset._session,
500
- dependencies = self._deps,
501
- drop_input_cols = self._drop_input_cols,
502
- expected_output_cols_type = expected_dtype,
494
+ session=dataset._session,
495
+ dependencies=self._deps,
496
+ drop_input_cols=self._drop_input_cols,
497
+ expected_output_cols_type=expected_dtype,
503
498
  )
504
499
 
505
500
  elif isinstance(dataset, pd.DataFrame):
506
- transform_kwargs = dict(
507
- snowpark_input_cols = self._snowpark_cols,
508
- drop_input_cols = self._drop_input_cols
509
- )
501
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
510
502
 
511
503
  transform_handlers = ModelTransformerBuilder.build(
512
504
  dataset=dataset,
@@ -525,7 +517,11 @@ class LinearDiscriminantAnalysis(BaseTransformer):
525
517
  return output_df
526
518
 
527
519
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
528
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
520
+ def fit_predict(
521
+ self,
522
+ dataset: Union[DataFrame, pd.DataFrame],
523
+ output_cols_prefix: str = "fit_predict_",
524
+ ) -> Union[DataFrame, pd.DataFrame]:
529
525
  """ Method not supported for this class.
530
526
 
531
527
 
@@ -550,7 +546,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
550
546
  )
551
547
  output_result, fitted_estimator = model_trainer.train_fit_predict(
552
548
  drop_input_cols=self._drop_input_cols,
553
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
549
+ expected_output_cols_list=(
550
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
551
+ ),
554
552
  )
555
553
  self._sklearn_object = fitted_estimator
556
554
  self._is_fitted = True
@@ -567,6 +565,62 @@ class LinearDiscriminantAnalysis(BaseTransformer):
567
565
  assert self._sklearn_object is not None
568
566
  return self._sklearn_object.embedding_
569
567
 
568
+
569
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
570
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
571
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
572
+ """
573
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
574
+ # The following condition is introduced for kneighbors methods, and not used in other methods
575
+ if output_cols:
576
+ output_cols = [
577
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
578
+ for c in output_cols
579
+ ]
580
+ elif getattr(self._sklearn_object, "classes_", None) is None:
581
+ output_cols = [output_cols_prefix]
582
+ elif self._sklearn_object is not None:
583
+ classes = self._sklearn_object.classes_
584
+ if isinstance(classes, numpy.ndarray):
585
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
586
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
587
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
588
+ output_cols = []
589
+ for i, cl in enumerate(classes):
590
+ # For binary classification, there is only one output column for each class
591
+ # ndarray as the two classes are complementary.
592
+ if len(cl) == 2:
593
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
594
+ else:
595
+ output_cols.extend([
596
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
597
+ ])
598
+ else:
599
+ output_cols = []
600
+
601
+ # Make sure column names are valid snowflake identifiers.
602
+ assert output_cols is not None # Make MyPy happy
603
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
604
+
605
+ return rv
606
+
607
+ def _align_expected_output_names(
608
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
609
+ ) -> List[str]:
610
+ # in case the inferred output column names dimension is different
611
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
612
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
613
+ output_df_columns = list(output_df_pd.columns)
614
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
615
+ if self.sample_weight_col:
616
+ output_df_columns_set -= set(self.sample_weight_col)
617
+ # if the dimension of inferred output column names is correct; use it
618
+ if len(expected_output_cols_list) == len(output_df_columns_set):
619
+ return expected_output_cols_list
620
+ # otherwise, use the sklearn estimator's output
621
+ else:
622
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
623
+
570
624
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
571
625
  @telemetry.send_api_usage_telemetry(
572
626
  project=_PROJECT,
@@ -599,24 +653,28 @@ class LinearDiscriminantAnalysis(BaseTransformer):
599
653
  # are specific to the type of dataset used.
600
654
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
601
655
 
656
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
657
+
602
658
  if isinstance(dataset, DataFrame):
603
659
  self._deps = self._batch_inference_validate_snowpark(
604
660
  dataset=dataset,
605
661
  inference_method=inference_method,
606
662
  )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
663
+ assert isinstance(
664
+ dataset._session, Session
665
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
666
  transform_kwargs = dict(
609
667
  session=dataset._session,
610
668
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
669
+ drop_input_cols=self._drop_input_cols,
612
670
  expected_output_cols_type="float",
613
671
  )
672
+ expected_output_cols = self._align_expected_output_names(
673
+ inference_method, dataset, expected_output_cols, output_cols_prefix
674
+ )
614
675
 
615
676
  elif isinstance(dataset, pd.DataFrame):
616
- transform_kwargs = dict(
617
- snowpark_input_cols = self._snowpark_cols,
618
- drop_input_cols = self._drop_input_cols
619
- )
677
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
620
678
 
621
679
  transform_handlers = ModelTransformerBuilder.build(
622
680
  dataset=dataset,
@@ -628,7 +686,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
628
686
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
687
  inference_method=inference_method,
630
688
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
689
+ expected_output_cols=expected_output_cols,
632
690
  **transform_kwargs
633
691
  )
634
692
  return output_df
@@ -660,7 +718,8 @@ class LinearDiscriminantAnalysis(BaseTransformer):
660
718
  Output dataset with log probability of the sample for each class in the model.
661
719
  """
662
720
  super()._check_dataset_type(dataset)
663
- inference_method="predict_log_proba"
721
+ inference_method = "predict_log_proba"
722
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
723
 
665
724
  # This dictionary contains optional kwargs for batch inference. These kwargs
666
725
  # are specific to the type of dataset used.
@@ -671,18 +730,20 @@ class LinearDiscriminantAnalysis(BaseTransformer):
671
730
  dataset=dataset,
672
731
  inference_method=inference_method,
673
732
  )
674
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
733
+ assert isinstance(
734
+ dataset._session, Session
735
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
736
  transform_kwargs = dict(
676
737
  session=dataset._session,
677
738
  dependencies=self._deps,
678
- drop_input_cols = self._drop_input_cols,
739
+ drop_input_cols=self._drop_input_cols,
679
740
  expected_output_cols_type="float",
680
741
  )
742
+ expected_output_cols = self._align_expected_output_names(
743
+ inference_method, dataset, expected_output_cols, output_cols_prefix
744
+ )
681
745
  elif isinstance(dataset, pd.DataFrame):
682
- transform_kwargs = dict(
683
- snowpark_input_cols = self._snowpark_cols,
684
- drop_input_cols = self._drop_input_cols
685
- )
746
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
686
747
 
687
748
  transform_handlers = ModelTransformerBuilder.build(
688
749
  dataset=dataset,
@@ -695,7 +756,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
695
756
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
696
757
  inference_method=inference_method,
697
758
  input_cols=self.input_cols,
698
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
759
+ expected_output_cols=expected_output_cols,
699
760
  **transform_kwargs
700
761
  )
701
762
  return output_df
@@ -723,30 +784,34 @@ class LinearDiscriminantAnalysis(BaseTransformer):
723
784
  Output dataset with results of the decision function for the samples in input dataset.
724
785
  """
725
786
  super()._check_dataset_type(dataset)
726
- inference_method="decision_function"
787
+ inference_method = "decision_function"
727
788
 
728
789
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
790
  # are specific to the type of dataset used.
730
791
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
792
 
793
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
794
+
732
795
  if isinstance(dataset, DataFrame):
733
796
  self._deps = self._batch_inference_validate_snowpark(
734
797
  dataset=dataset,
735
798
  inference_method=inference_method,
736
799
  )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
+ assert isinstance(
801
+ dataset._session, Session
802
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
803
  transform_kwargs = dict(
739
804
  session=dataset._session,
740
805
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
806
+ drop_input_cols=self._drop_input_cols,
742
807
  expected_output_cols_type="float",
743
808
  )
809
+ expected_output_cols = self._align_expected_output_names(
810
+ inference_method, dataset, expected_output_cols, output_cols_prefix
811
+ )
744
812
 
745
813
  elif isinstance(dataset, pd.DataFrame):
746
- transform_kwargs = dict(
747
- snowpark_input_cols = self._snowpark_cols,
748
- drop_input_cols = self._drop_input_cols
749
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
750
815
 
751
816
  transform_handlers = ModelTransformerBuilder.build(
752
817
  dataset=dataset,
@@ -759,7 +824,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
759
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
825
  inference_method=inference_method,
761
826
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
763
828
  **transform_kwargs
764
829
  )
765
830
  return output_df
@@ -788,12 +853,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
788
853
  Output dataset with probability of the sample for each class in the model.
789
854
  """
790
855
  super()._check_dataset_type(dataset)
791
- inference_method="score_samples"
856
+ inference_method = "score_samples"
792
857
 
793
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
859
  # are specific to the type of dataset used.
795
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
796
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
797
864
  if isinstance(dataset, DataFrame):
798
865
  self._deps = self._batch_inference_validate_snowpark(
799
866
  dataset=dataset,
@@ -806,6 +873,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
806
873
  drop_input_cols = self._drop_input_cols,
807
874
  expected_output_cols_type="float",
808
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
809
879
 
810
880
  elif isinstance(dataset, pd.DataFrame):
811
881
  transform_kwargs = dict(
@@ -824,7 +894,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
824
894
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
895
  inference_method=inference_method,
826
896
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
897
+ expected_output_cols=expected_output_cols,
828
898
  **transform_kwargs
829
899
  )
830
900
  return output_df
@@ -971,50 +1041,84 @@ class LinearDiscriminantAnalysis(BaseTransformer):
971
1041
  )
972
1042
  return output_df
973
1043
 
1044
+
1045
+
1046
+ def to_sklearn(self) -> Any:
1047
+ """Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
1048
+ """
1049
+ if self._sklearn_object is None:
1050
+ self._sklearn_object = self._create_sklearn_object()
1051
+ return self._sklearn_object
1052
+
1053
+ def to_xgboost(self) -> Any:
1054
+ raise exceptions.SnowflakeMLException(
1055
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1056
+ original_exception=AttributeError(
1057
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
+ "to_xgboost()",
1059
+ "to_sklearn()"
1060
+ )
1061
+ ),
1062
+ )
1063
+
1064
+ def to_lightgbm(self) -> Any:
1065
+ raise exceptions.SnowflakeMLException(
1066
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1067
+ original_exception=AttributeError(
1068
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
+ "to_lightgbm()",
1070
+ "to_sklearn()"
1071
+ )
1072
+ ),
1073
+ )
974
1074
 
975
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1075
+ def _get_dependencies(self) -> List[str]:
1076
+ return self._deps
1077
+
1078
+
1079
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
976
1080
  self._model_signature_dict = dict()
977
1081
 
978
1082
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
979
1083
 
980
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1084
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
981
1085
  outputs: List[BaseFeatureSpec] = []
982
1086
  if hasattr(self, "predict"):
983
1087
  # keep mypy happy
984
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1088
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
985
1089
  # For classifier, the type of predict is the same as the type of label
986
- if self._sklearn_object._estimator_type == 'classifier':
987
- # label columns is the desired type for output
1090
+ if self._sklearn_object._estimator_type == "classifier":
1091
+ # label columns is the desired type for output
988
1092
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
989
1093
  # rename the output columns
990
1094
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
994
1098
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
995
1099
  # For outlier models, returns -1 for outliers and 1 for inliers.
996
- # Clusterer returns int64 cluster labels.
1100
+ # Clusterer returns int64 cluster labels.
997
1101
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
998
1102
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1003
1107
  # For regressor, the type of predict is float64
1004
- elif self._sklearn_object._estimator_type == 'regressor':
1108
+ elif self._sklearn_object._estimator_type == "regressor":
1005
1109
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1006
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1007
- ([] if self._drop_input_cols else inputs)
1008
- + outputs)
1009
-
1110
+ self._model_signature_dict["predict"] = ModelSignature(
1111
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1112
+ )
1113
+
1010
1114
  for prob_func in PROB_FUNCTIONS:
1011
1115
  if hasattr(self, prob_func):
1012
1116
  output_cols_prefix: str = f"{prob_func}_"
1013
1117
  output_column_names = self._get_output_column_names(output_cols_prefix)
1014
1118
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1015
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1119
+ self._model_signature_dict[prob_func] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1018
1122
 
1019
1123
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1020
1124
  items = list(self._model_signature_dict.items())
@@ -1027,10 +1131,10 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1027
1131
  """Returns model signature of current class.
1028
1132
 
1029
1133
  Raises:
1030
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1134
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1031
1135
 
1032
1136
  Returns:
1033
- Dict[str, ModelSignature]: each method and its input output signature
1137
+ Dict with each method and its input output signature
1034
1138
  """
1035
1139
  if self._model_signature_dict is None:
1036
1140
  raise exceptions.SnowflakeMLException(
@@ -1038,35 +1142,3 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1038
1142
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1039
1143
  )
1040
1144
  return self._model_signature_dict
1041
-
1042
- def to_sklearn(self) -> Any:
1043
- """Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
1044
- """
1045
- if self._sklearn_object is None:
1046
- self._sklearn_object = self._create_sklearn_object()
1047
- return self._sklearn_object
1048
-
1049
- def to_xgboost(self) -> Any:
1050
- raise exceptions.SnowflakeMLException(
1051
- error_code=error_codes.METHOD_NOT_ALLOWED,
1052
- original_exception=AttributeError(
1053
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
- "to_xgboost()",
1055
- "to_sklearn()"
1056
- )
1057
- ),
1058
- )
1059
-
1060
- def to_lightgbm(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_lightgbm()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def _get_dependencies(self) -> List[str]:
1072
- return self._deps